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1 Introduction

The low-energy dynamics of string theory compactifications can be described by lower-dimen-
sional effective theories whose properties are determined by the specifics of the internal
geometry, fluxes and other ingredients. The range of effective theories that can be obtained
in this fashion is vast, but it appears that not all otherwise internally consistent lower-
dimensional effective theories can appear as low-energy limits of string compactifications.
The delineation of criteria that determine whether an effective theory can be realized in
string theory (or be consistent with quantum gravity more generally) has come to be known
as the swampland program, with theories that fail to satisfy these criteria said to reside in
the swampland.
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One general expectation that has come out of the swampland program is that com-
pactifications to non-supersymmetric anti-de Sitter space should be able to decay [1], and
that supersymmetric compactifications cannot have an arbitrarily small internal mean
radius compared to the external AdS radius [2]. In contrast to these conjectures, the
effective theories describing specific compactifications to non-susy AdS constructed in the
literature appear to be both fully stable and also enjoy a separation of scales when the
supersymmetry breaking effects are switched off [3–7]. This discrepancy has motivated the
further scrutiny of such constructions. For instance, the supersymmetric vacua appearing
in [3] have been further analyzed and partially challenged in a series of publications [8–10],
where the gaugino condensation backreaction is properly taken into account as proposed
in [11]. With regards to the constructions in [4], which are classical, one could suspect that
the inconsistent approximation is the use of “smeared” orientifold sources. In the meantime,
various difficulties for achieving scale separation in Type II are discussed in [12–14], further
recent developments can be found in [15–19], and implications on the holographic side are
discussed in [20–22].

The consistency of the smearing approximation is often challenged and it is also the
central subject of this work. On one hand, the resulting internal manifolds and localized
source configurations are some highly complicated solutions of the full higher-dimensional
equations of motion, whose explicit construction is prohibitively difficult. On the other
hand, below the compactification scale, one could expect the lower-dimensional effective
theory to be somewhat insensitive to the local details of the internal manifold, at least
to leading order in the compactification scale. For this reason, one expects to obtain the
same lower-dimensional effective description from a “smeared” solution, in which the charge
density from the “localized” sources is distributed in a continuous fashion over the internal
manifold. These solutions are much easier to construct explicitly with many examples in the
literature, and in some cases the approximation is controllable [23–25]. More importantly,
this logic also suggests that properties of the true “unsmeared” solution are encoded in
higher order corrections in some appropriate perturbative expansion. Explicit procedures
for finding such an expansion and computing leading corrections to the internal geometry
have been only recently proposed [26, 27], and applications of this procedure have already
appeared in [28, 29].

Due to the intricacies of the four-dimensional constructions that exhibit scale separation,
a much simpler three-dimensional construction with scale separation and smeared sources
was put forward in [30]. The main motivation behind such work is to use it as an accurate
but simpler testing ground for the study of smeared sources, but also of other aspects of
the swampland program [31–33]. In this work we go one step further and we apply the
procedure proposed in [26] to the AdS3 vacua of [30]. We evaluate the backreaction of
the localized sources and we explicitly verify the parametric control over the corrections
in the scale-separated limit. Our analysis indicates that, assuming such AdS3 solution
with localized sources exists, the smeared source approximation captures useful information
about it — at least to leading order in the backreaction. Such assumption has of course the
caveat that one has to assume that the O6-plane singularities we encounter here can be
resolved within string theory.
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2 Unsmearing the sources

2.1 The setup

We start from the bosonic part of the Type IIA supergravity action in the string frame

SIIA = 1
2κ2

10

∫
d10X

√
G

(
τ2
(
R10 −

1
2 |H3|2

)
+ 4GMN∂Mτ∂Nτ −

1
2 |Fp|

2
)
, (2.1)

where 2κ2
10 = (2π)7α′4, the redefined dilaton field τ = e−φ, the ten-dimensional determinant

of the metric G ≡ det(GMN ) and |Fp|2 = 1
p!Fµ1...µpF

µ1...µp . For the local sources we write
down only the DBI part in the effective action which is relevant for our analysis and we
ignore the Chern–Simons terms and the fluctuations of world-volume fields of the Dp-branes.
The Chern–Simons terms will of course be properly taken into account when we check the
Bianchi identities/tadpole conditions. For the contribution of the localized sources to the
effective action we thus have

SOp/Dp = −Tp
∫

d10X
√
G
∑
i

τδ(πi) , (2.2)

where δ(πi) is a unit-normalized delta-like distribution denoting the locus of the sources that
wrap the cycle πi. For example, in our three-dimensional compactification, for a space-filling
O6-plane πi refers to four-cycles and π̃i to 3-cycles. The coefficient Tp is given by

Tp = NOpµOp +NDpµDp , (2.3)

and denotes total tension of all the sources wrapping a given cycle and the individual
D-brane and O-plane tensions are given by

µDp = (2π)−p
(√

α′
)−(p+1)

, (2.4)

µOp = −2p−5 × µDp . (2.5)

It is important to stress that the reason we have NOp and NDp appearing is because the
delta-distributions δ(πi) integrate to unit.

We will be interested in a flux background where the external space is (warped) AdSd
and the internal space is compact. To this end we make an ansatz for the ten dimensional
metric, always in the string frame, of the form

ds2
10 = w2(y)gµνdxµdxν + gmndymdyn , (2.6)

where gµν is the unwarped d-dimensional external metric and gmn is the (10−d) dimensional
internal one. For convenience in computing the stress tensor, we write the local sources
in terms of the ten dimensional metric. Note however that, for external spacetime filling
sources, the action can be expressed in terms of the source worldvolume metric by using
the relation

δ(πi) ≡
√
gπi√

g(10−d)
δ(9−p)(y) , (2.7)
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where gπi ≡ det((gπi)αβ) is the metric determinant of the wrapped cycle. The δ(9−p)(y)
function collectively denotes the localized positions of the sources in the internal space and
integrates to one ∫

π̃i

d9−pyδ(9−p)(y) = 1 , (2.8)

over the dual cycle π̃i.

2.2 Equations of motion

To compare the localized solutions to the smeared ones and find the next to leading order
corrections we first need to calculate the equations of motions for the metric, dilaton and
the fluxes. We start with a general discussion including all the possible sources in the
equations, eventually restricting to the specific choice of sources and fluxes that we are
interested in.

2.2.1 Equations with localized sources

We set will now set
2π
√
α′ = 1 , (2.9)

and write down the equations of motion for the fluxes together with their sources which are
given by the Bianchi identities. For sources that wrap cycles of the internal space we have∫

πi

volπi =
∫

volπi ∧ δi,9−p =
∫

d10−dy
√
g10−d δ(πi) , (2.10)

where volπi is the volume density of the wrapped πi cycles, and δi,9−p is a unit-normalized
(9− p)-form with legs transverse to the sources wrapping the i-th cycle and with support
on the source locus

δi,9−p = δ(πi) d9−py⊥ , (2.11)

where y⊥ are the coordinates transverse to the sources and wedge products are implied.
For the massive Type IIA supergravity considered in [30] the relevant Bianchi identities,
including the number of sources wrapping each cycle, are

dF2 = H3 ∧ F0 − 2NO6

7∑
i

δi,3 +ND6

7∑
i

δi,3 , (2.12)

dF4 = H3 ∧ F2 , (2.13)

dF6 = H3 ∧ F4 − 2−3NO2δ7 +ND2δ7 . (2.14)

Here NO6/O2 = 0 if there are no O-planes, otherwise it is non-vanishing and depends on the
number of fixed points the relevant orientifold involution has in the internal manifold. Our
specific case will involve NO2 = 27 for the total “number” of O2-planes. For O6-planes we
will have NO6 = 23 for each three-cycle, which are in fact all images of a single O-plane
under the G2 orbifold.

In order to proceed further, we need the equations of motion for the dilaton and the
metric; we have performed this analysis for d-external dimensions in the appendix A. Note

– 4 –



J
H
E
P
0
7
(
2
0
2
2
)
1
3
3

that throughout this work we assume that the dilaton profile does not depend on the
external space coordinates but only on the internal ones: τ(y). The equations of motion for
the dilaton are found in eq. (A.2), and for three external dimensions (d = 3) they become

0 = −8∇2τ + 2 τ

w2R3 −
24
w

(∂mw)(∂mτ)− 12 τ
w
∇m∇mw − 12 τ

w2∇mw∇
mw

+ 2τR7 − τ |H3|2 + 2µ6
∑
i

δ(πi) + 2−3µ2δ(π) ,
(2.15)

where we use the notation

µ6 = NO6 − 2−1ND6 , µ2 = NO2 − 23ND2 . (2.16)

To find the variation with respect to the metric we need the stress-energy tensor of the
localized sources in the internal space, given by the projector

Πi,mn = − 2
√
gπi

δ
√
gπi

δgmn
= (gπi)αβ

∂yl

∂ξαi

∂yp

∂ξβi
gmlgnp , (2.17)

where ξαi are worldvolume coordinates of the branes/planes wrapping the i-th cycle. The
Einstein equation in eq. (A.8) becomes

0 = − τ
2

w2R3 + 3τ2
(
w−1∇2w + 2w−2∇mw∇mw

)
+ 9

4
τ

w
∂mw∂

mτ + 3
4τ∇

2τ + 3
4(∂τ)2

− 3
8τ

2|H3|2 −
3
2

6∑
p=0

p− 1
8 |Fn|2 + 3

8µ6τ
∑
i

δ(πi) + 15
8 2−3µ2τδ(π) .

(2.18)
The trace-reversed Einstein equations using eq. (A.6) and eq. (A.9) become

0 = −τ2Rmn + 3τ
2

w
∇m∂nw + 3

4
τ

w
gmn (∂w) (∂τ) + 1

4gmnτ∇
2τ

+ 1
4gmn (∂τ)2 + 2τ∇m∂nτ − 2 (∂mτ) (∂nτ)

+ 1
2τ

2
(
|H3|2mn −

1
4gmn|H3|2

)
+ 1

2

6∑
p=0

(
|Fp|2mn −

p− 1
8 gmn|Fp|2

)

+ µ6
∑
i

(
Πi,mn −

7
8gmn

)
τδ(πi)− 2−4µ2

3
8gmnτδ(π) ,

(2.19)

for |Fp|2mn = 1
(p−1)!Fmµ2...µpF

µ2...µp
n . Since in the case of our interest O2/D2 sources fill the

external space, the projector Πmn for them is zero.

2.2.2 Smearing the sources

Having found the localized equations of motion we can directly find the ones in the smeared
approximation. In this approximation the sources take the form

δ(πi)→ jπi = Vπi

V7
=
∫
πi
d4y
√
gπi∫

d7y
√
g7

, δi,3 → ji,3 = volπ̃i

Vπ̃i

= volπ̃i∫
π̃i
d3y
√
gπ̃i

, (2.20)

– 5 –



J
H
E
P
0
7
(
2
0
2
2
)
1
3
3

with the three-form volume density given by volπ̃i = √gπ̃idyi∧dyj∧dyk = ei∧ej∧ek, where
i, j, k are directions transverse to the O6-plane. For clarity we note that in our work πi refer
to four-cycles and π̃i to the corresponding/dual three-cycles; we will specify these once we
turn to the G2 example. Thus each smeared source that enters the Bianchi is normalized
with respect to its own three-cycle volume. The V7 is the internal space volume, which we
will explicitly define for our example later. We accompany the smeared approximation by
the following additional assumptions, which will be justified by the equations of motion:

• The warp factor w(y) of the external space as well as the dilaton τ(y) are slowly
varying with respect to the internal coordinates and can be considered to be constant
w(y) ≡ const. and τ(y) ≡ const.

• The background field strengths satisfy dFn = 0 = d ? Fn and similarly for the H-flux,
and are thus expanded on the harmonic forms of the 7d internal space, while the
latter is chosen to be Ricci-flat, that is Rmn = 0 .

The equations of motion of the dilaton in eq. (2.15) in the smeared approximation simplify to

0 = 2 τ

w2R3 − τ |H3|2 + 2µ6
∑
i

jπi . (2.21)

The Einstein equation in eq. (2.18) becomes

0 =− τ2

w2R3 −
3
8τ

2|H3|2 −
3
2

6∑
p=0

p− 1
8 |Fp|2 + 3

8µ6τ
∑
i

jπi , (2.22)

and the trace-reversed Einstein equations of eq. (2.19) reduce to

0 = 1
2τ

2
(
|H3|2mn −

1
4gmn|H3|2

)
+ 1

2

6∑
p=0

(
|Fp|2mn −

p− 1
8 gmn|Fp|2

)

+ µ6
∑
i

(
Πi,mn −

7
8gmn

)
τjπi .

(2.23)

Considering our assumptions for the smeared localized objects and the harmonic expansion
of the field strength forms, the smeared Bianchi identities of eqs. (2.12)–(2.14) become

0 = H3 ∧ F0 − 2NO6

7∑
i

ji,3 +ND6

7∑
i

ji,3 , (2.24)

0 = H3 ∧ F2 , (2.25)

0 = H3 ∧ F4 − 2−3NO2j7 +ND2j7 . (2.26)

Here j7 is the seven dimensional form of the internal space because the O2-planes fill the
full three-dimensional external one. At this point, we also impose by fiat F6 = 0. When we
specialize to the case of G2 holonomy, this will be justified by the absence of six-cycles.

The F4 background flux actually splits into two parts

F4 = F4A + F4B =
∑
i

(
f i + f̂ i

)
Ψi , (2.27)

– 6 –
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where, postponing further details for later, we only note that

Ψi = basis of harmonic four-forms of the internal space . (2.28)

The H-flux is also expanded on the harmonic three-forms of the internal space and takes
the form

H3 =
∑
i

hiΦi , Φi = basis of harmonic three-forms of the internal space . (2.29)

The F4 splitting refers to the way the RR-flux wedges with the H-flux, that is

H3 ∧ F4A ≡ 0 , H3 ∧ F4B = 2−3NO2j7 −ND2j7 . (2.30)

The term H3 ∧ F4A vanishes by construction, leaving the f i unconstrained, except for
quantization conditions. Meanwhile, the second equation can either be satisfied by balancing
the fluxes terms against the smeared source terms, or by demanding that H3 ∧ F4B vanish
independently by setting F4B = 0 (or equivalently f̂ i = 0). In the latter case, we require a
net charge cancellation between the D2-branes and O2-planes, i.e. NO2 = 8ND2.

The integral of dF6 over the internal closed manifold is zero and the tadpole relation
is satisfied for fixed “orientation” of the F4A flux while at the same time its magnitude
remains unbounded. In the case when the D2/O2 cancellation happens, we have∫

7
dF6 = 0 , f̂ i = 0 ,

∑
i

hif i = 0 ,
∑
i

f if i = free , 0 = 16−ND2 ,

(2.31)

always for properly quantized flux coefficients hi and f i. Scale separation can be achieved
parametrically in the limit of large f i, that is∑

i

f if i � 1 ⇒ separation of KK and AdS scales , (2.32)

therefore it is not prohibited by flux quantization. The appropriate flux quantization can
be found in [30] and we do not repeat it here. When there is no net D2/O2 cancellation one
has to consider the appropriate amount of D2-branes because the last equation in (2.31) is
altered to ∑i h

if̂ i = 2−3NO2 −ND2. For the rest of the article we will have

F4 ≡ F4A , unless otherwise noted, (2.33)

so that we do not clutter the formulas.

2.3 Scaling of the fields

Now we use the smeared equations of motion with net D2/O2 cancellation that we found in
the previous subsection and require each term in the equations to have the same scaling. As
expansion parameter of the fluxes we use the parameter n, and we will see that the smeared
equations of motion are invariant under its variation. The expansion parameter can have a
physical interpretation as the vacuum expectation value of some field or flux, and it will

– 7 –
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later serve as our expansion parameter when we evaluate the backreaction. The fact that
the smeared solution leaves the n undetermined means that we can make it parametrically
large so that we can have a good control over the corrections.

To start we assume that the metric of the internal space has the following scaling at
smeared level

gmn ∼ na . (2.34)

Then we consider the smeared O6-plane sources in eq. (2.20) which enter the Bianchi
identity and the Einstein equations, and we find the following scaling

jπi ∼
√
g4√
g7
∼ n−

3
2a , ji3 ∼

√
g3√
g3
∼ n0 . (2.35)

We notice that the smeared O6-planes which enter the Einstein equations have the same
scaling as the ones in the 4d compactification on a Calabi-Yau [26]. This happens because
the difference of the dimensions between the wrapped volume and the internal space is the
same in both cases jπi ∼

√
g3/
√
g6 ∼

√
g4/
√
g7. The dual current of the wrapped cycles

ji,3 is a three-form and therefore it has no scaling because it does not depend on the metric.
The next step is to consider the dilaton and the Einstein equations of motion as well as the
Bianchi identities to find the scaling of the fluxes. We will work with the ansatz

F0 ∼ nc , F4 ∼ nf , H3 ∼ nb , τ ∼ nt , w ∼ nw . (2.36)

Moreover, the square of a form of n-rank has the following scaling

|Fp|2 = 1
p!g

a1a′
1 . . . gapa′

pFa1...apFa′
1...a

′
p
∼ n−p×a × n2k̃ , (2.37)

where the k̃ is the RR or NSNS flux, therefore k̃ = c, f, b for our case. Let us first check
the Bianchi identities which will define the scaling of the RR and H fluxes. From the first
Bianchi identity in eq. (2.12) we get

b+ c = 0 , (2.38)

since the smeared source in the Bianchi is not scaling. The second Bianchi in eq. (2.13)
does not give us any scaling information, and the same goes for the third equation in
eq. (2.14), because the specific combinations of fluxes vanish. From equation (2.22) we find
the following scaling relation

2τ − 2w = 2τ − 3a+ 2b = 2c = −4a+ 2f = τ − 3
2a , (2.39)

and from the traced Einstein equations (2.23) we find

2τ − 2a+ 2b = a+ 2c = −3a+ 2f = τ − 1
2a . (2.40)

Then the dilaton equations of motion in eq. (2.21) give the following scaling relation

t− 2w = t− 3a+ 2b = −3
2a . (2.41)

– 8 –
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Solving (2.39)–(2.41) and (2.12) we get

a→ −2
3 t+ 4

3w , b→ −t+ w , c→ t− w , f → −1
3 t+ 5

3w . (2.42)

We need an extra condition to find the proper scaling and this comes from the Romans mass,
F0, which has no scaling because it is a quantized constant, thus c = 0. The parametric
scaling of the fluxes at smeared/leading order then is

F4 ∼ n , F0 ∼ n0 , H3 ∼ n0 , τ ∼ n
3
4 , w ∼ n

3
4 , gmn ∼ n

1
2 , (2.43)

which is the same scaling as in [26]. Another way to see this scaling would be to impose
the dilaton and the warp factor to have the same scaling nt = nw, which would then fix
the Romans mass to c = 0. It is gratifying to see that the scaling of the fluxes we found
here from analysing the full higher-dimensional equations does actually agree with the one
found in [30] where the low energy effective theory was instead analyzed.

When the flux F4B is not zero its wedge with H3 has to be cancelled by a non-vanishing
O2/D2 charge in the Bianchi identity. From the variation of the dilaton, including now the
net O2/D2 contribution, we find

0 = 2 τ

w2R3 − τ |H3|2 + 2µ6
∑
i

jπi + 2−3µ2jπ . (2.44)

Performing the scaling analysis for the smeared sources we see that jπi ∼ n−3a/2 and
jπ ∼ n−7a/2, and requiring the equation to be invariant under the 1/n scaling we see that
the scaling of the metric as well as the rest of the fields have to be zero. From the Bianchi
identity in eq. (2.30) and considering the scaling of H3 ∼ n0 and j7 ∼ n0 we directly see that

F4B ∼ n0 . (2.45)

We will later discuss the contribution of the O2/D2 and F4B in the potential and see how
they affect the smeared potential.

2.4 Next to leading order equations of motion

In this subsection we expand the RR, NSNS fields and the warp factor in terms of a scaling
parameter n, which can be interpreted as tracking the leading order scaling of the F4A
flux responsible for the scale separation. The fields in the smeared approximation are the
leading order terms of a 1/np expansion. We then perform the 1/np expansion to find the
first order equations of motion. The power p for each field, i.e. the scaling rate of the next
to leading order terms, is not uniquely dictated by the system of equations we have at our
disposal. However, with a proper ansatz we can calculate all the next to leading order RR

– 9 –
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flux corrections. Our ansatz is

F6 = F
(0)
6 n+ F

(1)
6 n0 +O

(
n−1

)
, (2.46)

F4 = F
(0)
4 n+ F

(1)
4 n0 +O

(
n−1

)
, (2.47)

F2 = F
(0)
2 n1/2 + F

(1)
2 n0 +O

(
n−1/2

)
, (2.48)

H3 = H
(0)
3 n0 +H

(1)
3 n−1 +O

(
n−2

)
, (2.49)

τ = τ (0)n3/4 + τ (1)n−1/4 +O
(
n−5/4

)
, (2.50)

w = w(0)n3/4 + w(1)n−1/4 +O
(
n−5/4

)
, (2.51)

gmn = g(0)
mnn

1/2 + g(1)
mnn

−1/2 +O
(
n−3/2

)
. (2.52)

Starting with the Bianchi identities, we expand the fluxes in eq. (2.12) at first order and
we get

d
(
F

(0)
2 n1/2 + F

(1)
2 + . . .

)
=
(
H

(0)
3 +H

(1)
3 n−1 + . . .

)
∧ F (0)

0 − 2µ6
∑
i

δi,3 , (2.53)

where at leading order we recover the smeared expression along with the first order
correction of the Bianchi identity

dF (0)
2 = 0 , (2.54)

dF (1)
2 = H

(0)
3 ∧ F (0)

0 − 2µ6
∑
i

δi,3 . (2.55)

For the Bianchi identity in eq. (2.13) we get

d
(
F

(0)
4 n1 + F

(1)
4 n0 . . .

)
=
(
H

(0)
3 n0 +H

(1)
3 n−1 + . . .

)
∧
(
F

(0)
2 n1/2 + F

(1)
2 n0 + . . .

)
,

(2.56)

from which we deduce

dF (0)
4 = 0 , (2.57)

dF (1)
4 = H

(0)
3 ∧ F (1)

2 6= 0 . (2.58)

We notice that the first order correction of this Bianchi contains the RR two-form correction
F

(1)
2 whose exact form is calculated in the next section using the Einstein equations. For

the Bianchi identity in eq. (2.14) we have

d
(
F

(0)
6 n+ F

(1)
6 n0 . . .

)
=
(
H

(0)
3 n0 +H

(1)
3 n−1 + . . .

)
∧
(
F

(0)
4 n+ F

(1)
4 n0 + . . .

)
− 2−3µ2δ7 .

(2.59)
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In our case of interest, we will set F4B = 0 and we also consider vanishing net O2/D2
charge. In addition H

(0)
3 ∧ F (0)

4A and F
(0)
6 vanish in the smeared approximation. Then

we have

dF (0)
6 = H

(0)
3 ∧ F (0)

4A = 0 , (2.60)

dF (1)
6 = H

(0)
3 ∧ F (1)

4A +H
(1)
3 ∧ F (0)

4A 6= 0 . (2.61)

At leading order the orientation of the fluxes leads to the desired cancellation, while at
subleading order we can always set∫

7
dF (1)

6 =
∫

7

(
H

(0)
3 ∧ F (1)

4A +H
(1)
3 ∧ F (0)

4A

)
= 0 , (2.62)

by adjusting the harmonic parts of F (1)
4A and H(1)

3 such that no new sources are required for
the tadpole cancellation.

We now turn to the first order expression of Einstein and dilaton equations of motion
eq. (2.15)–(2.19). The dilaton equation is

0 = −8∇2τ (1) + 2 τ (0)

(w(0))2R3 − 12 τ
(0)

w(0)∇m∇
mw(1) + 2τ (0)R(1)

mng
(0)mn − τ (0)|H(0)

3 |
2

+ 2µ6
∑
i

δ(πi) ,
(2.63)

and the next to leading order expansion of the Einstein equation in eq. (2.18) is

0 = −

(
τ (0)

)2

(
w(0))2R3 + 3

(
τ (0)

)2

w(0) ∇
2w(1) + 3

4τ
(0)∇2τ (1)

− 3
8
(
τ (0)

)2
|H(0)

3 |
2 − 3

2

4∑
p=0

p− 1
8 |F (0)

p |2 + 3
8µ6τ

(0)∑
i

δ(πi) .

(2.64)

Next, the first order correction to the trace reversed Einstein equation in eq. (2.19) becomes

0 = −
(
τ (0)

)2
R(1)
mn + 3

(
τ (0)

)2

w(0) ∇m∂nw
(1) + 1

4g
(0)
mnτ

(0)∇2τ (1) + 2τ (0)∇m∂nτ (1)

+ 1
2
(
τ (0)

)2
(
|H(0)

3 |
2
mn −

1
4g

(0)
mn|H

(0)
3 |

2
)

+ 1
2

4∑
p=0

(
|F (0)
p |2mn −

p− 1
8 g(0)

mn|F (0)
p |2

)

+ µ6
∑
i

(
Π(0)
i,mn −

7
8g

(0)
mn

)
τ (0)δ(πi) .

(2.65)

We combine the smeared and the first order equations of motion to find the following
relations for the RR, the dilaton and the warping

dF (1)
2 = 2µ6

∑
i

(ji,3 − δi,3) , (2.66)

∇2τ (1) = −3
2µ6

∑
i

(jπi − δ(πi)) , (2.67)

∇2w(1) = 1
2
w(0)

τ (0) µ6
∑
i

(jπi − δ(πi)) . (2.68)
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For the backreaction on the internal metric we have

τ (0)R(1)
mn − 3 τ

(0)

w(0)∇m∂nw
(1) − 2∇m∂nτ (1) = µ6

∑
i

(1
2g

(0)
mn −Π(0)

i,mn

)
(jπi − δ(πi)) .

(2.69)

These equations determine the backreaction of the localized sources on the solution from
the smeared approximation and can be used in different setups. To proceed further we need
to work on a specific example therefore we focus on a G2 orientifold.

3 The G2 orbifold example

3.1 The internal space

So far we have found the formal expressions for the first order corrections to some of the
fields using just the presence of O6-planes and the dimensions of the internal space. To find
the exact form of the corrections at first order we need to specify the internal geometry
and solve eqs. (2.66)–(2.69). We consider the toroidal orbifold T 7/(Z2 × Z2 × Z2) with
periodically identified coordinates of the seven torus

ym ∼ ym + 1 , m = 1, . . . , 7 . (3.1)

The finite group of isometries Γ forming the orbifold group preserves the three-form

Φ = e127 − e347 − e567 + e136 − e235 + e145 + e246 , (3.2)

where e127 = e1 ∧ e2 ∧ e7, etc., and here we can also define basis of harmonic three-forms

Φi =
(
dy127,−dy347,−dy567, dy136,−dy235, dy145, dy246

)
, i = 1, . . . , 7 . (3.3)

Here we have introduced the seven vielbeins of the torus

em = rmdym , for m = 1, . . . , 7 , (3.4)

while rm stand for the radii of the corresponding cycles and dym are the orthonormal basis
of the internal seven dimensional manifold. For completeness it is useful to define the
co-associative invariant under Γ, which is a four-form

?7Φ = Ψ = e3456 − e1256 − e1234 + e2457 − e1467 + e2367 + e1357 , (3.5)

and the basis of harmonic four-forms

Ψi =
(
dy3456,−dy1256,−dy1234, dy2457,−dy1467, dy2367, dy1357

)
, i = 1, . . . , 7 , (3.6)

which together with the basis of harmonic three-forms satisfy an orthogonality condition of
the form

∫
Φi ∧Ψj = δij . The volume of the internal space is

V7 =
7∏

m=1
rm = 1

7

∫
Φ ∧ ?7Φ . (3.7)
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We denote the action of the O2-plane by σ and it is Z2 involution on the internal coordinates

σ : ym → −ym . (3.8)

Using eq. (3.1) and eq. (3.8) one can find the loci to be at ŷm = 0, 1/2. The action of the
orbifold group Γ = {Θα,Θβ ,Θγ} acts on the torus coordinates in the following way

Θα : ym →
(
−y1,−y2,−y3,−y4,+y5,+y6,+y7

)
,

Θβ : ym →
(
−y1,−y2,+y3,+y4,−y5,−y6,+y7

)
,

Θγ : ym →
(
−y1,+y2,−y3,+y4,−y5,+y6,−y7

)
.

(3.9)

The images of the O2-plane under the orbifold involutions are interpreted as O6-planes. The
positions of the O6-planes are identified with the fixed points of the combined involutions of
the orbifold with the σ. In other words the O6-planes are defined by the following involutions

σα = Θασ : ym →
(
y1, y2, y3, y4,−y5,−y6,−y7

)
, (3.10)

σβ = Θβσ : ym →
(
y1, y2,−y3,−y4, y5, y6,−y7

)
, (3.11)

σγ = Θγσ : ym →
(
y1,−y2, y3,−y4, y5,−y6, y7

)
, (3.12)

σαβ = ΘαΘβσ : ym →
(
−y1,−y2, y3, y4, y5, y6,−y7

)
, (3.13)

σβγ = ΘβΘγσ : ym →
(
−y1, y2, y3,−y4,−y5, y6, y7

)
, (3.14)

σγα = ΘγΘασ : ym →
(
−y1, y2,−y3, y4, y5,−y6, y7

)
, (3.15)

σαβγ = ΘαΘβΘγσ : ym →
(
y1,−y2,−y3, y4,−y5, y6, y7

)
. (3.16)

The diagonal metric of the internal space and the metric elements can be written as

ds2
7 =

7∑
m

(rm)2dymdym , g
(0)
ij ≡ (r(0)

m )2n1/2 , i = j = 1, . . . , 7 . (3.17)

For more details on this orbifold, and a series of different applications, see e.g. [30, 32, 34].
Considering the 1/n expansion form the metric in eq. (2.52) the radii get corrections

rm = r(0)
m n1/4 + r(1)

m n−3/4 +O
(
n−3/2

)
. (3.18)

3.2 Calculation for a single O6-plane

3.2.1 Corrections to the RR flux

In order to proceed and calculate the first order corrections to the fluxes one should solve
the equations in eq. (2.66)–(2.69) for the seven intersected O6-planes in eq. (3.10)–(3.16).
As a first step we solve the equations with the presence of a single O6-plane, indicatively
we choose the O6α-plane with involution given by eq. (3.10) which wraps the four-cycle π3.
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We start from the Bianchi in eq. (2.66) in order to calculate the RR fluxes and we write it
in terms of the internal geometry basis

dF (1)
2 = 2ρ3

(
dy5 ∧ dy6 ∧ dy7

)
= −2ρ3 Φ3 , (3.19)

where the ρ3 refers to the appropriate “backreaction density”. For the specific O6-plane
eq. (3.10) which wraps the π3, this backreaction density term is

ρ3 = µ6
(
jπ3 − δ(π3)

)
= µ6

1− 1
NO6

∑
m∈{0,1}

δ
(
y5 − m

2
)
δ
(
y6 − m

2
)
δ
(
y7 − m

2
) . (3.20)

To avoid clutter we do not include the subscript “3” in ρ3 in this part because it is always
implied. As we will verify momentarily, an inspection of eq. (3.19) leads us to guess that
the F2 is of the form

F
(1)
2 = −2 ?7 (dβ3 ∧Ψ3) . (3.21)

Here we have introduced the function β3 ≡ β3(y) which as we will see satisfies a Poisson
equation and it will be further specified in the next section. For the few next steps we
suppress the subscript 3 to avoid clutter. Indeed the derivative on (3.21) gives

dF (1)
2 = −2

(
∇2β

)
Φ3 , (3.22)

which can be verified with the following series of steps

d (?7 (dβ ∧Ψ3)) = d (?7d (β ∧Ψ3)) = ?7
((
∇2β

)
Ψ3
)

= ∇2β (?7Ψ3) =
(
∇2β

)
Φ3 .

(3.23)

This is easily seen by the fact that ?d ? d(βΨ3) = ∇2(βΨ3). Comparing this to eq. (3.19)
we get a Poisson equation for β that reads

∇2β = ρ . (3.24)

Similar to [26] the transverse space at each point on the O6-plane is a three-torus. Note that
because F (1)

2 is not closed we do not need to expand it on harmonic cycles. From (3.21) we
see however that σ : F (1)

2 → −F (1)
2 so it is odd, as it should be, and that σα : F (1)

2 → −F (1)
2

so it is again odd as it should be under the O6 involutions, and finally that Θα : F (1)
2 → F

(1)
2

therefore it is invariant under the orbifold (as it should be). The parities under the other
orbifold/orientifold involutions can also be checked to be consistent. It is also straightforward
to check using (3.21) that d ?7 F

(1)
2 = 0 which means that the equation of motion for F2

(that is d ?10 F2 +H3 ∧ ?10F4 = 0) is satisfied to leading order in the 1/n expansion.
Since we have found the explicit form of F (1)

2 we are able to calculate the first order
corrections to the rest of the RR forms. Using the Bianchi identity in eq. (2.58) the
later becomes

dF (1)
4 = H

(0)
3 ∧ F (1)

2 = d
(
−2
∑
i

hiΨi ∧ β(y)
)
. (3.25)
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This can be seen from the following steps

H
(0)
3 ∧ F (1)

2 = −
∑
i

hiΦi ∧ ?7d

β (y) ∧
∑
j

Ψj

 =
∑
i

hiΦi ∧ ?7d (Ψi ∧ β (y))

= −2
∑
i

hiΨi ∧ dβ (y) = d
(
−2
∑
i

hiΨi ∧ β(y)
)
. (3.26)

Thus the co-closed part of F4 which appears beyond the smeared approximation is

F
(1)
4 = −2β(y)

∑
i

hiΨi . (3.27)

Once more, for distances far from the source the F (1)
4 becomes negligible as expected in the

smeared limit and this becomes clear when we calculate the explicit form of β(y). Adding
the harmonic part we have

F
(1)
4 = GiΨi − 2β(y)

∑
i

hiΨi , (3.28)

where Gi is the corrected flux and can be chosen to be

Gi = 2hi
∫

Ψi

d4yβ(y) . (3.29)

Thus from eq. (2.61) we have

dF (1)
6 = H

(0)
3 ∧ F (1)

4 +H
(1)
3 ∧ F (0)

4 = H
(0)
3 ∧

(
GiΨi − 2β (y)

∑
i

hiΨi

)
+H

(1)
3 ∧ F (0)

4

= hiΦi ∧

GjΨj − 2β (y)
∑
j

hjΨj

+H
(1)
3 ∧ F (0)

4 .

(3.30)
As we will show in the next subsection, H(1)

3 is also fully specified by the function β, up to
harmonic pieces, which can be tuned to ensure

∫
dF (1)

6 = 0.

3.2.2 Corrections to the dilaton, warp factor, NS flux and the metric

So far we used the Bianchi identity of F (1)
2 and the internal geometry in order to specify the

explicit form of all the first order corrections of the RR fluxes. However we have not found
yet the exact first order corrections to the dilaton, the warp factor and the internal metric.

In order to solve eq. (2.69) and identify the first order corrections to the remaining
fluxes we start from the following definition of the Ricci tensor of the internal space

R(1)
mn = −1

2g
(0)rs∇m∇ng(1)

rs + 1
2g

(0)rs
(
∇s∇mg(1)

rn +∇s∇ng(1)
rm

)
− 1

2∇
2g(1)
mn , (3.31)

and the relation for the Ricci tensor Rmn from eq. (2.69) we have

R(1)
mn = 3

w(0)∇m∂nw
(1) + 2

τ (0)∇m∂nτ
(1) + 1

τ (0)

∑
i

(1
2g

(0)
mn −Π(0)

i,mn

) √
gπi√
g7
ρi , (3.32)
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where ρi refers to the appropriate backreaction density for the i-th cycle. Combining
eq. (3.31) and eq. (3.32) we get the equation

− 1
2g

(0)rs∇m∇ng(1)
rs + 1

2g
(0)rs

(
∇s∇mg(1)

rn +∇s∇ng(1)
rm

)
− 1

2∇
2g(1)
mn (3.33)

= 3
w(0)∇m∂nw

(1) + 2
τ (0)∇m∂nτ

(1) + 1
τ (0)

∑
i

(1
2g

(0)
mn −Π(0)

i,mn

) √
gπi√
g7
ρi .

Focusing now on the 3rd cycle (and again suppressing the subscript on ρ3 and β3),
we write the volume of the four-cycles wrapping the internal space and the current of the
smeared source

Vπ3 = r
(0)
1 r

(0)
2 r

(0)
3 r

(0)
4 , jπ3 = 1

r
(0)
5 r

(0)
6 r

(0)
7

. (3.34)

Next we calculate the Ricci tensor for cases depending on parallel, transverse and mixed
leg components. For the calculation we make the following assumption

g(0)11g
(1)
11 = g(0)22g

(1)
22 = g(0)33g

(1)
33 = g(0)44g

(1)
44 , g(0)55g

(1)
55 = g(0)66g

(1)
66 = g(0)77g

(1)
77 .

(3.35)

First, when both the legs of the Ricci tensor are along the wrapped cycle, the stress-energy
tensor in eq. (2.17) gets the simple form

Π3,mn = (gπ3)mn , (3.36)

for m,n the directions of the wrapped four-cycle. The O6-plane wrapping the π3 is parallel
to the directions y1, y2, y3, y4 and the fields w, τ and gmn are sourced by δ(y5 − ŷ5)δ(y6 −
ŷ6)δ(y7 − ŷ7) which depend only on the transverse y5, y6, y7 directions. We label the
wrapped directions with indices i, j and investigate first the case where the components are
parallel and same, the relation eq. (3.33) gives the following solution

∇2g
(1)
ii = (r(0)

i )2

r
(0)
5 r

(0)
6 r

(0)
7 τ (0)

ρ , i = j = 1, 2, 3, 4 . (3.37)

Now let us check the Ricci tensor for transverse and same directions, Rkl with k = l = 5, 6, 7

− 2g(0)11∂5∂5g
(1)
11 −

1
2g

(0)55∂5∂5g
(1)
55 −

1
2∇

2g
(1)
55

= 3
w(0)∂5∂5w

(1) + 2
τ (0)∂5∂5τ

(1) + 1
2

r
(0)
5

r
(0)
6 r

(0)
7 τ (0)

ρ .
(3.38)

For one parallel and one transverse direction, Rjk, the equation is trivially satisfied. For
two different transverse directions, i.e. Rkl with k 6= l, we can work-out for example the
case R56 which gives

0 = − 3
w(0)∂5∂6w

(1) − 2g(0)11∂5∂6g
(1)
11 −

1
2g

(0)55∂5∂6g
(1)
55 −

2
τ (0)∂5∂6τ

(1) . (3.39)
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From eq. (3.38)–(3.39) we have

∇2g
(1)
kk = − (r(0)

i )2

r
(0)
5 r

(0)
6 r

(0)
7 τ (0)

ρ , k = l = 5, 6, 7 , (3.40)

and we write again the solution of the warp factor and the dilaton but expressed in terms
of the ρ source

∇2τ (1) = −3
2

1
r

(0)
5 r

(0)
6 r

(0)
7
ρ , (3.41)

∇2w(1) = 1
2
w(0)

τ (0)
1

r
(0)
5 r

(0)
6 r

(0)
7
ρ . (3.42)

With the use of the same function β(y) as in eq. (3.24), and eqs. (3.37), (3.38), (3.41)
and (3.42), we get the relations

−
g

(1)
kk

r
(0)2
i

= g
(1)
ii

r
(0)2
i

= −2τ (1)

3τ (0) = 2w(1)

w(0) = 1
r

(0)
5 r

(0)
6 r

(0)
7

β
(
y5, y6, y7)
τ (0) . (3.43)

Note that until now H
(1)
3 was not required to solve for the leading correction to any

other fields. On the other hand, the equation of motion for H3 reads

d
(
τ2 ?10 H3

)
= ?10F2 ∧ F0 + ?10F4 ∧ F2 , (3.44)

which in our case becomes(
τ (0)

)2
d
(
?10H

(1)
3

)
= d

(
τ (0)

)2
∧ ?10H

(0)
3 + ?10F0 ∧ F (1)

2 + ?10F
(0)
4 ∧ F (1)

2 , (3.45)

and involves the leading corrections to several other fields including the warp factor (from
the Hodge star inside the derivative on the left-hand side). All the corrections to the fields
involved in this equation are related to β in such a way that the final equation for H3 takes
the form

∇ρH(1)
ρµν = ∇ρ(β)Xρµν , (3.46)

where X is a harmonic 3-form (i.e. dX = 0 = d ?7 X), which can be expanded on the Φi

basis with coefficients that are determined by the other leading order corrections. This is
sufficient to determine the precise expression for H(1)

3 , which takes the form

H
(1)
3 = βX +H iΦi , (3.47)

where H i are constants of integration, which give us the freedom to ensure tadpole cancel-
lation without new sources as in (2.62). Thus determining the β is sufficient to determine
all the leading order backreaction, including the form of F (1)

6 from (3.30).
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3.3 Solution of Poisson equation

To solve the Poisson equation in eq. (3.24) we mostly follow the steps of [26]. We introduce a
formal solution in terms of Fourier series and estimate the backreaction, without specifying
the regularization, because it is in any case independent of the choice.

We start from the β3 and we suppress the subscript 3 for now as usual and we also
take into account that µ6 = NO6 = 8. This means we have to solve the equation

∇2β = 8−
∑

m,n,p∈{0,1}
δ
(
y5 − m

2
)
δ
(
y6 − n

2
)
δ
(
y7 − p

2
)
. (3.48)

To solve this we expand β as
β =

∑
m,n,k∈{0,1}

φmnp , (3.49)

where
∇2φmnk = 1− δ

(
y5 − m

2
)
δ
(
y6 − n

2
)
δ
(
y7 − p

2
)
. (3.50)

We first look at one of the fixed points and use the Fourier transform of the delta distribution
to get

1− δ
(
y5
)
δ
(
y6
)
δ
(
y7
)

= 1−
∑
~k∈Z3

e2πi~k·~y = −
∑

~k∈Z3\{0}

e2πi~k·~y , (3.51)

where ~yπ3 = (y5, y6, y7) and we use the discrete Fourier transforms of the delta functions to
respect the toroidal periodicity. From this we deduce that

φ000 =
∑

~k∈Z3\{0}

1
4π2k2 e

2πi~k·~y , (3.52)

and similarly for the other φmnk. So the Poisson equation in (3.48) is solved for

β (y) =
∑

ma∈{0,1}

∑
~k∈Z3\{0}

1
4π2k2 e

2πi~k·(~y− ~m
2 ) + const.

=
∑

~k∈Z3\{0}

1
2π2k2 e

4πi~k·~y + const. (3.53)

The notation is ~m = (m5,m6,m7), ~k = (k5, k6, k7) and k2 = k2
5/r

(0)2
5 + k2

6/r
(0)2
6 + k2

7/r
(0)2
7 .

Since (3.53) is not convergent one may wish to regularize it by following [26, 35–37],
or by simply introducing a hard cut-off on the magnitude of the momenta ~k. However, to
estimate the backreaction of the O-planes we just need the behavior near one of the loci.
This means we want to evaluate (3.53) at, say, ~y → 0. Clearly, near such point the impact
of the other sources can be ignored and the divergence will be dominated only by the source
at ~y = 0. Therefore, near the source at ~y → 0, the equation (3.48) can be approximated
by ∇2β ' −δ(~y) which has the text-book solution β ' r5r6r7/(4π

√
y2). This means that

near the O-plane we simply have a 1/|y| singularity. For completeness we can verify this
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intuitive behavior in the following way. We first define, ŷi = yi/ε and κi = εki/ri, such that

k2 = gijkikj = 1
ε2

(
κ2

5 + κ2
6 + κ2

7

)
≡ 1
ε2
κ2 , (3.54)

r2 ≡ gij ŷiŷj = ε2
(
r5y

2
5 + r6y

2
6 + r7y

2
7

)
. (3.55)

Dropping finite contributions we can write

β (~y) =
∑

κi∈(ε/ri)Z\{0}

ε2

2π2κ2 e
4πi~κ·ŷ = 1

ε

∑
κi∈(ε/ri)Z\{0}

r5r6r7
2π2κ2 e

4πi~κ·~y∆κ5∆κ6∆κ7, (3.56)

where ∆κi = ε/ri. The near-brane limit is captured by sending ε→ 0, in which case the
sum becomes an integral and we obtain

β(~y)→ r5r6r7
2π2ε

∫
d3κ

e4πi~κ·ŷ

κ2 = 1
4π

r5r6r7
ε|ŷ|

= 1
4π

r5r6r7
r

. (3.57)

Where the first equality follows from recognizing the Fourier transform of the Coulomb
potential.1 This fixes the behavior of β near a single O6-plane.

From the β behavior derived in (3.57) and the relation in eq. (3.43) we can see that
the first order correction on the fields near the locus of a single O6-plane is

τ = τ (0)n3/4 − 3
8πrn

−1/4 +O
(
n−5/4

)
, (3.58)

w = w(0)n3/4 + w(0)

τ (0)
1

8πrn
−1/4 +O

(
n−5/4

)
, (3.59)

gkk = g
(0)
kk n

1/2 − r
(0)2
i

τ (0)
1

4πrn
−1/2 +O

(
n−3/2

)
, k = 5, 6, 7 (3.60)

gii = g
(0)
ii n

1/2 + r
(0)2
i

τ (0)
1

4πrn
−1/2 +O

(
n−3/2

)
. i = 1, 2, 3, 4 (3.61)

Near the local sources the 1/|y| corrections play against the n suppression, but for large
enough n they are always subdominant. Conversely, for any value of n there is always a
region close enough to the O-plane where the leading order backreaction dominates.

For the rest of the O6-planes, we have that each one of them wraps one Ψi four-cycle,
thus the Bianchi identity can be immediately generalized to

dF (1)
2 = −2

7∑
i

ρi Φi , (3.62)

and the source term is

ρi = 1− 1
8

∑
m∈{1,2}

δ
(
yA − m

2
)
δ
(
yB − m

2
)
δ
(
yC − m

2
)
, (3.63)

1Note that carrying out this Fourier transform properly also requires the use of a regularization scheme.
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where the combination of A,B and C is given by

(A,B,C)i = {(1, 2, 7), (3, 4, 7), (5, 6, 7), (1, 3, 6), (2, 3, 5), (1, 4, 5), (2, 4, 6)} . (3.64)

Then similarly to eq. (3.62) we have

F
(1)
2 = −2 ?7

7∑
i

(
dβi

(
yA, yB, yC

)
∧Ψi

)
, (3.65)

where each βi satisfies a condition of the form (3.24). Then the backreaction near each
O-plane has an equivalent form as (3.57) and therefore can be controlled for large enough
n. The full form of τ (1), w(1) and the metric follow similarly from the equivalent equations
to (3.43) to find individual contributions of the form (3.58)–(3.61) for each three-cycle and
adding them together.

4 Corrections to the effective scalar potential

4.1 Corrections in the absence of net D2/O2 charge

We want to investigate whether the backreaction corrections affect the leading order 3d scalar
potential and as a consequence the scale-separation. Considering the metric decomposition
in eq. (2.6), the dimensional reduction of the ten-dimensional action (2.1) gives

S10 = 2π
∫

d3x
√
g3

∫
d7y
√
g7w

3
(
τ2R10 + Lm

)
. (4.1)

Here R10 is the ten-dimensional Ricci scalar given in eq. (A.1) and the Lm the rest of the
kinetic and potential terms. In order to get the effective 3d action one should integrate
over the internal coordinates. However, we just need to write down the action from a
three-dimensional point of view and study the contribution of the corrections. The 3d
effective action is

S3 =
∫

d3x
√
g3
(
Ṽ7R3 − V3

)
, Ṽ7 =

∫
d7y
√
g7w

3τ2 , (4.2)

where the scalar potential takes the form

V3 =
∫

d7y
√
g7w

3
(
− τ2R7 + 6τ

2

w
∇m∇mw + 6 τ

2

w2∇mw∇
mw

− 4gmn∂mτ∂nτ + 1
2τ

2|H3|2 + 1
2 |Fp|

2 − 2µ6
∑
i

τδ(πi)
)
.

(4.3)

To see the effect of the first order correction we replace the delta function corresponding to
the O6-plane by our next-to-leading order solution for the dF2 Bianchi identity. We start
from the volume of the wrapped cycle in eq. (2.10) which gives∫

d7y
√
g7δ(πi) =

∫
volπi ∧ δi,3 = 1

2

∫
volπi ∧

(
H3 ∧ F0 − dF2

)
. (4.4)
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Replacing this into the effective scalar potential gives, after some manipulations,

V3 =
∫

d7y
√
g7w

3
(
−τ2R7 + 6τ

2

w
∇m∇mw + 6 τ

2

w2∇mw∇
mw − 4gmn∂mτ∂nτ

+ 1
2τ

2|H3|2 + 1
2 |Fp|

2
)
− µ6

∑
i

∫
volπi ∧

(
τw3H3 ∧ F0 + d

(
τw3

)
∧ F2

)
.

(4.5)

We now want to bring the effective action eq. (4.2) to the Einstein frame. To do this we
perform the rescaling gSµν = gEµν(2πṼ7)−1/2. The Einstein-frame scalar potential of the 3d
effective theory is

V E = V3

(2π)2Ṽ3/2
7

, (4.6)

and we will be ignoring from now on the superscript E. We can use this form of the effective
potential to estimate the impact of the backreaction. We will do this by comparing the
contributions from the unsmeared terms to the leading order smeared potential.

Let us find the scaling of the smeared potential first. At leading order the volume Ṽ7
scales like Ṽ(0)

7 ∼ n11/2 and vol(0)
πi
∼ n. To find the scaling of R7 we need the scaling of

the Ricci tensor in (3.31). We see that Rmn ∼ g(0)rs∇m∇ng(1)
rs + . . . where nabla contains

products of the metric and its inverse so it doesn’t scale. The scaling of the internal Ricci
scalar at leading order is R(0)

7 ∼ n−3/2. The zeroth order potential (after few integrations
by parts) takes the form

V smeared
3 = 1

(2π)2Ṽ(0)1/2
7 τ (0)2

(
1
2τ

(0)2|H(0)
3 |

2 + 1
2
∑
p=0,4

|F (0)
p |2

)
n−17/4

− µ6

(2π)2Ṽ(0)3/2
7

∑
i

∫
vol(0)

πi
∧
(
τ (0)w(0)3H

(0)
3 F0

)
n−17/4 .

(4.7)

We see that the leading order potential scales as n−17/4.
We will now estimate the impact of the backreaction by evaluating the scaling of the

terms that correspond to the unsmearing corrections by inserting the expansions (2.46)–
(2.52) in the effective potential. First we can check the term that originates from the leading
order correction to the last term in (4.5). The leading order in n is

δV3 3 −
µ6

(2π)2Ṽ(0)3/2
7

∑
i

∫
vol(0)

πi
∧
(
d(3τ (0)w(0)2w(1) + τ (1)w(0)3) ∧ F (1)

2

)
n−21/4 .

(4.8)

Note that there are derivatives of the dilaton and the warp factor. We see that this
correction term is damped faster for large values of n compared to the smeared term, thus
the potential matches to the smeared one at the leading order, assuming that the formal
singularities of the near-brane regions are somehow resolved from string theory. Indeed,
the formal expression (4.8) hides singularities related to the fact that the solution clearly
breaks down in the regions of the internal space surrounding the O-plane loci because the
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1/r terms dominate over the n suppression. A way to see this is by focusing on the π3
four-cycle backreaction in (4.8) and estimating the term

δV π3
3 ∼ n−21/4

Ṽ(0)3/2
7

∫
vol(0)

π3 ∧
(
d(3τ (0)w(0)2w(1) + τ (1)w(0)3) ∧ F (1)

2

)
, (4.9)

in the near-brane region. At that limit from (3.22), (3.43), (3.48) and (3.57) we have,

near the O6α central locus: F (1)
2 ∼ 1

|~y|2
, dF (1)

2 ∼ δ(~y) Φ3 ,
τ (1)

τ (0) ∼
w(1)

w(0) ∼
1

|~y| τ (0) .

(4.10)
We can regularize the divergence of the integral in (4.9) by excising regions around the O6
locus, which we take to be three-spheres of radius r0 and denote S3(r0). Integrating by
parts now produces a non-vanishing boundary term. This leads to an estimation of the
near-O6-plane backreaction of the form

δV π3
3 (O6α locus) ∼ n−21/4w(0)3V(0)

π3

Ṽ(0)3/2
7

( ∫
∂S3(r0)

(
3τ (0)w

(1)

w(0) + τ (1)
)
F

(1)
2

−
∫
π̃3\S3(r0)

(
3τ (0)w

(1)

w(0) + τ (1)
)
dF (1)

2

)

∼ n−21/4w(0)3V(0)
π3

Ṽ(0)3/2
7

6π2

r0
.

(4.11)

In the last line we used the relations in (4.10) and only the boundary contribution survives,
because dF (1)

2 vanishes outside the excised regions. Clearly, the resulting expression
depends on r0, and diverges as we try to shrink the excised regions. This simply signals
the breakdown of the leading order solution near the O6 planes, where stringy corrections
to the 10d dynamics are expected to appear. These corrections, in principle determine
a physical value of r0 such that (4.11) would accurately capture the contribution to the
potential from fields away from the O6 locus. Indeed, if we require the backreaction to be
negligible we need

V smeared
3 � δV3 ⇒ n−17/4 � n−21/4r−1

0 ⇒ n� r−1
0 . (4.12)

This suggests that we can have a good approximation of the true solution for distances
from the loci much greater than 1/n.

We can also estimate the backreaction from other terms to see if the 1/n estimate for
the safety distance from the loci is good enough. We can check for example the dilaton
term from the first line in (4.5) focusing on the higher order terms

δV3 3
1

(2π)2Ṽ3/2
7

∫
d7y
√
g7w

3(y)
(
− 4 ∂m δτ∂mδτ

)
. (4.13)

Following the same reasoning as before we find for the leading n unsmearing correction

δV dilaton
3 (O6α locus) ∼ n−21/4r−1

0 , (4.14)

which agrees with (4.12).
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It is however suggested in [26] that for a 10d “observer” the backreaction is stronger and
would require r0 � n−1/4 to be able to safely ignore the unsmearing effect. The argument
in [26] for this is to compare for example τ2|H|3 to (∂δτ )2 and see that one needs n� r−4.
We note that this condition delineates the regions of the internal space where leading order
corrections to the 10d solution already give approximately the correct field profiles.

The purpose of r0, however, is to properly separate out the additional gs corrections
to the 10d solution, over and above the 1/n corrections. Thus, the choice of r0 should be
determined by the regions where the string coupling becomes large, i.e. 1/n. It therefore
appears that there is a region 1/n < r < 1/n1/4, where although the 10d equations of motion
can be trusted, the resulting 1/n expansion of their solution can not. The contributions to
the scalar potential coming from integrating over those regions likely have to be computed
to all orders and appropriately resummed.

Meanwhile the degrees of freedom near the O6 locus, i.e. at r < 1/n, would have to be
captured by a strong-coupling description of the O6 planes, as the string coupling truly
becomes large in those regions even at leading order in 1/n. Unfortunately, in the presence
of a Romans mass, such a strong coupling description is currently unavailable.

4.2 Corrections including a net O2/D2 charge contribution

When there is no net O2/D2 cancellation, such contribution needs to cancel by fluxes in
the tadpole/Bianchi. Then there is an extra contribution in the potential that comes from
the RR field |F4|2 = |F4A + F4B|2 and has the form

V extra
3 = 1

(2π)2Ṽ3/2
7

∫
7
w3
(
F4A ∧ ?7F4B + 1

2F4B ∧ ?7F4B − 2−3µ2τ
j7
V7

)

= 1
(2π)2Ṽ(0)3/2

7

∫
7
w(0)3

(
F

(0)
4A ∧ ?7F

(0)
4B n

−21/4 + 1
2F

(0)
4B ∧ ?7F

(0)
4B n

−25/4
)

(4.15)

− 1
(2π)2Ṽ(0)3/2

7

∫
7
w(0)3

(
2−3µ2τ

(0) j
(0)
7

V(0)
7
n−7

)
,

since the extra terms scale as

F4A ∧ ?7F4B ∼ n3/4 , F4B ∧ ?7F4B ∼ n−1/4 , j7/V7 ∼ n−7/4 , (4.16)

and indicatively F4A ∧ ?7F4A ∼ n7/4. The scaling of F4B is dictated by the Bianchi
identity (2.59) with H(0) scaling as n0. Considering the scaling of the extra contributions it
seems that neither the O2/D2 contributions nor the terms which contain the F4B scale the
same way as the potential in eq. (4.7) and are subleading at large values of the parameter n.

We stress that we do not unsmear the O2-plane here, this requires additional analysis
which we leave for a future work. However, the analysis of [23], where space-filling localized
and smeared O2 sources are compared, shows that at least for supersymmetric solutions
the backreaction is not expected to lead to inconsistencies.
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5 Outlook

In this work we have analyzed the backreaction of localized sources on the scale-separated
AdS3 N=1 vacua of massive Type IIA supergravity. We have found that when one applies
the scale separation limit to the various ingredients then the corrections from the localized
sources can be made arbitrarily small. Therefore away from the sources the solution seems
to be under control and its uplift to an actual solution of string theory seems plausible. Of
course, unless the O6-plane singularities that we encountered can be resolved within string
theory the smeared approximation is bound to fail. Moreover, our analysis here was only
the first step that accounts only for the leading order backreaction, and therefore we do not
know at this point if some intricate inconsistency can show up at the next order, as the
AdS conjecture would imply [2]. One could further check the consistency of the backreacted
solutions by matching with the supersymmetric analysis of Type II AdS3 vacua performed
in [38]. These questions and checks are left for future work.

One equally interesting question that could be now addressed is the stability of non-
SUSY AdS3 flux vacua, which should be unstable according to the swampland conjectures [1].
In particular from the supersymmetric construction in [30] one can also find the non-
supersymmetric “skew-whiffed” AdS3 vacua, where the F4 flux has flipped sign. For the
moment our leading order analysis has not indicated some pathology of such vacua but it
may be that by going to next to leading order in the backreaction some pathology may show
up thus verifying [1]. For example, four-dimensional “skew-whiffed” vacua were studied
recently in [29, 39] and possible instabilities were detected. We also leave the analysis of
the non-supersymmetric vacua for a future work.

Finally, on a more general note, the understanding of three-dimensional
non-supersymmetric vacua of string theory is interesting on its own right due to the
applications in holography, but also as a way to scrutinize the 3d swampland. A clear
classification of classical de Sitter vacua (as is done in 4d [40, 41]) would have its own
merits and in addition would verify or challenge the conspiracy of string theory against de
Sitter [42–46]. First steps in this direction were done in [31, 32] where smeared sources
in Type IIA/B were also used, and it would be interesting to see how the unsmearing
procedure we discussed here would change these results.
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A Einstein equations

In this appendix we list some useful formulas and equations of motion of the Type II action
in eq. (2.1) with the presence of O6-planes in eq. (2.2). For simplicity, and direct comparison
to [26], we absorb NO6 in the ∑i δ(πi) part and then performing a dimensional reduction
down to d-dimensions.
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For the metric in eq. (2.6) we find the Ricci scalar in terms of the warp factor

R10 = w−2Rd +R(10−d) − 2dw−1∇m∇mw − d(d− 1)w−2∇mw∇mw . (A.1)

Here we define RMN to be the Ricci tensor for the 10d string frame metric GMN , and we
use the same notation for the 7d and the 3d counterparts, i.e. Rµν and Rmn, whereas when
we work with the unwarped external or internal space metrics (gµν and gmn respectively)
we use the notation Rµν and Rmn. The dilaton equations of motion for external d and
internal (10− d) metric are

0 = −8∇2τ + 2 τ

w2Rd −
8d
w

(∂mw)(∂mτ)− 2d(d− 1) τ
w2∇mw∇

mw − 4d τ
w
∇m∇mw

+ 2τR(10−d) − τ |H3|2 + 2
∑
i

δ(πi) .
(A.2)

The variation of the action with respect to the ten dimensional metric GMN in the string
frame gives the following equations of motion

τ2
(
RMN −

1
2GMNR10

)
+ 2τGMN

(
d

w
(∂µw) (∂µτ) +∇2τ

)
+ 2 (∂Mτ) (∂Nτ)− 2τ∇M∇Nτ

− 1
2τ

2
(
|H3|2MN −

1
2GMN |H3|2

)
− 1

2

6∑
p=0

(
|Fp|2MN −

1
2GMN |Fp|2

)
− 1

2T
loc
MN = 0 ,

(A.3)

where we have used that

∇M∇Mτ = d

w
∂µw∂

µτ +∇m∇mτ , ∇m∇mτ = ∇2τ , (A.4)

and

T loc
MN = 2τGMN |Opδ(Σp+1) = 2τΠi,MNδ(Σp+1) . (A.5)

We contract eq. (A.3) with the 10d metric to findR10 and plugging this back in eq. (A.3) gives

− τ2RMN + d

4
τ

w
GMN (∂w) (∂τ) + 1

4GMN

(
τ∇2τ

)
+ 1

4GMN (∂Lτ)
(
∂Lτ

)
+ 2τ∇M∇Nτ

− 2 (∂Mτ) (∂Nτ) + 1
2τ

2
(
|H3|2MN −

1
4GMN |H3|2

)
+ 1

2

6∑
p=0

(
|Fp|2MN −

p− 1
8 GMN |Fp|2

)

+ 1
2

(
T loc
MN −

1
8GMNT

loc
)

= 0 ,
(A.6)

where for T loc we mean the contraction of (A.5) with the metric of the source worldvolume

T loc = GMNT loc
MN . (A.7)
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Now we contract (A.6) with gµν and we get

− τ2
(
w−2Rd −

d

w
∇2w − d (d− 1)w−2∇w∇w

)
+ d2

4
τ

w
(∂w) (∂τ) + 1

4d
(
τ∇2τ

)
+ 1

4d (∂Lτ)
(
∂Lτ

)
+ 1

2τ
2
(
−1

4d|H3|2
)

+ 1
2

6∑
p=0

(
−p− 1

8 d|Fp|2
)

+ 1
2

(
gµνT loc

µν −
d

8T
loc
)

= 0 .

(A.8)

Note that we have the relation

RMN

∣∣∣
M=m,N=n

= Rmn −
d

w

(
∂n∂mw − ∂swΓsmn

)
= Rmn −

d

w
∇m∂nw . (A.9)
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