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O-theorems for the Riemann zeta-function
, by

Normanw Lmvingon* (Cambridge, Mags.)

Abstract. For s = ¢~ it the familiar formula

CEI i) = 31 %Y

i=1 J

is valid for ¢ >> 1 and integer % > 1. Here { results for {(¢--dt), <e <1
will be obtained in an elementary way from (0.1) by choosing an appro-
priate integer m, » = n(k, ¢). The size of the single term d,(n) will give
L results that are slightly better than the existing results of Littlewood
for ¢ = 1 and Titchmarsh for 1< ¢ < 1. Their results are based on the

o use of 3'd;(j)/5%, o > 1, which involves Legendre functions. The method

used here also applies to 1/Z(1-+4) as will be shown.

1. Let v be the Fuler constant.
TEROREM 1. There emist arbitvarily large t for which

[£(L+it)] = e'loglogt =+ O (1),

This improves slightly the result of Littlewood ([23; [6], Theorem 8.9A).

TurorEM 2. Let } < e<< 1. Then there ewisis a positive comstant B
independent of ¢ such that for sufficiently large T

max i‘:(c_[_,“:)l > GB(logT)l—cllugIogT_ ]

Lt

This improves slightly the regult of Titchmarsh ([4]1; [6], Theoreny
8.12). The following improves slightly the result of Littlewood ({31;
[5], Theorem 8.9B). '

THwoREM 3. There emist arbitrarily large values of t for which

1

Ge¥ ’
— 2 t—logl g 1).
Tarars - (loglogé—logloglogi) + O (1)
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318 ' N. Levinson

The proofs of Theorems 1 and 2 are entirely elementary except for
the uge of the fact that the integral of an analytic function around a ree-
tangle iz zero. For Theorem 3 we use a weak npper bound for 1/i(s) for
o> 1 such as O(log™), ([B], (3.6.5)).

The simple idea involved in choosing  appropriately is revealed in
the Remark following fthe statement of Lemma 2.1. There are actually
many choices of # that will work. However I was unable to find a large
enough number of them which when combined substantially improve
the Theorems.

Profegsor P. Turén has poinfed out to me that under R, H., a,pplymg
the inequality of Hadamard-Borel-Caratheéodory to log Z(s), leads to
-results for 1/0(s), $ << ¢ < 1, of the same kind as in Theorem 2 gince
otherwige Theorem 2 would be contradicted.

2. In what follows p will denote a prime number and % an integer
exceeding 2. As usual Jet [x] denote the integer part of .

Lunma 2.1, Let ¢ satisfy $<Ce<C1. Let the dnteger m{=m,} be
defined by .

@.1) [ k }
. m=—7-I"
°—1
Then there ewists a constemt A, such thot
Ic(pm P°

|1og

-

—klog
Pl

1
—{——glogm ’ A
Remark. For the moment let the integer m merely be positive.
Then from consideration of the factor (1 —1/p*)~" in the product represen-
tation of (*(s) it follows easily that

(@™ (k=14 m)!
P (k —1)!971,219”“'

(2.2)

Clearly this inereages with m so long as
Ty —L—m

mp®
or so long a8 k—1L 3 m(p° —1}. This motivates the choice of m in (2.1)
ag the way to maximize d,(p™)/p™. Since dy(n)/n’ is a multiplicative

funetion, the above maximization leads easily to the chome of » wlhich
will essentially maximize d(n)/n°. :

FProof of Lemma 2.1. Let p

=

g Ia g0 that m =1 and let

™m
— 10g ")
™

iom
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with m ag in (2.1). Since logj' 1 it follows

from (2.2) that

{(F+4)ogj—3+0(1) for j =

(m—+ %)logm‘-—

(2.3) R={(k~t+m)loglk-1+m)—(k— J“)101‘%:(]@ 1)—
' —omlogp-+0(1)
= TI+H—-%logm+40(1) :
where
1 m ' ' F—1-m
= _—— 1 — == 1 ATy
I (k .2) 0g(1+ k—l)’ H = mlog po
From the definition of m
(2.4) m =p°]il —a, O0<a<l
and so
1 k 1 a- 1 1 1
={k—— . — =1k——}1 —_— O =
T sl ) = () °g(4+z:°—1 O(k))
_ 1 Pc - PO -
= (km-é—)log(pc_l) +001) = ?’clog P +0(1).
Using (2.4) again
H = mlog(l_i_lﬂ_i_mfj__ﬂ) = mlog(l'—{- E@_“];E)
mp mp

@< 1, p°>> 242

1 a(p’—1)—1
el s mp°

Because m = 1, <

1
< —

m
and so H — 0(1). Hence from {2.3) follows

1
R = Llog pfi_l — 5 logm-+0(1)

which. proves the Jemma.
LeEvmA 2.2, (The case ¢ = 1). Let m (=

(2.5) | | n =[]

=k

my) be defined as in 2.1. Let

Then as & increqses

1k
{2.8) : (@;%@l) = ¢'logk+0(1).
HMoreover ' '
2.7 logn = klogk+0O(%).

n Ambn Awillunalian % a
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Proof. Let m(x) represent the number of primes not exceeding .

Then ={z) = O(#/logz). By Lenmuma 2.1 with ¢ =1
; di(n) EEARIET oM [ ko :
(2.8) g~ = _ukg;mg (1 ) =5 2, e |5 |+ 0l h).
Tor p< k
k
0<lo [ ] < log log — %
e Cp P
Let
I—Zlog[ ] Zlog———]—n(l’r
Then with the sums for p <<k
e ‘
k dv Y I
i —_— 1 _ = e
ZIOg P pr v r; _ 0 (log."c)

Hence in {2.8)

210 %Ic’g dk;,%) --2 log(l“%) M(lolgk)'
Tt i an clementary vesulb ([1], (22.7.4)) that
' ' ' 1
~ logw)
‘where B, is a constant and that ([1], (22.8.1))

Slef-2) -3~

=loglogz+ B, + 0 (

n<oa
and so
‘ 1 1 1
Sl +3} = mreofG)
Hence _ _
(2.a1) Zlog(l—i) = —loglogw—vy —FO(»}—ﬂ)
= ? loga

Sefting » = & above, (2.10) becomes

L . d?ﬂ(ﬂ’) _ 1

" which proves (2.6).
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From (2.5) with the sum for p < %

i
logn = 2 [p l]logp.

.

Since }logp = O (%),

logn = %

Since Ziogp/p(p ~1) = 0(1),
logn = % _ilojw-—p.-]—O(k) = hlogk-+O(k)

by a well known elementary xesuit which proves (2.7).

3. Here the proof of Theorem 1 will be given. It will be useful to
recall the elementary formula ([57], (2.1.4))

£(s) m_;f:_l_._g f m—;;%?—ldm
1

valid for ¢ > 0. For o> § and ¢ lz{rge

L\'.\j}-t )

o >
(3.1) ic(s)|<2+isrlf g o>

Proof of Theorem 1 With m as in (2.5), a>0 and b> 0, let

—1/2 14-at-ico

(3.2) J = 7% (s)n® gl 1— R g

] ,
14-a—ioo

Then by (0.1)

; Gld) 144 R itloznfimt2f? 3, () Jta b g W
J _MF—Q—@ 5 fe at Hz%jl"’ exp —_log »:?~

—oo

by a familiar integral formula. Since d,(j) > 0, it follows that

(3.3) ' ‘ J > d,(m).

Divide J in (3.2) into three parts Jy, J, and J; with respective ranges
of integration (1-+a—ico,l4+a~i4), (L-+a—4,1+a+1) and (1+a+3,
1+ a-+dco). Sinee the only smgula,mty of £(s} is the pole at s = 1, for some A,

1 .
(3.4) IC(S)IQH +4, [s—-1<2,
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and so it follows easily that
1

75“1‘,2 (l )Ic 14]
2 A) wttredt.
|

7ol < .

Thig is minimized essentially by choosing & = kflogn. For this choice

' 2ue" [logn
(3.5) |72} < ——{—%

&
+ A) .
Since by (277) logn = klogk-+ O(k)

1 ke
74l g%”’-e“(logk)’c(:tw( IE

logk
T b = ¢ it follows from (2.8) that for large &
(3.6) 2] < dy(n)e™".

To aiapmise J, we deform the integral to a sum of two, Jy, and Jy,,
with the help of (3.1), where Jy, is for § = 044, L <o <l~a, and Jy,
is for s =144, 1<t On Jy, |{(o+i)] <1+ 4 by (3.4). Hence

Al BN AL Cabl e

b wH?

do.

IJSI] g-
1
Since a is small for large &

w14 A)F

b = n(l+A)*.

(3.7) o Wal<
For J,, we divide the range of integration into two parts T <t<C T and
T < t. Hence gince b is large
: b

W : )
(3.8) Tl < [ e+t ay e

1
where using (3.1)

J' =-§—Z-°i f o=t gy
#

Let T = 2kb. Since

7] 1 ko 2¢ 1
2 r10gi— L) =2 L =
dt( o8 bz) A TR

for t3 2kb = T it follows thab

k, £
(3.9 J < Tkg—rzib?%qf_ ( PRty ! O TR PRV RN
: # ‘ B
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Since logd = k+log2k
J' << nexp{k(k+ 6log6h) — 452 < n _
for large k. Thus if M, = max|{(L-+4t)] for 1< [{ < T then

1F :
Vel < nd f PP gt m < nME L.

0

Using (3.7)
|Ja| < nME+n(l+ A 40 < nME-+e~"d, (n).
Clearly [J,| has the same domina,nt. Using this and (3.6) in (3.3)

d
(le —6~7%) A 2.00%.
V{2

By (2.6)

(1—6e77)"*(¢"logk+ O (1)) < 2" M,
or
e'logh+-0(1) < My.
Sinee logT = k+log2k,

loglog? = logk+0 (

logk
k
and z0 .
e'loglogT+0 Q)<< My
which proves Theorem 1.

4. For Theorem 2 the following lemma is required.

Ledyova 4.1, For L e <1 there is a constant A, > 2 such that if

1fe
4.1 . v =(;f~) :

if m (= my) is given by (2.1) and

== Hipma

PRY
then there emists @ constant Ay = 0 such that
1 dg(m) . (ogm)~
4.2 —1
(4.2) k o8 w7 T loglogn

for large k. Moreover logn = O(k®) and

kl,lc

44,

(4.3) logn =

323
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Proof of Lemma 4.1. By Lemua 2.1

(4.4) log >)‘ Z‘H(P: o, k)
K5 Py
where
' pr‘ 1 7
(4.5) H = klog };L:I “EIOg }T—ml —4,

1 »° 1. & .
ﬁ(]‘;-—-z—-)logﬁ-iﬁ w—lc:>g~~27c Y

1 2
nwi 1 k ool P4,
> 5)p g AP ey
where 4, = 4(4,+1%) > 2.
Tt will now be shown that
' 1 A4, 1
(4.6) m‘——z—logm—«—-f-“;wz--m, A,

Tndeed #—loga— %4, is an increasing function of # for @ > 1L and if is
positive for # = 4,> 2 since fv—logwv is increasing for »z 2 and is
positive for » = 2. By (4.6) it follows from (4.5) that

1 % L

H = E“j;c Tor EE; Az.
Hénce, it } is for p <y, (4.4) implies
1 d.fn) 1 1
S

From the definition of =

' — logp logp . X logp
(4.8)  logwn = Z mlogp <k 2$;:1*< 7be, -4k g

/kZI 287 ‘?‘mg—f'i- klogyz-——m L0 (klogy).
This implies that ‘

logm
e - 01

S 2 5 klogy L
and so by (4.7)

dk(fn,) logn - ~elogn
+00) = 2% (logk —log 44)

- (4.9) ——log

-0 (L) .
k 7® Zklogfy O
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Bince p° << kfA,

c1 °_1 p°—1

and so

) ) k logp k k
].Og’ﬂ, =2m10gp2-‘-2~2 z 25?!—6210g19>g

p

[ k ]3 k k—p k(lc—lfﬁz)>
P P p—1

k

= 2?6

Y

¢

for large %, and hence for large . Using (4.1) this implies that

kl,lc kUc
logn > — 2 ———
B2 AT 7 g,

and so0
k<t (44,logn)°

which proves (4.3) and in (4.9} implies that for largs %

}—Iog () > Azlogn
k n® {logn)loglogn
for pome 4, which iz (4.2).

From the top line of (4.8)

logp
logn'< IGZ 9”2 Zlogp = kO (y) = Ok

by (4.1)

325

Proof of Theorem 2. Here 4 is defmerl ag in Lemma él Then
with that » and J given by (3 2) there follows exactly as in (3.3)

(4.10) J > dy(n).

With e = kflogn and J divided into J, J, and J, as helow (3 3) there

follows (3.5) which since logn = 0 (k%) gives for large %

Jp =0 (ﬁ GSklugk) .
b

. Let b =n. By (4.3)
' logk << loglogn
for large %. Hence

(4.11) ’ Jz — 0(63kloglogﬂ)‘

Here, where ¢ <1, J, and J, are indented to the line o = ¢ instead of

¢ = 1. Then ag in the first part of (3.7)

1$1+“(l + A)Io

: \<\ efc(l_l_A)k

(4.12) ol <
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sinee here & — n and as before ¢ = kflogn. In place of (3.8)

o o
(4.13) |J32[g—°;—f |E(e ity e "M a4
1

where 1DOW
3?.: %c

J o= B0 g

Let T = %36 g0 that much as before
ok 17 .
J £3’“910Tke*T2’bEE~f e~ (T = plexp{— 1"+ %(3logk +log 3 +logn)}
# .

“and gince logwn = O(%®)
J = 0(n°e™ ).

Hence if M, = max(i(e-+it)| for 1< T then
[T, | < a8 ME 4000 (67 %) 4 e (L + A)",
With (4.11) and (4.10)

dy ()
n’

a4 gv% for o, B3>0,

1k ’
(d;:;:%) ) < 2 M 7+ O{(logn)).

Q 21]’[; + 0 (6aiclog]opm) .

Sinee (o4 A)MF <

By (4.2) for any fixed ¢, $ < e < 1 and sufficiently large %, and hence

n, this implies

) 1=t
(4.14) - Mmgexp(ﬂ's E-O—gﬁ)——-).

2 loglogn
- Since T = k¥n it follows that 10gn == log T —3logk and that

loglogn == loglogT -+ 0 ( logk )

log 7
Hence . ‘
(logn)™*  (logT)~* 1—0 logk
doglogn loglogZ \* logT) ’

Since logT > logn = kM°/44,

logfc _ of logk
logZ ke

(5.2) ap(p") = (1)

0-theorems for the Riemann cefa-funciion 327

and po for large &
(logn)—* . 1 (logTy°
loglogn ~ 2 loglog®

which in (4.14) proves Theorem 2.
5. For ¢>1

LY )
1) | (55) = 2%

where from (1 —1/p%)* follows easily

k!
rik—m)1

Maximizing |a.{p")/p"| much as in Lhe Remark preaedmg Lemma 1.1 leads
to choosing # == m where

(5.3) m:[ b ]
RrEs

Lemma B3, With m (=

(5.4) | ﬂ.—-Hp.

my) as above let

p<k
Then
|a,¢(n p—l—l 1
(5:8) k ZI logk '
<k .
Moreover
(5.6) - logn = klogk+0(%).

Proof of Lemma 5.l Since a,(n)/n is multiplicative it follows
from (5.2) with r == m (= m,) that, if > is for p < %, then

1 ()]

B = log == Z{logk!—logml—log()'c——m)!—mmlogp}

~2{(]5+}—« logk— mu{—i lo m—(kﬁm—!—i) >
= 5] ) %8 2
| 1 1 0 B
xlog(k —m) --m ng} + Togh
1 [ E—m k.
- 2{(76+E)10gk—m +mlog mp } +O(10g'k)

where 3 logm was appraised ag in (2.9).
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p+1)—a where 0 < a< 1. Hence
P41

Pp-+alp+1)/k

o
i
—
pall
o
L
=
T
P

X 1

1y, p+1 1 p+ {(p+1)/k
. -1
= (70 —I—-"“) Tog p -+ 0(1)
»
and
—H k— 1 -1,
q}'blog k—m = fmlog (l + '-%—)—) == mlog (1 -+ E(zzj ) ) = () (] )
MmPp C NP mp
Therefore

o 1 p-1 L )
R_Z(Tcmi_z)log > +0(1ng

p+l 1 1 [
— ) 240 .
724 log=—— 2 ek + logk
which easily yields (5.5). The proof of (5.6) is the same as for (2.7).
Proof of Theorem 3. With » as in (5.4) let

IR

i T o2
5.1 J = (g(s) s ols—220 o
. bi wm[”
By (3.1)
A (J) ( 'n).

J = ~nlex: LR
Hence
(5-8) | || = oy (m)| ~ I

where, using [logn /] > L/%n,j + n,

W T f%(j)l 8, —b216nd
(6.9) I= Z wm-y-;—mw gmome,
Since by (5.2)

LAY *M"’
l% 2| s 24 kU Diogi .,
i00-3/2

Y, 1 £ (s)
E 7 0gi " o Wim“fmﬂ (55 ds = 06

since 7(3/2) < ¢ Hence by (5.9) _

T = O(ezk)nze—bznﬁni_

But

icm

L2-theorems for the Riemann zeia-function

Let & = 8nk. Then

I = O(ezk) 2 —4]’(:2

Using (5.6) it follows easily that

Hence
(5.1.0)

I=0(").

|7} 2 lay(n)]-+O(e

Next using ([5], (3.6.53)}

for [tf =1 in (6.7) and moving the eontour to o = 1 gives

g(S)I 0{(ogty);

i< [ It

—-I,—o') .

o=l

&g:z‘,bzdt

for large &, and hence large b. Let 7' = %% and Tef

and

Then
(5.11)
Olearly
(5.19)

r
7, =%f IZ(L+-it)| e

~P18 gy

i 3 252
Jo = — | [L@Q i) Fe " g
2

[7] << 214 2.

Jy < amax|f(L 447"

T

and since (logt)’/t — 0 as t — oo,

Iy — f oM gy < Them T

much a8 in (3.9).

10gT =

by (5.6). Hence
(5.13)

Using (5.10), (5.11

3 T

Ividently

Jy == O(ﬂ.e“kd"”).
), (5.12) and (5.13)

2max|f{14+it)| "+ 0(67%) =

=T

od
. f o= =P 3y < oHloE T

log k2?4 logh = log8k3+logn = O (klogh)

i

()

329
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and so by (5.5)

' ] 1 1
oVemaz| L (L) H 0 (™) = H (1 + Ej«)(l +0 ( ))

ISy Bk

5
o2
o

_ fz_lz’é.g)fi LoQ)
as in (2.11). Since T = kb = 8k°n,
log7 = 3logk+log8+klogk+O(k) = klogk--0O(k).
Hence

' 1
loglog® =logk+loglogh+ 0O (M)

and so for large &, loglogd > logk and so

1
logk 2= loglog T —logloglog T+ .0 (U(T}")

Thus
1 < e'6
max ~
wer (14 T w2

which completes the proof.

(loglogd —Iogloglog T) 4+ O (1)
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