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Abstract

This paper proposes a novel noisy label detection ap-
proach, named O2U-net, for deep neural networks without
human annotations. Different from prior work which re-
quires specifically designed noise-robust loss functions or
networks, O2U-net is easy to implement but effective. It
only requires adjusting the hyper-parameters of the deep
network to make its status transfer from overfitting to
undefrfitting (O2U) cyclically. The losses of each sample
are recorded during iterations. The higher the normalized
average loss of a sample, the higher the probability of being
noisy labels. O2U-net is naturally compatible with active
learning and other human annotation approaches. This in-
troduces extra flexibility for learning with noisy labels. We
conduct sufficient experiments on multiple datasets in var-
ious settings. The experimental results prove the state-of-
the-art of O2S-net.

1. Introduction

Although deep neural networks have already achieved
tremendous success in computer vision, their performance
suffers from noisy labels in training data. Noisy labels refer
to labels which areassigned to wrong classes in supervised
learning. In real-world situations, acquiring high-quality
annotated data is costly and time-consuming. It needs mas-
sive human annotation and verification. As a result, most of
the deep models applied in industry have to be trainedbased
on data with a large amount of noise. As deep neural net-
works have the capability to memorize all training samples
[20], noisy labels would be overfitted. That greatlydegener-
ates the performance of deep models.

Recent studies draw attention to learning with noisy la-
bels. There are two types of solutions: 1) directly train-

ing noise-robust models on unclean data; 2) detecting and
cleansing noisy labels before training. The noise-robust so-
lutions [3, 14, 19, 13] typically focus on introducing reg-
ularization to reduce the effect of the overfitting on noisy
labels. In the solutions of noise cleansing, potential noisy
labels are first detected, and then removed from the train-
ing set [5] or fed to the model after clean samples [7, 4] to
reduce their negative impact. Although these two types of
solutions have their own advantages in different cases, the
noise-cleansing-based approaches have value add for prac-
tical usage in industry because of the following reasons:

e Clean Dataset: Data is the most expensive and valu-
able asset for industries. Removing noisy labels natu-
rally generates clean datasets, which can be reused for
other tasks via transfer learning without considering
the impact of noisy labels.

e Human Annotations: The combination of noisy label
detection and active learning [16] can further benefit
supervised learning. In industry, a raw dataset is typi-
cally allowed to be verified and annotated for multiple
rounds to guarantee its cleanness. Active learning can
be conducted after noisy label detection to further re-
duce human annotations.

e Applicability: Noisy label detection can also bene-
fit noise-robust models. Recent studies [4, 7] lever-
age curriculum learning [2] to build noise-robust mod-
els. Estimating the probabilities of noisy labels can
help develop such a curriculum to model the difficulty
of samples. That extends the applicability of noise
cleansing models.

In this paper, we address noisy label detection in super-
vised learning. We propose a simple but effective approach
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to identify mislabeled samples. The details of our contribu-
tions are summarized as follows:

e We propose a novel noisy label detection approach,
named O2U-net, without human annotation and veri-
fication. Different from prior work, O2U-net does not
require specifically designed noise-robust loss func-
tions or networks. It is quite easy to implement and can
be embedded in any network. O2U-net only requires
adjusting the hyper-parameters of the network to make
it transfer from overfitting to underfitting cyclically.
By calculating and ranking the normalized average
loss of every sample, the mislabeled samples can be
identified. In general, the higher the loss of a sam-
ple, the higher the probability of being a noisy one.
O2U-net is naturally compatible with active learning
and other human annotation approaches. It would fur-
ther reduce annotation cost.

e We conduct extensive experiments on multiple datasets
including both synthetic label noise and real-world la-
bel noise and compare O2U-net to several recent base-
lines. The experimental results show that O2U-net
achieves the state-of-the-art performance. In almost
all the cases, O2U-net outperforms the baselines by a
large margin on noisy label detection. After removing
noisy labels, the performance of the neural network is
further improved, compared to other baselines.

In the following sections, we briefly introduce the related
work of learning with noisy labels in Section 2, and then
present the details of O2U-net in Section 3. We illustrate
the training process of O2U-net in Section 4 and present our
experimental results in Section 5. We conclude our work in
Section 6.

2. Related Work

In the literature, the solutions of learning with noisy la-
bels can be classified into two types: 1) detecting noisy la-
bels and then cleansing potential noisy labels or reduce their
impacts in the following training; 2) directly training noise-
robust models with noisy labels.

Noise-Cleansing-based Approaches Koh and Liang [8]
propose an influence functions to measure which samples
are “harmful” to model training. As the proposed approach
requires intensive computation on the impact of every train-
ing sample on all the validation samples, it is hardly imple-
mented in industry. In [21], Zhang et al. propose an ap-
proach to detect both outlier samples and hard training set
bugs using a small group of trusted data. As this approach
requires a strong convex assumption on the objective func-
tion, it cannot be applied to most of the deep models be-
cause such an assumption can hardly hold. In [10], Lee et

al. propose a joint neural embedding network named Clean-
Net. This approach summarizes the knowledge of label
noise from a fraction of manually verified classes. Trans-
fer learning is then conducted to transfer the knowledge to
other classes to handle label noise. The human verifica-
tion lowers the applicability of this work. In [5], Han et
al. propose a noisy label detection approach, named Co-
teaching, in which two deep networks are trained simul-
taneously. Each network selects which samples the other
network uses for training. Either of the networks teaches
each other to identify noisy labels. Another similar work is
proposed in [11]. In recent studies, curriculum learning [2]
is applied to learning with noisy labels. In [4], Guo et al.
propose CurriculumNet, in which training data are divided
into several subsets by ranking their complexity via distri-
bution density. The subsets are formed as a curriculum to
teach the model in understanding label noise gradually. A
similar idea is proposed in [7]. In this work, a MentorNet is
trained to identify potential noisy labels. It then provides a
data-driven curriculum for a StudentNet which is trained on
the relatively clean data samples.

Noise-Robust Models In [3], label noise is modeled by
additional softmax layers to estimate the transition between
correct labels and noisy labels. In [19], Xiao et al. propose a
probabilistic model to describe the relations among images,
truth labels, noisy labels and noise types. The probabilistic
model requires a small set of verified clean labels. In [14],
Reed and Lee propose the notion consistent to model noisy
labels. Sample reconstruction errors are applied as the con-
sistency objective to estimate the noise distribution. All the
above noise-transition-estimation-based approaches aim at
discovering the pattern of noise in data.

Note that all the prior work of learning with noisy labels
requires either particular assumptions (e.g., noise distribu-
tion estimation) or extra specifically designed loss func-
tions or networks (e.g., Co-teaching and MentorNet). Those
limit their applicability in practice. Different from the prior
work, O2U-net only requires only appropriately adjusting
the hyper-parameters of deep networks. It is straightforward
but surprisingly effective in various situations.

3. The Proposed Model

We propose O2U-net which aims at detecting noisy la-
bels without human annotations. In our setting, potential
noisy labels are detected and removed from the original
dataset. A final classifier is then re-trained based on the
clean dataset. The final performance would be improved
because of the cleansing of label noise.

3.1. Intuition

The intuition of O2U-net comes from the training pro-
cess of common deep neural networks. In a typical training



process, the status of a network goes from underfitting to
overfitting. At the early stage of training, the convergence
speed of the network is fast. The network trends to first
learn the knowledge from the samples which are “easy” to
fit [1]. In the gradient-based optimization, such easy sam-
ples contribute more to the gradient computation at the early
stage, and as a result, their losses decrease sharply. Con-
versely, the “hard” samples are usually learned at the late
stage of training. If the training continues to the very late
stage of training, the network would memorize every sin-
gle training sample through its massive parameters and thus
get overfitted. The negative impact of label noise is mainly
caused by the overfitting of noisy labels.

By observing the whole training procedure on the dataset
including label noise, it is found that noisy labels are usually
memorized at the late stage of training as the “hard” sam-
ples. At the beginning of the training, the losses of noisy
labels are larger than those of clean samples because clean
samples quickly get fit at that beginning. At the late stage
of training, the losses generated from noisy labels and clean
labels are indistinguishable because both of them are mem-
orized by the network. Therefore, by tracking the variation
of loss of every sample at the different stages of training, it
is possible to detect noisy labels to some extent. However,
in an ordinary training process, the status of the network
would change from underfitting to overfitting only once.
Once the noisy labels are memorized, their losses would fast
decrease. Moreover, when the noisy labels are overfitted is
unknown. As a result, the loss tracking for every sample
may not be reliable because of the lack of sufficient statis-
tics. To overcome this issue, we introduce multiple rounds
of status transfer in training. We try to keep the status of
the network in changing between underfitting and overfit-
ting cyclically. In O2U-net, we apply the cyclical learning
rate (introduced in Section 3.2) to make the network trans-
fer from overfitting to underfitting repeatedly. Fig. 1 illus-
trates this process. As a result, the noisy labels are identified
through the statistics of their losses in the cyclical training.
In general, the larger the average loss of a sample after the
cyclical training, the higher the probability of being a mis-
labeled sample.

Recent studies of learning with noisy labels, which are
based on Curriculum Learning (e.g., CurriculumNet and
MentorNet), also share the same intuition. In these stud-
ies, a curriculum is designed to rank the difficulty of train-
ing samples. Easy samples are trained before hard sam-
ples to introduce robustness to the network. Although the
ways in which these approaches model sample difficulty are
different, the proposed difficulty method can be described
as a function of sample losses. In their work, the poten-
tial noisy labels are not removed because they argue that
noisy labels and real hard cases may not be correctly distin-
guished. However, in terms of our experiments presented

in Section 5, removing the potential noisy labels achieves
the best performance in most of the cases. It is worthy to
note that both their work and O2U-net work are proposed
based on the assumption that the gradient computation is
dominated by the clean samples when the network is un-
derfitting. Therefore, the proportion and the distribution of
noisy labels have a huge impact on label noise detection.

underfitting

overfitting

overfitting

Figure 1. Cyclical Training
3.2. O2U-Net

We adjust the hyper-parameters of a deep network to
make its status transferring from overfitting to underfitting
cyclically. A straightforward way is to apply the cyclical
learning rate. At the beginning of training, a large learning
rate is set. The learning rate linearly decreases to some ex-
tent during training and is then reset to the original learning
rate. This whole process repeats for multiple rounds un-
til enough loss statistics are gathered. The idea behind is
that, when the network almost converges to some minimum
(nearly overfitting), a large learning rate makes the network
jump out of the minimum. As a result, the network would
abruptly become underfitting. We repeat this process and
track the loss of every sample. We find that noisy labels
generate larger losses than clean ones during the cyclical
training. It should be clarified that we apply the same net-
work to detect noisy labels and train the final classifier. The
network can be any common network for image classifica-
tion, e.g., ResNet, ImageNet or other customized CNNs.

The whole training process of O2U-net comprises three
steps, which are introduced as follows:

1. Pre-training: Firstly, we follow the common setting
of hyper-parameters to train the network directly on
the original dataset including noisy labels. At this step,
a common constant learning rate is applied. A large
batch size is applied to reduce the impact of label noise
[15]. We use a validation set to monitor the perfor-
mance of training. The network is trained until the ac-
curacy in the validation set stays stable.

2. Cyclical Training: Secondly, the cyclical learning
rate is applied to continue training the network. A
smaller batch size is chosen to make the network more



easily transfer from overfitting to underfitting. The
network is then trained for multiple rounds based on
the cyclical learning rate. The loss of every sample is
recorded during the cyclical training. For a training
epoch, we subtract the average loss of all the samples
in this epoch from the loss of every sample to normal-
ize the losses in different epochs.

In the cyclical train, suppose the maximum cyclical
learning rate is r1, and the minimum learning rate is
ro, where vy > ro. We adopt a linear decrease func-
tion to cyclically adjust the learning rate. The equation
for learning rate adjustment during the cyclically train-
ing is as follows:

(14 ((t=1) modc))
s(t) = p : 0

r(t) = (1 —s(t)) x ri + s(t) X rog,
where ¢ refers to the ¢th epoch in the cyclical training,
c is the total number of epochs in each cyclical round
and r(¢) is the learning rate applied at . An example
of cyclical learning rate is illustrated in Fig. 3.

After the whole cyclical training, the average of the
normalized losses of every sample is computed. All
the average losses are then ranked in descending order.
The top k% of samples are removed from the original
dataset as noisy labels, where k& depends on the prior
knowledge on the dataset. Such prior knowledge can
be obtained by manually verifying a small group of
randomly selected samples.

3. Training on Clean Data: Lastly, we re-initialize the
parameters of the network, and re-train it on the cleans-
ing dataset ordinarily until achieving stable accuracy
and loss in the validation set. Algorithm 1 presents the
whole training process (Step 1 to Step 3) of O2U-net.

4. Illustration

In the section, we illustrate the process of cyclical train-
ing (Step 2) to help explain the effectiveness of O2U-net.

In this illustration, we use ResNet-101 [6] and the dataset
CIFAR-100 [9] to train an image classifier. As CIFAR-100
is a clean dataset, we follow the setting in [20], in which
each sample is independently assigned to a uniform random
label other than its true label with the probability p = 0.2,
i.e., there are nearly 20% noisy labels. After the pre-training
(Step 1), we compare the variation of sample losses in the
cases of a constant learning rate and cyclical learning rate.
Fig. 2 and Fig. 3 show the loss variation of the constant rate
and cyclical rate respectively. In Fig. 3, it is observed that
the training losses fluctuate periodically with the cyclical
adjustment of learning rate. With the decrease of the learn-
ing rate, the network converges back to some minimum.

Algorithm 1 Training of O2U-Net

Input: the dataset D including a fraction of noisy labels.

Output: : the ranking R of the probabilities of being noisy
labels for every samples; a classifier C'LS for image clas-
sification.

Step 1: Pre-training
Initialization: the network parameters W; constant
learning rate 7; a large batch size b;.
repeat
t =1... max epoch num:
fetch mini-batch D,,, from D;
compute loss [, on D,,;
update Wt = Wi=1 —yVi,,.
until stable accuracy and loss in the validation set.

Step 2: Cyclical Training

Initialization: a small batch size b,, where b; > by;
cyclical learning rate bounds r; and r; the length of a
cyclical round c; the training loss for each sample /,, = 0.

repeat
t =1... max epoch num:
n < r(t) via Eq. 1;
fetch mini-batch D,,, from D;
compute loss [,,, on D,,;
update Wt = Wit — nVi,,;
record the loss [,, of evey sample;
normalize [,,.
until max epoch num.
Compute the normalized average loss I,, of every sample
in all the epochs;
Obtain R by ranking all the samples in descending order
according to Lo
Remove top-k% samples from D to obtain a dataset D’.

Step 3: training on clean data
repeat
conduct ordinary classifier training on D’.
until stable accuracy and loss in the validation set.
Obtain the image classifier CLS.

After the cyclical training, a sample rank is obtained
according to their losses. We plot the samples in terms
of four groups, which are clean samples, top 0% — 20%
ranked noisy samples, top 20% — 40% noisy samples and
top 40% — 60% noisy samples. These top k% samples for
the constant learning rate setting and cyclical learning rate
setting are selected according to their corresponding loss
ranks. Every point plotted in Fig. 2 and Fig. 3 is the average
loss of each group in that epoch.

It is observed that the losses of the top 0% — 20% noisy
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Figure 3. Loss Variation for Cyclical Learning Rate

samples fluctuate drastically for both the constant learning
rate setting and the cyclical learning rate setting. The loss
value gaps between the top 0% — 20% group and the clean
sample group in the constant learning rate setting are much
smaller than those in the cyclical learning rate setting. In
this case, both the constant learning and the cyclical learn-
ing have the ability to distinguish clean samples and the
most remarkable noisy samples. However, for the groups
of top 20% — 40% and top 40% — 60% noisy samples, their
loss variations in the cyclical learning rate setting are more
notable than those in the constant learning rate setting. The
loss gaps between these two groups and the group of clean
samples in the cyclical learning rate setting are much larger
than those in the constant learning rate setting. A larger gap
implies stronger distinguishability between clean samples
and noisy samples. During cyclical training, noisy sam-
ples tend to produce much larger losses than clean samples.
The multiple-round cyclical training reduces the statistical
bias of sample losses. Therefore, training the network from
overfitting to underfitting repeatedly can not only identify
remarkable label noise but produce a more accurate rank of
the probabilities of being noisy samples.

The same conclusion can be seen from the precision-
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Figure 4. Precision-Recall Curves for Different Types of Learning
Rate

Training # Test# | Class# | Image Size
CIFAR-10 60K 10K 10 28 x 28
CIFAR-100 50K 10K 100 28 x 28
Mini-ImageNet | 50K 10K 100 84 x 84
Clothing1M 1M + 48K | 10K 14 256 x 256
Table 1. Datasets
recall curves on noisy label detection. In Fig. 4, the

precision-recall (PR) curve shows that, when recalling the
same proportion of noisy samples from the corresponding
loss ranks in both of the settings, cyclical training always
produces higher precision on detecting noisy samples than
constant learning because cyclical learning can more effec-
tively rank noisy samples at the top.

5. Experiments

We conduct experiments in various settings and compare
O2U-net to recent outstanding baselines.

Datasets. We evaluate O2U-Net on four benchmark
datasets: CIFAR-10, CIFAR-100 [9], Mini-ImageNet [18]
and ClothinglM [19]. CIFAR-10 and CIFAR-100 are the
most popular datasets used in the literature of learning with
noisy labels [5, 7, 13, 14]. Mini-ImageNet is a popu-
lar dataset frequently used in the area of few-shot learn-
ing [18, 17, 12]. As these three datasets are clean without
noisy labels, we follow the common setting in the literature
[4, 5, 7] to add synthetic noise into the training sets. No
noisy labels are added in the test sets. The noisy labels are
added in two ways:

e Random Noise: Each sample in the training set is in-
dependently assigned to a uniform random label other
than its true label with the probability p, where p =
10%, 20%, 40% and 80% in our experiments.

e Pair Noise: The samples in a class can only be misla-
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ResNet-101 9-Layer CNN
CIFAR-10

10% 20% 40% 80% Pair 10% | 10% 20% 40% 80% Pair 10%
Training with Constant Learning Rate | 10.23%  19.81%  39.96%  80.06%  9.96% 9.98% 20.71%  39.41% 79.89%  10.02%
Co-Teaching 58.46%  72.32%  84.75%  83.22%  54.16% 56.80%  69.58%  80.10% 82.51%  47.59%
Co-Teaching (top 10%) 58.46%  73.43%  74.86%  94.32%  54.16% 56.80%  70.37%  82.15% 84.19%  47.59%
Curriculum 68.13%  68.51%  59.35%  80.01%  63.24% 29.51%  24.24%  42.99% 80.03%  20.02%
Curriculum (top 10%) 68.13%  75.58%  62.23%  80.23%  63.24% 29.51%  24.72%  43.19% 80.06%  20.02%
O2U-net 94.34% 95.47% 95.67% 89.02% 91.56% 84.68% 86.56% 86.98% 84.30% 74.84%
02U-net (top 10%) 94.34% 97.96 % 98.88 % 97.38% 91.56 % 84.68% 95.00% 95.72% 90.94% 74.84%

CIFAR-100

10% 20% 40% 80% Pair 10% | 10% 20% 40% 80% Pair 10%
Training with Constant Learning Rate | 9.63% 20.56%  40.41%  79.61% 10.11% 10.21%  20.18%  40.07% 79.87%  9.93%
Co-Teaching 49.60%  65.35%  78.60%  84.72%  44.94% 51.45%  65.77%  78.12% 85.08%  44.95%
Co-Teaching (top 10%) 49.60%  66.62%  79.60%  87.80%  44.94% 51.45%  70.45%  80.05% 87.98%  44.95%
Curriculum 73.03% 86.01% 76.15% 82.31%  62.19% 59.21%  78.19%  60.08% 81.20%  63.02%
Curriculum (top 10%) 73.03%  92.24% 91.31% 88.18%  62.19% 59.21% 87.18%  76.63% 82.14%  63.02%
O2U-net 90.76 % 92.28% 92.64% 91.69 % 64.68% 80.62% 83.71% 86.34% 87.06% 60.08%
02U-net (top 10%) 90.76 % 96.64% 96.60 % 96.02% 64.68% 80.62% 95.96 % 97.40% 95.94% 60.08%

Mini-ImageNet

10% 20% 40% 80% Pair 10% | 10% 20% 40% 80% Pair 10%
Training with Constant Learning Rate | 10.02%  19.91%  39.93%  80.05%  9.97% 10.02%  20.12%  39.98% 80.04%  9.92%
Co-Teaching 47.10%  62.16%  75.22%  81.60%  37.02% 47.39%  62.06%  73.85% 81.82%  37.14%
Co-Teaching (top 10%) 47.10%  63.78%  76.35%  86.11%  37.02% 47.39%  64.80%  75.73% 87.94%  37.14%
Curriculum 62.77%  71.19% 67.61%  80.79%  55.74% 56.95%  62.43%  63.89% 80.05%  58.38%
Curriculum (top 10%) 62.77%  79.78%  80.11%  83.59%  55.74% 56.95%  72.79%  73.57% 80.06%  58.38%
O2U-net 81.35% 84.94% 87.23% 90.21% 59.23% 71.45% 75.63% 81.05% 85.52% 56.55%
02U-net (top 10%) 81.35% 96.26 % 98.71% 98.90 % 59.23% 71.45% 90.28% 95.73% 93.66% 56.55%

Table 2. Comparison on Noisy Label Detection

beled to the same one of the other classes. We follow
the same noise transition matrix described in [5]. The
probability of sample mislabelling in a class is 0.1.

We further evaluate O2U-Net on a large real-world
dataset - Clothing1M, which is composed of clothing data
crawled from online shopping websites. ClothinglM com-
prises 1M images with real noisy labels with additional 48K
verified clean data for training. Its overall noise proportion
is approximately 38%. The summary of all the datasets in
our experiments is introduced in Table 1.

Baselines. We compare O2U-net to the recent outstanding
approaches for learning with noisy labels:

e Direct Training: Direct training is the most funda-
mental baseline in which the image classifier is directly
trained on the original dataset with noisy labels.

e Training with Bootstrapping [14]: This work pro-
poses a consistency objective in which the current
prediction of the model is used to resist the impact
of noisy labels. We compare O2U-net to both hard-
bootstrapping and soft-bootstrapping.

e Co-teaching [5]: This work proposes a noise-robust
model that comprises two simultaneously trained net-
works. Each network guides the other one to select the
clean samples in training.

e MentorNet [7]: This work leverages curriculum
learning to model the difficulty of training samples.
We compare O2U-Net to the proposed data-driven cur-
riculum design method (MentoNet DD).

e CurriculumNet [4]: This work proposes a density-
based clustering algorithm to model sample difficulty
in curriculum learning.

All the baselines are re-implemented based on their open-
source codes with minor modifications to fit our setting.

Networks. We evaluate O2U-Net on two networks:
ResNet-101 [6] and 9-Layer CNN [5]. ResNet-101 is a
proven network applied to diverse image-related tasks. The
9-Layer CNN is the network applied in the baseline Co-
teaching. We slightly modify its structure to fit it to different
image sizes.
Experiment Settings. We compare O2U-net to the base-
lines on two aspects:

e Noisy Label Detection: we compare the precision of
noisy label detection of O2U-net and the other base-
lines. The precision is computed through the number
of truly detected noisy labels over the total number of
detected noisy labels. As the noise levels are set dif-
ferently in our experiments, precision is a better metric
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ResNet-101 9-Layer CNN
CIFAR-10
10% 20% 40% 80% Pair 10% | 10% 20% 40% 80% Pair 10%
Direct Traing 88.31%  83.00% 65.66% 15.91% 88.17% | 82.67% 76.42%  56.08% 17.67%  83.83%
Soft Bootstrapping 88.87%  83.20%  69.91% 18.12%  90.08% | 82.68%  75.21%  54.55% 17.65%  83.55%
Hard Bootstrapping 89.69%  84.88%  68.90% 15.59%  89.17% | 82.96%  75.00%  58.08% 18.18%  84.21%
MentorNet DD 92.80% 91.23%  88.64% 46.31%  91.02% | 84.78%  80.71%  72.96% 28.19%  85.94%
CurriculumNet 90.59%  84.65%  69.45%  17.95%  90.45% | 81.71%  74.02%  57.55% 16.23%  83.62%
Co-Teaching 90.36%  87.26%  82.80%  26.23%  90.77% | 85.69%  82.66%  77.42% 22.60%  85.83%
02U-net (Cycle Length 10) | 93.58%  92.57%  90.33%  37.76%  94.14% 87.35%  84.85%  73.34% 33.18%  88.07%
02U-net (Cycle Length 50) | 93.67%  91.60%  89.59%  43.41%  93.99% | 87.64%  8524%  79.64% 3493%  88.22%
CIFAR-100
Direct Traing 68.89%  62.73%  48.87%  9.21%  69.10% | 58.29%  49.32%  34.74% 7.25%  59.75%
Soft Bootstrapping 69.87%  62.71%  48.01% 9.05%  71.30% | 58.29%  49.32%  34.74% 7.25%  60.17%
Hard Bootstrapping 70.31%  63.36%  48.55% 8.88%  70.77% | 59.18%  48.97%  37.05% 7.53%  60.01%
MentorNet DD 73.14%  72.64% 67.51% 30.12%  71.96% 59.02%  52.12%  44.15% 11.21%  61.02%
CurriculumNet 73.23%  67.09% 51.68% 9.63%  73.30% | 55.34%  46.31%  29.91% 4.39%  57.79%
Co-Teaching 68.81%  64.40% 57.42% 15.16% 70.02% | 57.1%  53.79%  46.47% 12.23%  57.53%
02U-net (Cycle Length 10) | 75.39%  74.12%  69.21%  39.39%  75.51% 61.92% 59.32%  50.30% 15.18%  63.71%
02U-net (Cycle Length 50) | 75.43%  73.28%  67.00%  26.96%  75.35% | 6232%  60.53%  5247% 2044%  64.50%
Mini-ImageNet
10% 20% 40% 80% Pair 10% | 10% 20% 40% 80% Pair 10%
Direct Traing 58.44%  51.27%  38.49% 7.98%  57.13% | 42.64% 37.52%  25.09% 4.67%  45.08%
Soft Bootstrapping 57.42%  51.00%  38.54% 8.16%  59.11% | 43.14% 37.51%  26.08% 4.63%  45.90%
Hard Bootstrapping 57.63%  50.97% 37.95% 7.66%  58.69% | 43.76%  38.69%  26.58% 4.48%  45.98%
MentorNet DD 59.87%  57.66%  40.83%  15.11%  59.26% | 44.98%  42.12%  33.12% 10.18%  46.12%
CurriculumNet 62.70% 55.82% 41.13% 8.75% 62.60% 41.69%  34.02%  21.02% 3.20% 44.16%
Co-Teaching 58.10%  53.41%  46.31%  6.13%  58.40% | 44.85%  41.47%  34.81% 6.65%  45.38%
02U-net (Cycle Length 10) | 63.90%  60.93%  54.77%  23.39%  63.13% 47.63%  45.04%  38.20% 8.10%  49.45%
02U-net (Cycle Length 50) | 63.48%  60.09%  53.59%  23.15%  62.75% | 48.57%  4532%  38.39% 8.47% 50.32%
Table 3. Comparison on Robust Image Classifier
than accuracy. In our experiments, we Compute two MentorNet DD Co-Teaching CurriculumNet O2U-Net
types of precisions. The first is to compute the overall (Cycle Length 10)
.. . . ResNet-101 79.30% 78.52% 80.46% 82.38%
precision among all the noisy labels. For example, if 5-Layer NN S033% R71% 333% 5 61%

the proportion of noisy labels is set to 20%, then we se-
lect top 20% samples according to their final loss rank,
and compute the precision based on these 20% sam-
ples. In the second type, for different noise levels, we
always select top 10% samples as the detected noisy
labels and compute the precision. We compute these
two types of precisions because noise levels are usu-
ally unknown in real-world datasets. We always select
the top 10% noisy labels for a fair comparison.

Note that, training with bootstrapping and MentorNet
are not compared in this experiment because both of
them conduct end-to-end training for an image classi-
fier without an explicit process of noisy label detection.

Image Classification: we compare the accuracy of the
final image classifier. In O2U-net, we remove the noisy
labels detected from cyclical training, and use the rest
of the samples for the classifier training. O2U-net and
all the other baselines are evaluated on the same clean
testing set. In a cycle round of cyclical training, we
adopt two different cycle lengths for further compari-
son, i.e., we set 10 or 50 epochs per cycle length.

Table 4. Comparison on Clothing1M

Hyper-parameters. We follow the original settings of
ResNet-101 and 9-Layer CNN. The batch sizes in
Step 1&2&3 of O2U-Net are set to 128, 16 and 128 re-
spectively. In Step 1, the constant learning rate is 0.001. In
Step 2, the cyclical learning rate is linearly adjusted from
0.01 to 0.001 in a cycle round. In a cycle round, we adopt
two different cycle lengths, 10 or 50. The maximum num-
ber of epochs in Step 2 is 200. We apply the SGD optimizer
with the momentum factor 0.9 and L2 penalty factor Se-4.

5.1. Comparison Results

Noisy Label Detection. Tables 2 demonstrates the com-
parison results of noisy label detection between O2U-net
and the other baselines. O2U-net significantly improves
the precision of noise detection in most cases. With 10%
pair noisy labels, CurriculumNet performs slightly better on
CIFAR-100 and Mini-ImageNet. In addition, ResNet-101
can produce better performance than the 9-Layer CNN in
most of the cases. It should be noted that Co-teaching and
CurriculumNet are not originally proposed for noisy label
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detection, but both of them involve mechanisms to compute
the “difficulty” of samples. In Co-teaching, a proportion
of difficult samples are removed according to their losses
in every training iteration. In CurriculumNet, all the sam-
ples are classified into several groups (curriculum design)
according to their density which describes the difficulty of
training. In our experiments, we follow their definitions of
“difficulty” to detect noisy labels and make comparisons.
However, such comparisons may not be fair. To this end,
the comparisons of the performance of the final image clas-
sifier are conducted in our experiments.

Image Classification. Table 3&4 shows the comparison
results on image classification. In O2U-net, we remove
all the detected noisy labels and train the classifier on the
cleansing dataset. The other baselines are implemented
in terms of their original settings. The results show that
O2U-net exceeds all the other baselines in the majority of
cases with both synthetic noise and real-world noise. More
specifically, ResNet-101 with the cycle length 10 produces
the best results in most cases. Although some clean but
“hard” samples may be mistakenly removed as label noise
in O2U-net. Much more clean samples are correctly kept as
a tradeoff. The overall performance is thus improved.

5.2. Batch Size and Circle Length

We explore the impact of the hyper-parameters batch
size and circle length in O2U-net. This experiment is con-
ducted in the setting of 20% random noise using ResNet-
101. Figs. 5&6 show the PR curves of noisy label detection
using different batch sizes in cyclical training on CIFAR-
10 and CIFAR-100, respectively. If the batch size is small,
the gradient computation tends to be inaccurate. That, how-
ever, helps the trained network more easily deviate from the
current local minimum, i.e., jumping out of overfitting. As a
result, the performance of noisy label detection gets slightly
better when the batch size decreases from 128 to 16. When
the batch size becomes too small, e.g., 4, the performance
gets worse. Such a small batch size leads to a very slow
convergence speed. As a result, the network cannot be well-
trained in a cycle round. We have tested 10%, 20%, 30%
and 40% noise levels on every dataset in our experiments.
All the results follow the similar trend. Overall, different
batch sizes lead to a minor effect on the performance of
O2U-Net, but a major effect on the efficiency of training.

Fig. 7 shows the precisions using different cycle lengths
during cyclical training on CIFAR-100. It is observed that
the impact of cycle length is weak on noisy label detection.
The only requirement is that the cycle length should be long
enough to ensure the status of the network transferring from
underfitting to overfitting in a cycle round. The same results
can also be observed on the other datasets.
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Figure 5. Batch Size Comparison on CIFAR-10
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Figure 7. Cycle Length Comparison on CIFAR-100

6. Conclusions

In this paper, we have proposed O2U-net, a novel noisy
label detection approach for deep networks. Different
from prior studies which require extra specifically designed
loss functions or networks, O2U-net is straightforward but
achieve the state-of-the-art performance. It only requires
adjusting the network hyper-parameters to keep the status
of the trained network in transferring from overfitting to
underfitting cyclically. During cyclical training, the sam-
ple losses are recorded as the indicator of the probability of
label noise. We have conducted sufficient experiments on
both synthetic datasets and real-world dataset. The results
prove the superiority of O2U-net in various cases. O2U-net
achieves high applicability because of its ease of use. It can
thus apply to diverse practical demands in industry.
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