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O(N)-Space Spatiotemporal Filter for Reducing
Noise in Neuromorphic Vision Sensors

Alireza Khodamoradi, Member, IEEE, and Ryan Kastner, Member, IEEE

Abstract—Neuromorphic vision sensors are an emerging technology inspired by how retina processing images. A neuromorphic
vision sensor only reports when a pixel value changes rather than continuously outputting the value every frame as is done in an
“ordinary” Active Pixel Sensor (ASP). This move from a continuously sampled system to an asynchronous event driven one effectively
allows for much faster sampling rates; it also fundamentally changes the sensor interface. In particular, these sensors are highly
sensitive to noise, as any additional event reduces the bandwidth, and thus effectively lowers the sampling rate. In this work we
introduce a novel spatiotemporal filter with O(N) memory complexity for reducing background activity noise in neuromorphic vision
sensors. Our design consumes 10× less memory and has 100× reduction in error compared to previous designs. Our filter is also
capable of recovering real events and can pass up to 180% more real events.

Index Terms—Neuromorphic Senors, Event Based, Noise, Spatiotemporal Filter, Background Activity.

F

1 INTRODUCTION

N EUROMORPHIC vision sensors are biologically inspired
event-based image sensors. Unlike ordinary image

sensors they only produce events if they detect changes in
light intensity. It enables them to have an efficient output
stream by excluding redundant data and only including
changes. In addition, their architecture allow each pixel to
be sampled at very high frequencies, for example, DAVIS
sensor is capable of sampling at 333.3 kHz per pixel [1, 2, 3].

Neuromorphic sensors have seen growing importance in
industry and research [4, 5]. For example, Samsung recently
announced that an event-based image sensor, the Dynamic
Vision Sensor (DVS) [2] will be used in their products for
gesture recognition [6] alongside IBM’s TrueNorth processor
[7].

Event-based image sensors are extremely sensitive to
Background Activity (BA) noise produced by temporal
noise and junction leakage currents [2, 8, 9]. BA noise
happens when output of a pixel changes under constant
illumination. This noise can be removed by spatiotemporal
correlation filters [10].

The programmable logic (PL) at the sensor head can be
used for implementing the filter. By having the spatiotem-
poral correlation filter at the sensor side, the BA events will
not be sent to a host PC. It can improve both the sensor’s
bandwidth utilization and processing. Implementing a spa-
tiotemporal filter at the sensor head becomes a must if the
sensor’s PL hosts an application [4].

However these filters have two main problems: I)O(N2)
memory complexity that makes their hardware implemen-
tation challenging and II) Inability of passing all of the real
events. To elaborate on the second issue, it happens when an
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earlier filtered event finds spatiotemporal correlation with
a current event. This earlier event, now has support from
a current event to pass the filter, but it requires the filter
to have additional memory for keeping all the information
for the earlier event. This additional memory will increase
the memory complexity of the filter even more and requires
bigger PLs.

In this work we address these two issues by introducing
a novel hardware friendly spatiotemporal correlation filter
with O(N) memory complexity for reducing noise in neu-
romorphic vision sensors.

ARK
November 15, 2017

1.1 Dynamic Vision Sensor (DVS)
In this work we use the Dynamic Vision Sensor, DVS128
from INILabs [11] similar to what is used by IBM and Sam-
sung. The DVS128 sensor is an event-based image sensor
that generates asynchronous address events as soon as the
changes in log intensity since the last event exceed an upper
or lower threshold.

Each pixel independently and in continuous time quan-
tizes local relative intensity changes to generate spike
events. If changes in light intensity detected by a pixel since
the last event exceed the upper threshold, pixel will generate
an ON event and if these changes pass the lower threshold
pixel will generate an OFF event. A Pixel will not generate
an event otherwise.

By this mechanism, DVS128 only generates events if
there is a change in light intensity, therefore, sensor’s output
stream only includes the detected changes in sensed signal
and does not carry any redundant data.

DVS sensor produces two types of events, ON and OFF.
These events are in the form of an address-event that are
generated locally by the sensor, each ON or OFF event
includes polarity, x-position, and y-position of a pixel’s
event. The timing information of these events is coded in
a 32 bits time-stamp.
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To encode all the event information for output stream,
DVS sensor uses Address Event Representation (AER) pro-
tocol [3] to create a quadruplets for each event as following:

e(p, x, y, t) (1)

• p: Polarity, direction of change in light intensity
• x: Column number.
• y: Row number.
• t: Time-Stamp.

1.2 Background Activity (BA)

Background Activity noise is produced by thermal noise
and junction leakage currents acting on switches connected
to floating nodes [2, 9, 12]. These events decay the quality of
the data and utilize unnecessary communication bandwidth
and processing.

The difference between BA events and the real activity
events of a pixel is that the BA events lack temporal cor-
relation with events in their spatial neighborhood unlike
the real events that have a temporal correlation with events
from their spatial neighbors. Using this difference, the BA
noise can be filtered out by detecting events generated by a
pixel without the spatiotemporal correlation with the events
generated by neighboring pixels and the pixel itself.

Such a filter is a spatiotemporal correlation filter. To
process an event, a spatiotemporal filter searches the event’s
spatial neighborhood for events with time-stamps closer
than a dT to the processing event’s time-stamp (Fig. 1). If
there exists an event with a time-stamp closer than the dT
to the processing event’s time-stamp, the processing event
has support and can pass the filter. The processing event will
be filtered out otherwise. This principal can be formulated
as following:

e(p, x, y, t) is not BA ⇐⇒ ∃ |t− tij | < dT

s.t. |i− x| ≤ 1 ∧ |j − y| ≤ 1
(2)

In the above equation, e is the processing event and tij
is the time-stamp of the most recent event at col = i and
row = j excluding the processing event.

It should be clear that for implementing such a filter one
memory cell per pixel is required to store the most recent
time-stamp.

y

xt

dT

Fig. 1. Principal of spatiotemporal correlation filter. An event can pass
the filter if it has correlation with its spatial neighbors within a temporal
window dT .

1.3 Contribution
We introduce a novel filter with O(N) memory complexity
for reducing BA noise in neuromorphic sensors. Our filter’s
memory requirement is significantly lower than other re-
lated work; this low memory requirement makes our filter
desirable for near sensor implementation. By design, our
filter stores all the necessary data for recovering recent
events. By recovering past real events, we improved the
filter’s output up to 180% compared to other designs. We
also improved the error rates of hardware friendly spa-
tiotemporal filters. Error rates for our filter are 100× smaller
than other hardware friendly designs for false negative error
and zero for false positive error.

The rest of the paper is organized as follows. Section 2
reviews the related work in spatiotemporal correlation filter
design. Section 3 describes the design of our proposed spa-
tiotemporal filter. Section 4 studies BA noise and provides
a mathematical model for it in neuromorphic sensors. In
section 5 we define three types of error for spatiotemporal
filters and compare them for different filter designs. Section
6 compares and describes the results of hardware imple-
mentation for different filter designs.

2 RELATED WORK

Filtering BA noise at the sensor head improves the quality
of the data at sensor’s output stream, the bandwidth uti-
lization, and saves on processing at a consumer of the data.
Filtering BA noise at the sensor head can be inevitable if the
existing PL at the sensor be used for implementing a custom
application [4].

However implementing a spatiotemporal filter at the
sensor head can be problematic. These filters require N2

memory cells for a sensor with N×N pixels. Even for small
filters, this memory requirement can exceed the available
hardware resources at the sensor head. Even if a spatiotem-
poral filter fit into the sensor’s PL, there will not be enough
space left for implementing other applications and near
sensor processing.

Liu, et. al. [8] designed a filter to address this issue
by sub-sampling pixels into groups and projecting each
group into one memory cell. An N ×N sensor then will be
divided into N2/S2 groups with S being the sub-sampling
factor. Although this filter does not have significant loss in
accuracy for S = 2, its error rate increases significantly as
the sub-sampling factor grows.

The other problem with Liu’s filter is the fact that pixels
are only compared with other pixels in their sub-sampling
group; if a real signal maps on different neighboring sub-
sampling groups, Liu’s filter will not search neighboring
pixels in other sub-sampling groups for temporal correlation
and it can increase the error rate (Fig. 2). This error can be
significant when a DVS is used for observing small objects
with limited movement [13].

As mentioned before, the high memory requirement
of spatiotemporal filters drives a secondary issue in their
design and prevents them to pass both supporting events,
meaning if an earlier event that did not pass the filter,
provides support for a current event, now the current event
is also supporting the earlier event and both events should
pass the filter. But this requires extra memory to store all the
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G2 G1

G3 G4

Fig. 2. Sub-sampling groups G1, G2, G3, and G4 each includes 4 pixels.
A real world signal that is mapped to different sub-sampling groups may
not completely pass Liu’s filter.

information for the earlier event. Liu’s filter also lacks this
feature and is not designed to store previous events’ (x, y)
positions and polarity.

3 PROPOSED SPATIOTEMPORAL FILTER

In order to search for correlation, spatiotemporal filters need
to store the time-stamp of earlier events. But compared to
real signals, BA noise is a sparse and random signal. Our
observations and calculations show that it is possible to
take advantage of this property and store less time-stamps
in a specific way to create an accurate and compact filter.
In our filter, instead of just saving the time-stamp, we
store all the information for an event. By storing all the
event information, we are able to search for spatiotemporal
correlation in future time of an event and recover all of the
real events.

In our approach, Instead of using one memory cell per
pixel to store the most recent time-stamp or in Liu’s case,
using one memory cell per sub-sampling group, we assign
two memory cells to each row and each column to store the
most recent event in the entire row or column (Fig. 3).

a b

c

Sensor pixels

Sensor pixels

Sensor pixels
Memory cells

Memory cells

Two 
memory
cells
per row

Two memory cellsper column

Fig. 3. Memory utilization for different spatiotemporal filter designs: a)
Baseline design: using one memory cell per pixel, b) Liu’s design: using
one memory cell per sub-sampling group (S = 2), c) Proposed design:
two memory cells assigned to each row and column.

Each memory cell is 32 bits, to store the data for the most
recent event, we use two memory cells: one for storing the
time-stamp and one memory cell for storing a bookkeeping
bit, the other axis position, and polarity (Fig. 4.a).

The bookkeeping bit is used for keeping a record of the
stored event’s status to prevent sending duplicate events. To
store the event’s polarity one bit is required, it leaves 30 bits
from the memory cell for storing the other axis position, it
allows the filter to support sensors as big as 230×230 pixels.

For example after the filter finishes processing an incom-
ing event e = (p, x, y, t), it updates the cells corresponding
to row = y and col = x, both time-stamps will be updated

to t and both polarity bits will be updated to p the value of
other axis position for row = y will be updated to x and the
value of other axis position for col = x will be updated to y.
And if the result of processing is that the event is passing
the filter, the bookkeeping bit will be set to one and zero
otherwise. (Fig. 4.b).

0 15 31

P
as

se
d

Other axis position: bits 2 through 31

0 15 31

Timestamp: 32 bits

a

b

Sensor pixels

e

p, p, y
t

2 memory cells per 
column

2 memory cells 
per row

p,
 p

, x

t row = y

col = x

P
ol

ar
ity

Fig. 4. Memory utilization: a) Two memory cells per row and column, 1
bit to keep track if the event is passed, 1 bit to store polarity, 30 bits to
store other axis position, and 32 bits to store time-stamp b) An arriving
event e(p, x, y, t) is stored in corresponding memory cells.

Using only two memory cells per row or column, sig-
nificantly reduces the memory requirements. Compared to
other designs, the memory complexity is reduced from
O(N2) to O(N). It makes our filter a much more affordable
design for hardware implementation.

Because this filter is able to store all the information for
an event, it can recover more real events, later in section 5
we show that this technique improves the data density of
real events by about 180%.

4 NOISE MODEL

In a CMOS image sensor, temporal noise is primarily due to
the photodetector shot noise, the output amplifier’s thermal
and 1/f noise, and pixel reset, follower, and access tran-
sistor thermal, shot, and 1/f noise [9, 12]. Hand analysis
of the CMOS image sensors published by several authors
[1, 2, 14, 15, 16] show that at low illumination the dominant
source of noise is reset and readout transistors, while at high
illumination the dominant source of noise is the photodiode
shot noise.

The DVS sensor is an unconventional CMOS imager. In
this sensor, a pixel generates an output if there is enough
change in the light intensity since the last event. A pixel then
uses two comparators to generate a single bit for reporting
an increase or a decrease in the light intensity and sensor
generates an ON or OFF event accordingly.

In neuromorphic vision sensors BA events are pro-
duced under constant illumination. These events are caused
by thermal noise and junction leakage currents acting on
switches connected to floating nodes[1, 2, 9]. The hand
analysis of DVS128 show that this sensor produces BA
events with an average rate of 0.05Hz at room temperature
and it increases to 1.5Hz at 60 ◦C [2].

These events randomly appear in time independent of
each other with an average rate. Although their source is
a combination of different noises (Shot, Gaussian, and Pink
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noises), we assume that their appearance follow a Poisson
distribution. Our motivation for making this assumption is
based on our observations and previous related studies [12,
17].

To evaluate our assumption, we collected the output
stream for a DVS128 sensor in a controlled environment.
In our experiments by isolating the setup, we ensured
that there are no real events captured by the sensor. We
collected sensor’s output stream for intervals of 7200 sec in
three different constant illumination settings: dark, normal,
and bright. We repeated each test for seven days (Fig. 5).
We then used the collected data to measure the goodness
of fit between their underlying distribution and Poisson
distribution using Kolmogorov-Smirnov test [18].

Fig. 5. DVS128 sensor used in our experiment for data collection. In
each data collection experiment, the sensor was kept under constant
illumination in an empty room isolated from any activity.

Poisson Distribution
Poisson distribution is a discrete probability distribution
that expresses the probability of a given number of events
occurring in a fixed interval of time if these events occur
with a known average rate and independent of each other:

P{n events} = (λ)n

n!
e−λ (3)

with λ being the average rate of occurrence for the
events.

Two-Sample Kolmogorov-Smirnov Test
This test is one of the most popular and important tests for
comparing samples with a reference probability distribution
[19] and can serve as a goodness of fit test.

If null hypothesis, be the position that ”there is no relation-
ship between two measured phenomena”, Kolmogorov-Smirnov
test can check the goodness of fit between samples drawn
from an unknown distribution and samples drawn from
a known distribution by rejecting or accepting the null
hypothesis.

Dm,n = sup
x
|F (x)m − Fn(x)| (4)

Where Dm,n is the Kolmogorov-Smirnov statistic, supx
is the supremum of the set of distances, Fm(x) is the
cumulative distribution function of the known distribution,
and Fn(x) is the empirical distribution function (EDF) for n
samples and is defined as:

Fn(x) =
1

n

n∑
i=1

1xi≤x (5)

The null hypothesis is rejected at level α if:

Dm,n >

√
−m+ n

2mn
ln(

α

2
) (6)

Applying the Kolmogorov-Smirnov test on the collected
noise from our DVS sensor results an average pValue= 0.97
and KS statistic= 0.02 that confirms that the null hypothesis
can be rejected at level α = 0.05 between the BA events
collected from the DVS sensor and Poisson process with
average BA rate equal to 0.05Hz (Fig. 6).

Fig. 6. Kolmogorov-Smirnov test results for DVS128 BA noise and
Poisson distribution: pValue = 0.97, KSstatistic = 0.02

Our tests confirm that the BA events from the DVS can
be assumed to be drawn from a Poisson distribution, to
calculate the number of arrivals for any finite time interval,
Poisson process can be used:

P{N(t) = n} = (λt)n

n!
e−λt (7)

In (7), P{N(t) = n} is the probability of receiving n BA
events during time t from one pixel and λ is the average
rate of BA noise-events per pixel.

5 FILTERS’ ERROR ANALYSIS

In this section, we use the noise model introduced in last
section in our analysis to calculate the probability of error
for different filter designs. We define three cases of error for
spatiotemporal filters in our analysis:

• False positive: passing an event with no correlation
with neighboring events.

• False negative: filtering an event with correlation with
neighboring events.

• Past event false negative: filtering an event with corre-
lation with neighboring events in future time.

Reader should note that if a BA event has correlation
with real events it will pass any filter working on spatiotem-
poral correlation principals.
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5.1 Baseline BA Filter

In this filter one memory cell is assigned to each pixel
for storing the last event’s time-stamp. This design, does
not have false positive and false negative errors. However,
this filter does not have enough memory to store other
parameters of previous events, such as polarity therefore it
is prone to past event false negative error. We use this design
as our baseline.

5.2 Liu’s BA Filter

This filter uses sub-sampling groups to reduce the memory
size. Each sub-sampling group of pixels with sampling
factor S, includes S2 pixels and uses one memory cell for
storing the time-stamp of the most recent event of the group
(Fig. 3.b).

Grouping pixels in sub-sampling groups bigger than
2 × 2 causes false spatiotemporal correlation between non-
neighboring pixels and will produce false positive error.

Although this filter is more efficient than the baseline
filter for utilizing memory cells, it still does not store any
data related to events beside their time-stamp. As a result,
this filter is incapable of recovering past events with spa-
tiotemporal correlation with current events and is prone to
past event false negative error.

False negative error in this filter is caused by its specific
design. This filter does not check neighboring groups for
supporting an arrival event. In the case of having a real
world signal mapped to neighboring pixels in different sub-
sampling groups (Fig. 2), this filter may not pass all of the
bordering events.

To calculate the probability of error for an incoming
event in this filter, we define three pixel groups for a sub-
sampling group and calculate their false positive and false
negative probabilities.

A S2 sub-sampling group of pixels includes: 4 corner
pixels, 4(S − 2) side pixels, and (S − 2)2 inner pixels (Fig.
7).

Fig. 7. Three pixel groups for a S × S sub-sampling group: green: 4
corner pixels, blue: 4(S − 2) side pixels, and red : (S − 2)2 inner pixels.

S2 = 4 + 4(S − 2) + (S − 2)2 (8)

An arriving event can be from corner, side or inner
groups with the probabilities 4/S2, 4(S − 2)/S2, and
(S − 2)2/S2 accordingly.

Each corner pixel has five neighboring pixels outside of
its sub-sampling group, that can cause false negative errors.
And has S2 − 4 non-neighboring pixels in its sub-sampling
group that can cause false positive errors.

Each side pixel has three neighboring pixels outside of its
sub-sampling group that can potentially cause false negative
errors. And has S2 − 6 non-neighboring pixels in its group

with potentials of causing false positive errors. For the last
group, each inner pixel has S2 − 9 non-neighboring pixels
that can cause false positive errors.

In Liu’s filter false positive error is when a non-
neighboring pixel’s spatiotemporal correlation with an ar-
riving event is used to pass the event and can be calculated
for a temporal window t as:

P{false positive error(t)} =
4

S2
(1− P{N(t) = 0}S

2−4)

+
4(S − 2)

S2
(1− P{N(t) = 0}S

2−6)

+
(S − 2)2

S2
(1− P{N(t) = 0}S

2−9)

(9)

P{N(t) = 0} is calculated using (7) and 1 − P{N(t) =
0}k is the probability of having at least one BA event from
k pixels during time t.

To calculate the false negative error for Liu’s filter, we cal-
culate the possibility of loosing support from a neighboring
pixel in a different sub-sampling group:

P{false negative error} = 4

S2
(
5

9
) +

4(S − 2)

S2
(
3

9
) (10)

5.3 Normal Sub-Sampling Filter
To resolve the false negative error in Liu’s filter shown in
Fig. 2, we consider a filter that neighboring sub-sampling
groups can support each other. To the best of our knowledge
this filter is not used in practice and is provided only
to demonstrate that resolving the false negative error will
increase the false positive error in sub-sampling approach. In
the rest of this paper, we refer to this filter by sub-sampling
filter.

This filter is also prone to past event false negative error,
but because neighboring sub-sampling groups in this filter
can support each other the false negative error is zero. To
calculate the false positive error we need to calculate how
many non-neighboring pixels can cause this error for each
pixel in a sub-sampling group. For the corner pixels, there
are 4S2−9 non-neighboring pixels that can potentially cause
this error. For side and inner pixels, there are 2S2 − 9 and
S2 − 9 pixels accordingly that can potentially cause false
positive error. We can formulate this for a temporal window
t as:

P{false positive error(t)} =
4

S2
(1− P{N(t) = 0}4S

2−9)

+
4(S − 2)

S2
(1− P{N(t) = 0}2S

2−9)

+
(S − 2)2

S2
(1− P{N(t) = 0}S

2−9)

(11)

5.4 Our Proposed Filter
This filter stores the quadruplet (1) of the most recent event
in a row or a column. Therefore it is capable of recovering
previous events and does not suffer from past event false
negative error.
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To store an event, this filter stores both row and col-
umn information, therefore non-neighboring events are not
included in the search for spatiotemporal correlation. As a
result the false positive error in this filter is zero.

The false negative error happens in a special case when
there is only one real event to provide support for another
real event but the data of the older real event gets replaced
by BA noise. Lets consider two real events e1 and e4 in
neighboring of each other with the timing order of t1 < t4:

e1(p1, x1, y1, t1) and e4(p4, x4, y4, t4) are neighbors

⇐⇒ |x1 − x4| ≤ 1 ∧ |y1 − y4| ≤ 1
(12)

If t4−t1 < dT then both events must pass the filter, but if
BA events overwrite e1’s data, the recent event e4 will loose
its support from e1. If noise does not support e4 (no BA
event in e4’s neighborhood during dT ) e4 will not pass the
filter and results into false negative error. Lets consider two
BA events BA2(p2, x1, y2, t2) and BA3(p3, x3, y1, t3) (Fig.
8), false negative error will happen if:

t1 ≤ (t2, t3) ≤ t4 ∧ |y2 − y4| > 1 ∧ |x3 − x4| > 1 (13)

e1 t1
p1

, x
1

p1, y1

t1

e1 t1
p1

, x
1

p2, y2

t2

BA2

col = x1 col = x1

row = y1 row = y1

t3
p3

, x
3

p2, y2

t2

BA2

col = x1

row = y1BA3

a

c

b

d

e4

t3
p3

, x
3

p2, y2

t2

BA2

col = x1

row = y1BA3

Fig. 8. Example of false negative error in our proposed filter: a) at t = t1,
real event e1 arrives, column x1 stores y1 and t1 and row y1 stores x1

and t1. b) at t = t2, noise event BA2 arrives and changes the values
of column x1 to y2 and t2. c) at t = t3, noise event BA3 arrives and
changes the values of row y1 to x3 and t3. At this point information
related to e1 are completely overwritten by noise events. d) at t = t4
real event e4 arrives and filter can not find a temporal correlation in its
neighboring pixels and false negative error occurs.

Our filter’s False negative error for a M ×M sensor and
temporal window t can be calculated as:

P{false negative error(t)} =
(1− P{N(t) = 0}M−3)2

(14)

In (14) we are calculating the probability of receiving
at least one BA event from the pixels in e1’s row (y1)
excluding e2’s neighbors and at least one BA event from the
pixels in e1’s column (x1) excluding e2’s neighbors during
a temporal window t.

5.5 Theoretical Comparison

To compare the filters, we use our developed equations to
calculate both false negative and false positive errors.

In our comparison for false positive error, we set the tem-
poral window of the filter to a practical value dT = 1mSec
and noise frequency to 0.05Hz for room temperature [2].
This error is zero in our filter and the result for other sensors
with different sensor sizes are shown in Fig. 9.

Fig. 9. False positive error calculated for dT = 1mSec and fnoise =
0.05Hz (room temperature). This error is zero for our filter. Increasing
the size of the filter for Liu’s and sub-sampling filters results in smaller
sub-sampling groups and improves this error.

Increase in temperature increases the average noise rate
and results to higher false positive error rates for Liu’s and
sub-sampling filters.

Fig. 10. False negative error calculated for temporal window dT =
1mSec and noise rate fnoise = 0.05Hz. Since this error is significantly
lower for our filter, data are presented in logarithmic scale. Increasing
Liu’s filter’s size will increase the number of corner and side pixels and
results in higher error rates (10).

Comparison between the filters for false negative error
is done in a different fashion. This error is zero for sub-
sampling filter, temporal independent for Liu’s filter (10), and
temporal dependent for our proposed filter (14).

Fig. 10 shows this comparison between Liu’s and our
filter. The decay in Liu’s noise probability is because of fad-
ing effect of corner and side pixels for larger sub-sampling
groups (10). Increasing the temporal window will increase
the probability of false negative error for our filter.

5.6 Comparison Between Filters using Real Data
In this subsection, we compare the filters using real data
captured from a DVS sensor. To compare the performance
of our filter with the baseline filter, we passed the collected
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noise from section 4 to both filters. Our results show that
our filter works as expected and we did not observed any
error during our observations (Fig. 11).

Fig. 11. Comparison between our filter and baseline filter using real data
captured by a DVS sensor. Both filters identically remove the BA noise.

To compare the filters for past event false positive error, we
collected the output of the DVS128 sensor while moving a
laser pointer in front of the image sensor. We collected this
data for two seconds and used all four filters for denoising.
We repeated this test for 20 times and calculated the number
of passed events between the filters. We concluded that on
average our proposed filter passes 180% more real events
compared to other filters. The result of one of our tries is
shown in Fig. 12.

Fig. 12. Past event false negative noise. Data captured with a moving
laser pointer in front of the camera. Compared to other filters, our
proposed filter is able to pass 180% more real events compared to other
filters. All other filters are prone to this error and output of the baseline
filter can also represent Liu’s and sub-sampling filters for this error.

6 HARDWARE IMPLEMENTATION

To compare the resource utilization between our proposed
filter and other approaches, we implemented all the filters
using Vivado R© High Level Synthesis.

Baseline filter’s size is equal to the sensor size and sub-
sampling and Liu’s filters’ sizes can be different depending
on their sub-sampling factor (Fig. 3). But for an equal filter
size, hardware utilization for these three filters are almost
identical. Therefore a reader can assume that the provided
result for a baseline filter are valid for the same size Liu’s or
sub-sampling filters.

In practice, because of limited real estate and to conserve
energy and heat, compact FPGAs with high performance-
per-watt ratios are used at the sensor head. Therefore we
used Artix R©-7 from Xilinx R© for our synthesis.

The result of synthesis for different sensor sizes range
from 128× 128 to 1280× 1280 is shown in Table 1.

TABLE 1
Comparison between resource utilization

Size filter Latency BRAM FF LUT Throughput
(nSec) (MHz)

128× 128 baseline 8 8.77% 0.06% 0.32% 14
this work 35 0.55% 0.31% 0.72% 3

256× 256 baseline 8 35.07% 0.06% 0.34% 14
this work 35 0.55% 0.32% 0.72% 3

512× 512 baseline 8 140.27% 0.07% 0.37% 14
this work 35 0.55% 0.32% 0.72% 3

1024× 1024 baseline 8 561.10% 0.10% 0.40% 14
this work 35 1.10% 0.32% 0.73% 3

1280× 1280 baseline 8 1122.19% 0.12% 0.43% 14
this work 35 2.19% 0.32% 0.73% 3

Table 1 shows that for sensor sizes bigger than 256×256,
baseline filter can not fit in the fabric. And since Liu’s and sub-
sampling filters have similar hardware utilization as baseline
filter for equal filter size. These two filters also can not fit in
the fabric if they are bigger than 256× 256 (Fig. 13).

As it is shown in Table 1, our proposed filter consumes
less memory and as a trade off, it has lower throughput
and higher latency compared to baseline filters. However
its latency is three orders of magnitude faster than the
sensor, pixels of DVS128 have a latency equal to 15µ sec
which is equal to 66.7 kHz and the sensor itself is capable of
producing maximum 1M events per second.

Fig. 13. Memory utilization for baseline filter. Liu’s and sub-sampling
filters with sizes equal to baseline filter have similar memory utilization.

Compared to other filters, our proposed filter does not
have a high demand on resources. Even for the large sizes it
utilizes a fraction of memory compared to other filters. Fig.
14 shows a comparison between the smallest Liu’s filter and
our proposed filter for different sensor sizes.

7 CONCLUSION

This paper presents a novel O(N) spatiotemporal filter
for neuromorphic vision sensors. By modeling the noise of
neuromorphic vision sensors, we calculated the probability
of error for our proposed sensor and other related filter
designs. Our error models show that the proposed filter has
100× less false negative error compared to other hardware
friendly designs and zero false positive error. By collecting
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Fig. 14. Memory utilization for proposed filter. Even for large sensor
sizes, its memory utilization is significantly lower than a 128× 128 Liu’s,
baseline, or sub-sampling filter.

data from a real sensor, DVS128 we showed that the per-
formance of our proposed filter follows our predictions
and developed models. In addition, this filter shows an
improved output up to 180% compared to all other designs
by passing all of the real events.

In our hardware implementation section we showed that
this novel filter reduces the memory utilization by 10× and
can fit on fabrics with limited resources and unlike other
spatiotemporal filters, it still leaves enough space on the
fabric for implementing other possible applications.
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