
30

OATs’inside: Retrieving Object Behaviors From Native-based

Obfuscated Android Applications

PIERRE GRAUX, Univ. Lille, CNRS, Centrale Lille, UMR 9189 CRIStAL, France

JEAN-FRANÇOIS LALANDE, VALÉRIE VIET TRIEM TONG, and PIERRE WILKE,
CentraleSupélec, Inria, CNRS, University of Rennes, IRISA, France

Analyzing Android applications is essential to review proprietary code and to understand malware behaviors. However,

Android applications use obfuscation techniques to slow down this process. These obfuscation techniques are increasingly

based on native code. In this article, we propose OATs’inside, a new analysis tool that focuses on high-level behaviors to

circumvent native obfuscation techniques transparently. The targeted high-level behaviors are object-level behaviors, i.e.,

actions performed on Java objects (e.g., field accesses, method calls), regardless of whether these actions are performed using

Java or native code. Our system uses a hybrid approach based on dynamic monitoring and trace-based symbolic execution

to output control flow graphs (CFGs) for each method of the analyzed application. CFGs are composed of Java-like actions

enriched with condition expressions and dataflows between actions, giving an understandable representation of any code,

even those fully native. OATs’inside spares users the need to dive into low-level instructions, which are difficult to reverse

engineer. We extensively compare OATs’inside functionalities against state-of-the-art tools to highlight the benefit when

observing native operations. Our experiments are conducted on a real smartphone: We discuss the performance impact of

OATs’inside, and we demonstrate its practical use on applications containing anti-debugging techniques provided by the

OWASP foundation. We also evaluate the robustness of OATs’inside using obfuscated unit tests using the Tigress obfuscator.

CCS Concepts: • Security and privacy → Malware and its mitigation; Mobile platform security; Software reverse

engineering;

Additional Key Words and Phrases: Android native application, trace based symbolic analysis, obfuscation

ACM Reference format:

Pierre Graux, Jean-François Lalande, Valérie Viet Triem Tong, and Pierre Wilke. 2023. OATs’inside: Retrieving Object Behav-

iors From Native-based Obfuscated Android Applications. Digit. Threat. Res. Pract. 4, 2, Article 30 (August 2023), 27 pages.

https://doi.org/10.1145/3584975

1 INTRODUCTION

Analyzing Android applications is a crucial task for security experts to ensure security for mobile phone users.
These experts must quickly understand the main purpose of the applications and even their hidden features. They
have to assess whether the applications violate a given security policy or whether they are indeed malware.
Meanwhile, both legitimate developers of proprietary code and malware authors try their best to avoid such

Authors’ addresses: P. Graux, Univ. Lille, CNRS, Centrale Lille, UMR 9189 CRIStAL, F-59000 Lille, France; email: pierre.graux@univ-lille.fr;

J.-F. Lalande, V. Viet Triem Tong, and P. Wilke, CentraleSupélec, Inria, CNRS, University of Rennes, IRISA, 35000 Rennes, France; emails:

{jean-francois.lalande, valerie.viettriemtong, pierre.wilke}@centralesupelec.fr.

This work is licensed under a Creative Commons Attribution International 4.0 License.

© 2023 Copyright held by the owner/author(s).

2576-5337/2023/08-ART30

https://doi.org/10.1145/3584975

Digital Threats: Research and Practice, Vol. 4, No. 2, Article 30. Publication date: August 2023.

https://orcid.org/0000-0002-6126-3934
https://orcid.org/0000-0003-4984-2199
https://orcid.org/0000-0003-4838-2952
https://orcid.org/0000-0001-9681-644X
https://doi.org/10.1145/3584975
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3584975
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3584975&domain=pdf&date_stamp=2023-08-10

30:2 • P. Graux et al.

analyses. Developers use various obfuscation techniques whose sole purpose is to prevent, limit, and slow down
reverse analyses.

These obfuscation techniques usually target the code, which is the primary source of information about what a
software can perform. In Android applications, the code can be composed of both Dalvik bytecode [3], potentially
compiled into an OAT file, and native code. Wong and Lie [34] identified three main classes of obfuscation
techniques. First, language-based obfuscation techniques take advantage of features provided by the bytecode.
This includes, for example, Java reflection, value encryption, and dynamic code loading. Second, a developer may
also eschew Java by calling native code and relying entirely on classical techniques used by desktop software
such as code packing, virtualization, anti-debug and emulation operations, or self-modifying code [11]. These
obfuscation techniques are full-native code techniques. Last, runtime-based obfuscation techniques go further
and allow the obfuscated code to alter the conventional Android system behavior. Thus, analysis tools can no
longer rely on assumptions about the Android Runtime (ART) functioning. For example, a program can modify
the target of a call or modify the executed bytecode on the fly.

One of the most used and developed runtime-based technique is application packing [13], which consists
in storing the bytecode encrypted in the application and only decrypting and loading it at execution time by
modifying the runtime internal structures instead of simply using the class loading facilities provided by the Java
language. This prevents static analysis tools from accessing the bytecode. Recently, new techniques that consist
in compiling sensitive bytecode methods to assembly code have been developed [8, 15]. When such advanced
obfuscation techniques are involved, the bytecode is never available for the analyst. For these reasons, an analyst
cannot rely only on static analysers outputs that would miss the sensitive classes obfuscated by the developer.

Dynamically reversing an application obfuscated using runtime-based techniques gives other challenges. First,
examining the native code is a more complex task than reversing the bytecode: Abstractions such as types, object
hierarchy, and function boundaries are unavailable in native code. Second, the native code can interact with
Java objects through a dedicated interface called Java Native Interface (JNI). These interactions can be easily
observed [14, 19, 24], but an obfuscated code may bypass this interface, because the native code has full rights to
modify the process’ memory [15]. For this reason, most state-of-the-art tools, which almost all rely on a clearly
defined interface between bytecode and native code, may miss some operations performed by the native code.
A general method for observing the actions performed by the native code, independently from the JNI interface,
would help the analyst to observe the natively obfuscated operations done at runtime that would have an impact
on Java objects.

All the aforementioned obfuscation techniques take advantage of (1) the possible interleaving between byte-
code and native code during the execution of an application and (2) the fact that most static analysis or deobfus-
cation tools are currently only able to handle one language at a time. As creating a new deobfuscator handling
two languages would be intractable, we propose to focus on the observation of the Java environments while
letting the native code, even obfuscated, be executed.

This article presents OATs’inside, an open source1 stealth analyzer recovering object-level CFGs (olCFGs)
of Android applications. An olCFG is a graph composed of actions performed on Java objects (e.g., field accesses
and method calls), regardless of whether these actions are performed using Java or native code. These olCFGs
are retrieved even in the presence of obfuscation techniques targeting native code. Note that OATs’inside does
not target the recovering of all native operations occurring in an obfuscated native code but only focuses on
operations that affect the Java environment. OATs’inside relies on a combination of static analysis, instruction
hooking, and multiple executions to build iteratively the action performed by the native code on the Java objects.
OATs’inside builds a olCFG operating on Java objects even if these objects have been altered by native code. Each
node represents one of the following actions: a field access, a method call, an exception, or a monitor session.
To obtain these olCFGs, OATs’inside combines two analyses: a modified ART that logs every object-level event

1Release url: https://gitlab.inria.fr/cidre-public/oatinside.

Digital Threats: Research and Practice, Vol. 4, No. 2, Article 30. Publication date: August 2023.

https://gitlab.inria.fr/cidre-public/oatinside

OATs’inside: Retrieving Object Behaviors From Native-based Obfuscated Android Applications • 30:3

made by the application for generating a olCFG and a symbolic execution analysis that enriches this olCFG with
expressions and conditions related to the variables manipulated by actions. With the results of the outputted
olCFG, OATs’inside can be launched again with new dynamic inputs. This allows us to extend the olCFG by
iteratively discovering the full behavior of an application.

We extensively compare the functionalities of OATs’inside with state-of-the-art Android analysis tools to show
the better coverage of OATs’inside with native operations impacting Java objects. We showcase a typical usage
of OATs’inside on an application from a collection of mobile reversing challenges provided by the OWASP foun-
dation. We successfully solve the challenge, whereas the application contain anti-debugging techniques. We
evaluate OATs’inside functionalities using unit tests. We also obfuscated these unit tests using the Tigress obfus-
cator [10], and we discuss the limits of OATs’inside on these obfuscated unit tests. We evaluate the performance
of OATs’inside on a worst-case scenario where an AES-128 algorithm is executed natively but interacts with
Java objects to store intermediate results. We also show that the overhead can be reasonable using the OWASP
challenge compared to the worst-case scenario.

The contributions of this article are the following:

• OATs’inside, a tool for computing an olCFG representing operations on Java objects even if these objects
have been altered by native code;
• a new method for mixing traces and symbolic executions in an unusual way: The values obtained during

the executions are always used to drive the symbolic execution instead of classically using an SMT solver.
Additionally, this allows us to annotate the traces using symbols for further understanding;
• unit tests and their obfuscated versions that exercise all Java operations combining primitive types and

object fields for evaluating the completeness of our approach.

The rest of the article is organized as follows. Section 2 gives the necessary background to understand the
challenges involved when analyzing Android applications, in particular the general methods for obfuscating
the code with native-based methods. Then, the related work is presented in Section 3. Section 4 explains how
OATs’inside retrieves object-level behaviors of obfuscated applications. Section 5 provides the readers with the
implementation details. Section 6 reviews and discusses the results and findings of the conducted experiments.
Finally, we draw our conclusions in Section 7.

2 BACKGROUND

This section depicts the necessary background on what composes the code of an Android application and how
runtime-based obfuscation operates to hide their codes. Even if we present some historical elements on the evo-
lution of Android internals, all the technical details are strictly relative to version 7.0 (Nougat, 2016) of Android
and we focus on the ARMv8 [4] architecture as it is the most recent version of the most used architecture [29].
This version has been chosen because we run our experiments on a real smartphone: the Sony Xperia X. This
smartphone is one of the first devices to be part of the Open Devices program, which simplifies the recompilation
of the AOSP tree.2 The version 7.0 uses Kernel 3.10 but can be easily adapted to version 7.1 that runs kernel 4.4.
We also believe that most of the discussed internals also apply to more recent versions of Android. Nevertheless,
we did not port OATs’inside to these recent versions yet, because this would require development costs and would
not bring new scientific results to our experiments.

2.1 Android Application Execution

Application and DEX format. An Android application is an archive composed of a Manifest file (metadata),
resource files (texts, pictures, and layouts), and a file that contains the application bytecode in the DEX format [2].
Dalvik is the virtual machine that interprets and performs just-in-time (JIT) compilation of the application

2https://developer.sony.com/develop/open-devices/get-started/supported-devices-and-functionality/.

Digital Threats: Research and Practice, Vol. 4, No. 2, Article 30. Publication date: August 2023.

https://developer.sony.com/develop/open-devices/get-started/supported-devices-and-functionality/

30:4 • P. Graux et al.

bytecode written for Android. The DEX bytecode is independent of the device architecture. Since Android 4.4
(KitKat), Dalvik bytecode can be compiled into assembly code but can still be interpreted by the ART. Hence,
analysis tools cannot avoid handling Dalvik bytecode.

Ahead-of-Time Compilation. Since Android 5.0 (Lollipop, 2014), the bytecode of an application can be com-
piled into native assembly code. Forcing the compilation of the bytecode of every application may cause a huge
overhead, especially when the operating system is updated. Thus, two major releases later, in Android 7.0, ART
was able to separately compile the methods: When the method execution frequency reaches a threshold, the sys-
tem compiles it. The compilation output is an OAT file,3 which contains the original DEX file and the assembly
code of compiled methods [27]. Compiling the methods independently solves the overhead problem during the
first launch of an application; however, it complexifies the execution at runtime. Indeed, the executed code often
switches between compiled and bytecode methods. Consequently, this modification increases the work of analy-
sis tools and makes obsolete the previous approaches that rely on instrumenting the DEX interpreter [14, 17, 38].

Native Code. For performance purposes, Android allows developers to create parts of applications in C or C++.
When compiled, the resulting code is assembly code, saved in an independent native library file. Hereinafter, we
will call compiled bytecode and compiled C/C++ code the AOT code produced by the compilation of the bytecode
and the native code produced by C/C++ code, respectively. The introduction of native code can be used by
obfuscation techniques and thus complicates analyses.

Runtime and Application Execution. The switches among Dalvik bytecode, compiled bytecode, and native code
are managed by the runtime library. Additionally, this library is in charge of virtual machine aspects such as
garbage collector (GC), JIT compiler, and interpreter. When an application is executed, the runtime library
maps the different sections of the OAT file and its associated native libraries into the memory. The DEX file and
the assembly code are copied in the data, respectively executable, section of the memory.

When executing a method, the runtime library preferentially executes assembly code, if available, rather than
bytecode. Because the bytecode is not recognized by the underlying architecture, it cannot be directly executed
on the phone but is rather JITted or interpreted, depending on the execution statistics: A frequently executed
method will be JITted rather than be interpreted. Consequently, advanced obfuscation techniques can modify
the bytecode or the assembly code. Observing the effects on the manipulated objects of the heap becomes a
challenging task because of the heterogeneous software components of the application.

Heap manipulation. Each type of code (bytecode, AOT, or native) acts on the heap differently. First, heap
accesses originating from the bytecode are performed by the virtual machine. Second, heap accesses originating
from the assembly code in the OAT file are directly performed with load and store assembly instructions. As a
result, the typing information is lost. Third, heap accesses originating from native code are managed through the
JNI. Going through the JNI is necessary, because the native code is not compiled for a specific Android version,
and, therefore, field offsets are not known at compile time.

One of our objectives is to monitor the object accesses performed by the application. Thus, we will need to deal
with these three types of heap access. As detailed later in Section 3, the heap accesses performed by the virtual
machine or the JNI are straightforward to manage, because the virtual machine or the JNI can log these accesses.
Direct heap accesses are more difficult to monitor because of the loss of typing information. This problem was
partially addressed by Xue et al. [37]; we provide a complete solution to this challenge in Section 4.

2.2 Runtime-based Obfuscation

An obfuscation technique refers to any means of complicating the quick understanding of the application code
by a manual or automatic process. Applying an obfuscation technique should produce hard-to-understand

3We could not find an official definition for this acronym.

Digital Threats: Research and Practice, Vol. 4, No. 2, Article 30. Publication date: August 2023.

OATs’inside: Retrieving Object Behaviors From Native-based Obfuscated Android Applications • 30:5

code, which perfoms the same functionalities as the original code. Similarly to Xue et al. [8], we distinguish
language-based, full-native, and runtime-based obfuscation techniques. Full-native obfuscation methods have
been extensively studied [11, 21, 26, 31]. Runtime-based techniques exploit the possibilities offered by ART and
the inter-connection between native and Java worlds to obfuscate code. These obfuscation methods, namely
native DEX packing, ahead-of-time compilation– (AOTC) based bytecode hiding, and direct heap access, are
presented below.

Native DEX packing methods. Packing consists in storing the Dalvik bytecode ciphered, which will be dynam-
ically deciphered and loaded at runtime. This relies on native code that directly modifies Android’s internal
structures for deploying new bytecode. These modifications can occur at any time of the bytecode loading pro-
cess or before the execution. Packing has been extensively studied [20, 34, 36, 39, 40], and packing DEX bytecode
using native code is a popular technique: Duan et al. [13] reported that an average of 13.89% of malware in the
wild between 2010 and 2015 used packing techniques to hide malicious behavior.

AOTC-based bytecode hiding. The AOTC-based bytecode hiding scheme is a recently described obfuscation
technique [8] that aims at hiding the bytecode of sensitive methods from both static and dynamic analyses.
It is composed of three main steps performed before releasing the APK file. First, the bytecode of obfuscated
methods is removed from the DEX file. Then, the bytecode of these methods is compiled using a custom compiler,
producing native code. Finally, the compiled code is added to the APK as a library and calls to obfuscated methods
are transformed into JNI calls.

Additionally, contrary to the packing methods, the bytecode is never deciphered when using AOTC-based
obfuscation and, thus, is never directly available to analysis tools. The code is only present in its compiled form.

Direct Heap Access. Direct Heap Access (DHA) consists in using native code to access Java object fields
without using JNI [15]. The application directly reads or writes the heap where the field is stored. This allows us
to break the well-defined interface between the Java and the assembly worlds and, thus, to circumvent hooking
of JNI calls, an analysis technique used by state-of-the-art tools [24, 32, 37] that we describe in the next section.

Before presenting how we tackle these obfuscation techniques in Section 4, we present in the next section
the previous approaches that try to recover information from applications obfuscated using the aforementioned
techniques, and we explain why they cannot collect the level of information that we intend to capture with our
contribution.

3 RELATED WORK

In this section, we focus on previous works that handled native code when dealing with obfuscation techniques.
We first describe the works related to packer techniques that try to recover the hidden, dynamically loaded,
bytecode, and then the works that try to obtain information about the native code. All the presented works are
reported in Table 1, which classifies these works according to four criteria:

• Object level details: quality of the information retrieved about the actions that operate at the objects
level (e.g., method calls, field accessing, exceptions, allocations) and that are performed by native code.
Tools unable to recover any actions are rated “low.” Tools able to retrieve partial information about the
performed actions are rated “medium.” “High” is reserved for tools that retrieve all the details about the
performed actions.
• Nature: we summarize the nature of the output of the tools.
• JNI interface agnosticism: whether the tool relies or not on a clearly defined JNI interface. If so, then

the tool may be bypassed by runtime accesses from the native code.
• Obfuscation robustness: describes their capacity not to be affected by native-based obfuscation tech-

niques that would hide parts of the code.

Digital Threats: Research and Practice, Vol. 4, No. 2, Article 30. Publication date: August 2023.

30:6 • P. Graux et al.

Table 1. Evaluation of State-of-the-art Native Android Application Analysis Tools with Respect to the Given Criteria

Tool Object level details Nature JNI Interface agnosticism Obfuscation robustness

Lantz et al. [18] low JNI chain no no

Afonso et al. [1] low statistics no yes

NDroid [24] medium flow no yes

Malton [37] medium flow no yes

JN-SAF [32] medium flow no no

AppLance [19] low flow yes yes

ArtDroid [12] low virtual method call yes yes

Ronin [30] low libcall yes yes

DroidScope [38] low ASM no yes

Unpackers [34, 36, 39, 40] low code loading yes tuned

OATs’inside high CFG object behaviors yes yes

We intend that OATs’inside meets all criteria: All object-level actions operated by the native code should be
collected, and we expect to observe these actions on a CFG for further manual analysis. Additionally, any action
that bypasses the JNI interface should be observed and native-based obfuscation techniques should be handled.
We compare later in Section 6.2 these tools to OATs’inside with more technical details, when the model of actions
that we are able to observe has been presented.

3.1 Unpacking Hidden Bytecode

DexHunter [40] and AppSpear [39] are unpackers that try to discover how native code is used to modify the
code loading process. They overload the runtime methods that load the bytecode. When the packed application
is launched, the unpacker calls these overloaded methods, which log the loaded bytecode. When the execution is
over, the unpackers reconstruct the application by merging the different parts of the bytecode that they obtained.

However, packers can avoid using the functions hooked by the unpackers or even change the bytecode after
it is loaded. For this reason, PackerGrind [36] and TIRO [34] do not set up any hooks. Instead, they watch the
structures managed by the runtime involved in the bytecode loading process. When these structures are modified,
they choose, manually for PackerGrind, to retrieve the newly loaded code. Nevertheless, retrieving the bytecode
does not the give information about the actions performed by the native code.

3.2 Information Retrieval for Native Code

Several works have presented generic framework solutions [12, 30, 38] where the analyst can insert some hook-
ing codes to audit native code actions. Indeed, these frameworks can be used to observe virtual method calls [12]
(vtable hooking) and library calls [30] (PLT hooking). Lantz and Johansson [18] proposed another static analysis
to locate JNI call chains. The output of these tools contains few information; hence, we classify their detail level
as low. DroidScope [38] is another framework, based on QEMU, that treats native methods like any other assem-
bly code, and, therefore, it fails to report object-level information. It reports more details such as system calls,
memory accesses, and instruction executions. These outputs are too close to assembly, as reported in Table 1.

Many works [19, 24, 32, 37] have aimed at tracking the information flow during the execution of an Android
application. NDroid [24] propagates TaintDroid [14] taints by hooking the Android framework methods that
call native code and all JNI entry points (QEMU hooking and VM introspection). AppLance [19] hooks source
methods and changes their return values. With several executions, it can detect if the sink methods’ parameters
changed owing to a modification of the source methods’ return values. JN-SAF [32] uses angr [28] to statically
track information flows. The key idea is to initialize the JNI entry point table with symbolic addresses repre-
senting the different JNI methods. Then, JN-SAF can represent their effects symbolically. All these approaches
provide all the sensitive information flow between methods, but retrieve only the behaviors involved in the
information flow. It is reported as medium in Table 1.

Digital Threats: Research and Practice, Vol. 4, No. 2, Article 30. Publication date: August 2023.

OATs’inside: Retrieving Object Behaviors From Native-based Obfuscated Android Applications • 30:7

Xue et al. provided a comprehensive view of the Android malware behaviors using Malton [37]. Malton is a
dynamic analysis platform that aims to compute information flows. It relies on Valgrind [22] to hook method
calls, ART, and framework libraries. It stores the address of every Java and native method and then checks, for
every jump, if the destination address is the address of a method. Then Malton reconstructs the Java objects cor-
responding to the arguments by parsing the memory. It also hooks framework methods responsible for loading
code and the JNI entry points and intercepts all system calls. Finally, it propagates taints through every assembly
instruction. Moreover, Malton leverages concolic execution to trigger or force the execution of specific, manually
tagged, code areas. Like in previously described works [19, 24, 32], the output only focuses on information flow.
Moreover, Malton cannot hook methods from the analyzed APK but only the runtime and framework ones.

3.3 Summary

Static approaches [18, 32] can be easily fooled by native code obfuscation. However, unpackers [34, 36, 39, 40]
focus on specific techniques for dynamic code loading, but they possibly miss some other ones: While they
recover the bytecode that is loaded by the native code, they miss all other actions that may performed. As a result,
we seek for a more general approach combining static and dynamic approaches for observing the performed
action of the native code.

Three major properties should be ensured when designing our native code analyzers: First, it should not be
bypassed by direct heap accesses from native code; second, it should not rely on the JNI interface; third, it should
be robust against native-based obfuscations.

4 OATS’INSIDE

To address native-based obfuscated Android applications, we describe OATs’inside, an Android application ana-
lyzer that recovers Java-level operations, even if the application is protected by full-native-based and runtime-
based obfuscation techniques. Note that OATs’inside does not intend to deobfuscate the native code but aims at
observing all possible actions on Java objects even if complex obfuscation techniques have been applied on the
native code. OATs’inside combines dynamic analysis with symbolic execution. The dynamic analysis gathers se-
quences of low-level events, and the symbolic execution is driven by these events. OATs’inside outputs a CFG that
can be passed to existing security analysis tools such as IntelliDroid [33] or directly to a human analyst. The CFG
is said to be at the object level, because it contains instructions acting on objects such as calling methods or setting
object fields. It describes the contents of each method, the conditional expressions involved in the control flow
instructions, the dataflow between actions, and the interprocedural calls. The human intervention of the analyst
is needed to identify the methods that should be studied. Indeed, depending on the analysis goal and the type of
application, the choice of method to study varies. This part cannot be automated and is thus left to the analyst.

OATs’inside adopts a two-step analysis: First, a dynamic analysis, followed by a concolic analysis. Note that
this concolic analysis consists in annotating the traces obtained during the dynamic analysis using symbolic
names that represent Java objects. These steps are based on four main modules as described in Figure 1. During
the dynamic step, the Runner module executes the application and logs every action dealing with objects. As an
application requires external inputs, the execution is either driven manually or via a dedicated exploration tool
such as Intellidroid [33]. The CFG creator module initializes a first version of the CFG from the actions obtained
from the Runner module. During the concolic step, the Concolic analyzer module performs a symbolic execu-
tion based on the actions logged by the Runner module and memory snapshots issued by the Memory dumper.
It enriches the CFG by recovering conditional expressions at branching nodes and data dependencies between
actions.

To illustrate OATs’inside’s methodology, we developed PINtest, a PIN verification application written in
Java. It runs transparently on an Android 7.0 smartphone. We will use this application as a running example
throughout the rest of this article. For the sake of readability, we give a simplified version of its source code in
Figure 1. If the pin field of the calling object (this) is negative, then an exception is thrown. SimpleTestPIN.test

Digital Threats: Research and Practice, Vol. 4, No. 2, Article 30. Publication date: August 2023.

30:8 • P. Graux et al.

Fig. 1. OATs’inside architecture.

has three possible behaviors. It returns true when the pin is the correct one (1337) and false otherwise.
SimpleTestPIN.test is obfuscated using the AOTC-based bytecode hiding: The bytecode is compiled into as-
sembly and then removed, and the assembly is obfuscated by manually adding opaque predicates.

The whole analysis is driven by a human analyst who runs the application twice with two different PINs: a
negative (-42), which generates an exception, and a wrong positive (42). The final objective of OATs’inside is to
compute a CFG that best approximates the complete CFG, which is, for this example, given in Figure 2.

4.1 Runner Module

The Runner module is in charge of running the analyzed application and logging every object-level action
performed by the application. There are nine different object-level actions [3]: invoking or returning a method,
reading or writing an object field, allocating an object, entering or exiting a monitor session, and throwing or
catching exceptions.

Listing 1. Simplified PIN test.

Applications contain three types of code: DEX, OAT, or native and OATs’inside should handle carefully their
interactions. Indeed, state-of-the-art approaches suffer from one or more of the following limitations: They do

Digital Threats: Research and Practice, Vol. 4, No. 2, Article 30. Publication date: August 2023.

OATs’inside: Retrieving Object Behaviors From Native-based Obfuscated Android Applications • 30:9

Fig. 2. Expected output for SimpleTestPIN.test.

Table 2. Monitoring of Object Actions for Different Types of Executed Code

Analyzed
binary

Invoke/return Field access (read/write) Object allocation/monitor Expectation (throw/catch)

Method Event type Method Event type Method Event type Method Event type

DEX interpreter direct interpreter direct allocator direct exception handler direct

OAT class linker breakpoint disable heap segv allocator direct exception handler direct

Native class linker breakpoint disable heap or JNI segv or direct allocator direct exception handler direct

not support OAT, arguing that the DEX bytecode is always available [5, 32, 34]; they do not collect all the possible
actions [24, 32, 37, 38]; and they are bypassed by AOTC-based bytecode hiding, because they rely on JNI [32, 37].
The Runner module lifts these limitations by using monitor methods inside the ART library when possible and
low-level debug methods otherwise.

Table 2 summarizes how each action is monitored, depending on the binary code type. If the action goes
through the ART (all actions in the Dalvik bytecode, and object allocation, monitoring of the entry or exit, and
exception handling in all code types), then a direct event is generated by adding a call to the logger inside the
runtime. Otherwise, the action is retrieved by generating a low-level event based on debugging or memory
protection capabilities. In particular, an OAT code that accesses (read or write) an object field is captured by
disabling the heap memory: All heap accesses will generate a segv event. The same applies to native code when
bypassing the JNI interface. Additionally, an OAT or a native code that invokes a method without calling the
runtime is captured by hooking the address table and generating a breakpoint event.

Consequently, three types of events are generated or captured:

(1) Direct events: allocating an object, entering/exiting a monitor session, and throwing/catching an exception;
(2) Breakpoint events: invoking and returning a method;
(3) Segv events: reading or writing an object field.

To manage these events, we built the Runner module, a patch of the Android runtime whose main components
are represented in Figure 3, where the three types of events are annotated as (DN), (BN), and (SN), respectively,
where N designates in which order the components are chained. The runtime has information about high-level
structures such as classes, signatures, and objects and also knows low-level entities such as register values, heap
addresses, and kernel signals. Thus, patching the runtime allows us to bridge the semantic gap between the
assembly and the bytecode world. The patch is divided into two entities: the ProbeManager and the
SignalManager. The ProbeManager handles high-level events. It is the interface between the runtime and

Digital Threats: Research and Practice, Vol. 4, No. 2, Article 30. Publication date: August 2023.

30:10 • P. Graux et al.

Fig. 3. Runtime patch architecture.

the output file when actions are logged. It logs object-level actions when they occur. The SignalManager
handles low-level events. It sets breakpoints, handles kernel signals, and notifies the ProbeManager to log as-
sociated actions.

The ProbeManager logs each event with its associated instruction address. This allows linking of the bytecode
events to the assembly code and will be used by the Concolic analyzer module (cf. Section 4.4). The thread
identifier from which the event originates is also logged to avoid concurrent execution issues. In the following,
we detail how the three types of events are handled by the Runner module.

Direct events. These events, indicated as “direct” in Table 2, are generated by the runtime library code. For
example, when an object is allocated, the runtime allocator is called. The allocator allocates memory and returns
it to the application. A call to the ProbeManager, containing the class of the allocated object, is added to the
allocator before returning to the APK code. This part of the Runner module links the assembly world (the
allocated address) and the bytecode world (the object class, independently of the executed code type). Entering
or exiting a monitor session and throwing or catching an exception are logged using similar mechanisms in the
runtime monitor and exception handler.

Breakpoint events. These events correspond to invoking or returning from a method. To log the invoke action,
the Runner module needs to be notified when the first instruction of the method is executed. The classical way
to do this would be to set a breakpoint at this address, catch the breakpoint (SIGTRAP signal), log the action,
remove the breakpoint, and resume the execution. However, removing the breakpoint would prevent catching
of future calls to this method. At first glance, instead of directly resuming the execution, a possible improvement
would be to step one instruction, reset the breakpoint, and resume the execution. In this way, the breakpoint
would be available for further calls. However, removing and then resetting the breakpoint would generate a
concurrency issue if multiple threads execute the same method. In practice, every application runs more than
five threads (GC, intents, profiler, etc.).

To solve this problem, the Runner module modifies the address of all the methods linked by the class linker
in the runtime. As shown in Figure 4, the real address of the method (code pointer) is replaced by the address
of a new dedicated area (hooking area). It contains a breakpoint instruction for generating the invoke action,
the original address of the method’s code (original pointer), and a pointer to the runtime internal structure
representing the method (class pointer).

Digital Threats: Research and Practice, Vol. 4, No. 2, Article 30. Publication date: August 2023.

OATs’inside: Retrieving Object Behaviors From Native-based Obfuscated Android Applications • 30:11

Fig. 4. Method invocation hooking process.

The same problem exists for catching the return event and is thus solved similarly. When this type of event
occurs, as the breakpoint only carries the information about the executed address, we retrieve the method sig-
nature by using the runtime internal structure of the dedicated areas.

Segv events. These events correspond to accesses, by reading or writing, to object fields stored on the heap.
Catching such accesses requires watching every load or store instruction to detect those that target heap ad-
dresses. To this end, the SignalManager uses the system page protection mechanism: It forbids all accesses to
the heap memory pages using mprotect, causing any access to object fields to generate a fault, a SEGV kernel
signal, which is caught by the SignalManager, which retrieves the faulty address. Then, the GC’s internal struc-
tures are leveraged to map the assembly address to an object field. This is then transmitted to the ProbeManager
for logging purposes. Finally, for an application to run as expected, heap access should actually be performed.
The heap is re-enabled, and a single instruction is executed before disabling the heap again.

Running example output. Listing 2 gives the actions outputted by the Runner module for the running example,
from lines 1 to 12 for the first execution and lines 13 to 18 for the second one. When these logs and the source code
of Listing ?? are compared, it shows that most of the elements are retrieved. The access to the pin field (lines 3
and 4 and lines 15 and 16) is present for each execution of the method. The throw is divided into four events: the
string creation (lines 5 and 6), the initialization of the exception object and its associated return (lines 7 and 8,
and lines 9 and 10), and the throw itself (lines 11 and 12). Finally, the return false (lines 17 and 18) is detected.
However, some Java actions are missing. The return true, which is never executed in our case, is not logged.
The conditions are also lacking, as well as the usage of the allocated string (lines 5 and 6), which is a dependency
of the init call (lines 7 and 8). This information is obtained by the remaining modules.

4.2 CFG Creator Module

The CFG creator module is in charge of creating the CFG. In fact, this graph is the union of the interprocedural
call graph (iCFG) and the methods’ olCFGs. These CFGs are built sequentially, using the events outputted by
the Runner module: First, actions are split by method and the iCFG is created, and then the olCFG of each
method is computed.

iCFG computation. The logs are split by method. The boundary of a method is defined by two properties of
the Dalvik bytecode [3]. First, each method begins with an invoke and ends with a return. Then, each return is
preceded by its corresponding invoke action. An invoke action is not necessarily followed by a return: Methods
may never return (e.g., the main loops of graphical engines are infinite loops). Second, there is no jump across
method bodies (“goto”-like statement). Thus, if a methodmb is invoked after a methodma , then the return ofma

cannot occur before the return ofmb . Invocations cannot be interleaved. Thanks to this last remark, we can split
actions by method by reconstructing the call stack. During the call stack computation, the iCFG is made: When
an invoke event occurs, an edge is added between it and the last method. Note that actions are mixed between
different threads. The inclusion of the thread identifier in logs allows each thread CFG to be built independently.

olCFG computation. We define the olCFG of a method the graph whose nodes contain Java-level actions (as
listed later in Table 2), and whose edges represent the execution traces. Each node contains, for each execution:

Digital Threats: Research and Practice, Vol. 4, No. 2, Article 30. Publication date: August 2023.

30:12 • P. Graux et al.

1 tid: 3520, event_address: 512236427828
2 invoke SimpleTestPIN;test()

3 tid: 3520, event_address: 512236429712
4 read SimpleTestPIN;pin => −42
5 tid: 3520, event_address: 512236429884
6 newObj String => 315654920

7 tid: 3520, event_address: 512236429832
8 invoke java/lang/Exception;<init>((String) 315654920)

9 tid: 3520, event_address: 512236429836
10 return void

11 tid: 3520, event_address: 512236429844
12 throw java.lang.Exception("Negative PIN")

13 tid: 3520, event_address: 512236427908
14 invoke SimpleTestPIN;test()

15 tid: 3520, event_address: 512236429712
16 read SimpleTestPIN;pin = > 42

17 tid: 3520, event_address: 512236427912
18 return false

Listing 2. Runner module output on SimpleTestPIN.

• the address of the instruction that operated on the Java object: the address of the instruction in the case of
native code; the index of the instruction in the bytecode, otherwise;
• the execution number, to distinguish between several executions of the application;
• the nature of the operation (INVOKE, READ, etc.) as listed in Table 2;
• parameters of this operation (name of the called function, read field, address of the object of interest, etc.);
• values returned by the considered operation.

The olCFG computation requires as input the sequence of actions of a method. Each node is uniquely charac-
terized by the address of the assembly instruction generating the action. Thus, if the same address is executed
multiple times (several executions of the method or loops in the method’s body), then the node representing this
action contains the details of all executed actions. For example, in Figure 5, the node 7743aba190 contains two
read actions from two different executions: The first read obtains the value -42, and the second one 42. A code
performing a long loop could flood the log with a repeated action about this node. We have optimized the CFG
creator module to reduce this problem that also occurs for multiple executions of the same method: When an
execution does not add new actions to the olCFG, the execution log is not translated into the graph. We could,
as a future work, perform the same optimization in real time for a single execution.

A special root node is added to mark the beginning of the method. When iterating over the sequence of
actions, the algorithm creates an edge from the current instruction to the next one. When a node holds several
actions, several destinations can follow, hence revealing the existence of a condition whose nature is not known
yet. Note that if ASLR is activated, then addresses change between two different executions, breaking the node
unicity previously mentioned. Thus, for our experiments ASLR have been disabled. Nevertheless, we believe that
using offsets to the base address of the loaded binary would solve this problem.

Running example output. Figure 5 shows the olCFG computed for the SimpleTestPIN.test method. This is
a human-readable representation of Listing 2. The same elements are missing: The “return true” case is not
present, the condition expressions are missing, and the dependency between the allocation and the invocation
is not explicit. Thus, the analyst cannot retrieve the correct PIN number: He/she cannot identify the conditions
that need to be satisfied, because they are not present.

Digital Threats: Research and Practice, Vol. 4, No. 2, Article 30. Publication date: August 2023.

OATs’inside: Retrieving Object Behaviors From Native-based Obfuscated Android Applications • 30:13

Fig. 5. olCFG of SimpleTestPIN.test.

4.3 Memory Dumper Module

The Memory dumper module is responsible for making snapshots of the memory. This module is called just be-
fore the execution of a method and dumps the whole memory or the process. These snapshots give the method’s
code and data to the Concolic analyzer module in charge of the symbolic execution. In this way, if a method is
used as a place holder for several unpacked assembly codes, then each snapshot will provide the current version
of the code. This module can be either activated by the Runner at each method execution (but it considerably
slows down the analysis) or activated on demand by the human analyst.

4.4 Concolic Analyzer Module

The Concolic analyzer module executes symbolically the dumped assembly code and uses the values observed
when actions occurred to help the symbolic execution. The first step allows us to build a CFG describing the ex-
ecution paths explored during the dynamic analysis; however, it lacks both conditional expressions and how
variables are manipulated by the actions. Such knowledge is important for the analyst, because it helps to under-
stand the behavior execution. For example, in Figure 5, the parameter (12d08308) of the invoke (7743ab9a84)
should be linked with the preceding allocation.

The Concolic analyzer module takes as input the list of actions logged by the Runner module and all the
memory snapshots made by the Memory Dumper module. It generates the conditional expressions at branching
nodes and the data dependencies between variables. This is done in three steps:

(1) the assembly is annotated with breakpoints at action addresses;
(2) the symbolic execution is started until it reaches a breakpoint or a condition;
(3) if the symbolic analysis is stopped, then the module respectively logs the corresponding action or condition

for
(a) a breakpoint;
(b) a condition.

Digital Threats: Research and Practice, Vol. 4, No. 2, Article 30. Publication date: August 2023.

30:14 • P. Graux et al.

Assembly breakpoints. In the assembly code returned by the Memory Dumper module, a breakpoint is set for
all generated actions. For example, we set a breakpoint at the address 7743aba190 (READ pin field action), which
corresponds to the instruction ldr w2, [x1, #12].

Symbolic execution. The symbolic execution is initialized: The PC is set to the entry point of the method and a
symbolic value is created for each method parameter. The symbolic execution can stop for one of three reasons:
a breakpoint, a condition, or the end of the method is reached.

Analysis stop and concretization. When the symbolic execution is stopped, the analysis flow is guided and
symbolic values are managed. Two types of stops are handled:

(1) Breakpoint: First, if the action type is allocation, read, or return, then a new symbolic value is created,
named according to the Java class or field name. For example, the read at address 7743aba190 creates a
symbol “SimpleTestPIN.pin,” as shown in Listing 3, line 5. The instruction output register w2 is set to this
new symbolic value. Second, if the action type is read, write, or invoke, then the read register or memory
value is retrieved. If this expression is symbolic, then it is outputted. For example, the parameter of the
invoke is logged in line 13 with the name created previously in line 10.

(2) Condition: The symbolic engine provides the two symbolic conditions corresponding to the two branches.
They are concretized: Symbolic values are replaced by the concrete value given by the trace. The condition
that holds is logged and the symbolic execution is resumed, taking the corresponding path. Note that the
concretization happens only for logging and choosing the branch: Registers and memory stay symbolic to
continue tracking data dependencies.

One key point of this symbolic analysis is that no SMT solver is ever called. Instead, only value replacement
(concretization) is made. Moreover, the analysis always follows only one path. This saves the analysis from the
usual drawbacks of symbolic analysis that could lead to high execution time or memory space overhead [6].

Finally, the results of the Concolic analyzer module are sent to the CFG creator module to improve the
olCFG. Blank nodes are added, in two cases:

• a node that has not (yet) been explored: These nodes do not have outgoing edges. These nodes are needed,
because a unique execution will not cover all possible execution paths. This is up to the analyst to choose
whether he wants to explore this path.
• a node without any observable Java-level action: These nodes have outgoing edges. They are used to

preserve the structure of the olCFG to reflect that multiple paths can be taken from this node.

This is the final human-readable output of OATs’inside.

Running example output. After the Concolic analyzer execution on the snapshot and the actions retrieved
for the running example described in Section 4.1, the enriched list of actions is given in Listing 3. Compared to
Listing 2, three new condition events have been added. The first two (lines 6 and 7 and lines 23 and 24) are the
opposite, because they represent the same condition that is taken or not. It corresponds to the check that the
pin field is positive, which is expressed in the condition expression written in the listing. The third condition
(lines 25 and 26) is the comparison to the correct pin value, which is XORed. The symbol SimpletestPIN.pin
has been concretized by 42 using line 21 to choose the branch to execute. Moreover, four symbolic annotations
have been added. The two lines attached to the read (lines 5 and 22) and the line attached to the allocation
(line 10) represent the new symbolic values created. The remaining one (line 13) shows that the symbol rep-
resenting the output of the allocation (line 10) is directly used as an invocation parameter when calling the
constructor exception <init>. The updated olCFG of the test method is shown in Figure 6. An analyst can now
easily understand how the PIN is handled.

Digital Threats: Research and Practice, Vol. 4, No. 2, Article 30. Publication date: August 2023.

OATs’inside: Retrieving Object Behaviors From Native-based Obfuscated Android Applications • 30:15

1 tid: 3520, event_address: 512236427828
2 invoke SimpleTestPIN;test()

3 tid: 3520, event_address: 512236429712
4 read SimpleTestPIN;pin => −42
5 symb: "SimpleTestPIN.pin"

6 tid: 3520, event_address: 512236429716
7 condition "(LShR(SimpleTestPIN.pin, 0x1f) & 0x1) != 0x0"

8 tid: 3520, event_address: 512236429884
9 newObj String => 315654920

10 symb: "new_ui64"

11 tid: 3520, event_address: 512236429832
12 invoke java/lang/Exception;<init>((String) 315654920)
13 symb: ["new_ui64"]

14 tid: 3520, event_address: 512236429836
15 return void

16 tid: 3520, event_address: 512236429844
17 throw java.lang.Exception("Negative PIN")

18 tid: 3520, event_address: 512236427908
19 invoke SimpleTestPIN;test()

20 tid: 3520, event_address: 512236429712
21 read SimpleTestPIN;pin => 42
22 symb: "SimpleTestPIN.pin"

23 tid: 3520, event_address: 512236429716
24 condition "(LShR(SimpleTestPIN.pin, 0x1f) & 0x1) == 0x0"

25 tid: 3520, event_address: 512236429736
26 condition "(SimpleTestPIN.pin ^ 0x2323) != 0x261a"

27 tid: 3520, event_address: 512236427912
28 return false

Listing 3. Concolic analyzer output on SimpleTestPIN.

5 IMPLEMENTATION DETAILS

The full implementation is available at https://gitlab.inria.fr/cidre-public/oatinside. The Runner and Memory
dumper modules are written in C++, inside the original ART. The architecture-specific parts have been devel-
oped only for ARMv8 [4]: signal handling, the hooking process presented in Figure 4, and specific instructions
handling mutual exclusion that OATs’inside may interrupt (ldx* and stx*). ARMv7 could be supported, and
other architectures are marginal. The communication between the phone and the host is established using pro-
tobuf4 over a socket connection. The CFG creator module is based on the NetworkX Python library [16]. The
Concolic analyzer module uses angr [28] as a symbolic execution engine.

A few optimization techniques have been implemented for the Runner and Memory dumper modules. First,
system libraries and applications are whitelisted. Indeed, when one of their methods is invoked, the heap is re-
enabled, improving the execution time. Second, we cache the mapping between addresses and object fields used
by the Runner module. This cache is flushed when the GC is triggered, because it may move objects around.

4Protobuf: https://developers.google.com/protocol-buffers/.

Digital Threats: Research and Practice, Vol. 4, No. 2, Article 30. Publication date: August 2023.

https://gitlab.inria.fr/cidre-public/oatinside
https://developers.google.com/protocol-buffers/

30:16 • P. Graux et al.

Fig. 6. olCFG of SimpleTestPIN.test.

The Runner and Memory dumper modules need a few kernel changes. First, when the Runner module
handles SEGV events, it has to authorize accesses to the heap and to execute a single instruction before disabling
the heap again. To avoid concurrent accesses to the heap in the meanwhile, a thread-oriented mprotect has
been added to the kernel [25]. The Memory dumper also needs a mechanism to pause the execution of threads,
which is not available in the Linux kernel. A kernel syscall fulfilling that task has been added, using the freezing
mechanism that the kernel already uses for hibernation (suspend to disk) [35].

These modules also highly rely on two signal handlers set up for the SIGTRAP and SEGV signals. To prevent
them from being replaced or removed by the application, we added a new syscall. This syscall sets up definitive
signal handlers whose addresses are given in the parameter. The sigaction kernel syscall is modified so that this
handler can never be modified. If the signal is generated by OATs’inside, it is treated; if not, then it is forwarded
to the application installed handler. This implementation solves practical problems due to library helpers for
native development such as Google Breakpad5 or Application Crash Reports for Android (ACRA).6

Finally, the implementation of the Runner and the Memory dumper modules needs to differentiate segmen-
tation faults (SEGV) that are raised by read or write operations. However, for ARMv8, no distinction is made
in the kernel. As a first approximation, the distinction is made by comparing the accessed value before and
after the execution. If they are the same, then the module considers it as a read, else as a write.

6 EVALUATION AND DISCUSSION

We evaluated OATs’inside to answer the five following questions:

5Google Breakpad: https://github.com/google/breakpad.
6ACRA: https://github.com/ACRA/acra.

Digital Threats: Research and Practice, Vol. 4, No. 2, Article 30. Publication date: August 2023.

https://github.com/google/breakpad
https://github.com/ACRA/acra

OATs’inside: Retrieving Object Behaviors From Native-based Obfuscated Android Applications • 30:17

Table 3. OATs’inside Compared with State-of-the-art Solutions

O: OATs’inside; T: TIRO [34]; A: ARTist [5]; J: JN-SAF [32]; M: Malton [37]

•: fully, ◦: partially
R : Retrieval requires the Runner module
R + C : Retrieval requires the Concolic analyzer module
? : Retrieval requires more static analyses

Q1: Can OATs’inside retrieve the object behavior of an application regardless of the use of obfuscation techniques?

Q2: What is the contribution of OATs’inside to the state-of-the-art tools?

Q3: Is OATs’inside practical to use?

Q4: What is the overhead of OATs’inside?

Q5: Is OATs’inside stealth and robust when analyzing malware?

6.1 Robustness against Obfuscation

To assess the proper functioning of OATs’inside, we designed unit tests, as reported in Table 3. To build the test
cases, we read the Dalvik bytecode specification [3] to enumerate all possible Java source statement behaviors
(allocations, register and memory accesses, arithmetic and bitfield operations, condition checks, type checks,
exception management, critical session monitoring). These behaviors are divided into eight families and 20 cat-
egories listed in the two first columns of Table 3. For each behavior categories, we distinguish, when relevant,
three Java types: object, primitive variable or primitive array. For example, the condition category represents
changing the execution flow (if statement), depending on the value of an object field, a primitive variable allo-
cated onto the stack, or primitive array element. Finally, we obtain 70 unit test classes for which we check the
output log of OATs’inside.

To handle the different obfuscation techniques, the test cases were packaged in a single application obfuscated
in six different versions:

(1) the DEX only version corresponding to test cases made in Dalvik bytecode;
(2) the Pack DEX version resulting from the usage of a bytecode native packer on the DEX only version;
(3) the AOTC version produced by using the AOTC-based bytecode hiding technique (cf. Section 2.2);

Digital Threats: Research and Practice, Vol. 4, No. 2, Article 30. Publication date: August 2023.

30:18 • P. Graux et al.

(4) the JNI version corresponding to test cases implemented in C++ using JNI;
(5) the JNI+obf version resulting from the usage of the Tigress obfuscator [10]:
• Recipe #1: Virtualize [7]: This recipe intends to break the control flow by adding a level of indirection (a

virtual machine) into the code;
• Recipe #2: Encode Arithmetic [7]: This recipe intends to complexify the arithmetic calculus by introduc-

ing equivalent larger formulas.
(6) the DHA version resulting from the usage of the DHA methods (cf. Section 2.2) on the JNI version. DHA

method obfuscates only heap accesses (others behaviors are grayed in Table 3).

When running the test cases, we manually checked that the olCFG outputted by OATs’inside corresponded to
the expected one. We indicated in Table 3 whether the test case evaluation required only the Runner module
(indicated as R) or both the Runner module and the Concolic analyzer module (indicated as R + C).

Results show that OATs’inside retrieves almost every behavior when no obfuscation is used except for two
cases. First, as other tools, OATs’inside does not retrieve behavior based on primitive variables. This is expected,
because variables are allocated onto the stack that is not monitored. Missing these variable-oriented behaviors for
native code is not an important limitation, because they are still considered by the symbolic execution. Second,
OATs’inside does not retrieve bytecode behaviors that are removed at compilation time (e.g., type checking).
However, this could be retrieved using more advanced static analysis such as type propagation and checking [9].

For the obfuscated version of the unit tests, OATs’inside captures partially the Java behaviors. All operations
are observed with recipe #1. Recipe #1 uses a Virtualize Machine (of a custom bytecode) to hide the real control
flow of the code of our functions. In this case, the symbolic execution is still able to track values and all types of
Java operations are observed: The control flow introduced by the VM does not depend on the Java values and
thus the symbolic analysis does not output this new flow in the olCFG. With recipe #2, arithmetic expressions
are replaced by more complex ones. OATs’inside manages to retrieve the correct operations thanks to angr that is
able to simplify them. Nevertheless, we think that applying recipe #2 on more complex codes would have fooled
OATs’inside, which may not be able to simplify the expressions (angr solves simple ones but would be limited on
complex ones).

6.2 OATs’inside Functional Contribution

To assess the contribution of OATs’inside to the state of the art, we minutely read the papers describing four
tools: TIRO [34], ARTist [5], JN-SAF [32], and Malton [37]. In Table 3, each reported column corresponds to a
tool, OATs’inside being the first column.

First, because the DHA obfuscation is a new technique, none of the other tools passed the test cases of the
DHA version. In fact, tools that focus on tracing accesses to object fields all rely on a clearly defined JNI interface.

ARTist [5], as mentioned in Section 3, does not target native code but only bytecode. This explains why it only
retrieves behaviors for the DEX only version.

TIRO [34] is an unpacker. Thus, it can output the loaded bytecode of the Pack DEX version. Then, the bytecode
being available, the analyst can retrieve all the application behaviors. However, excluding the behavior related
to code loading, which is not an elementary Java behavior, TIRO does not analyze any native code.

JN-SAF [32] and Malton [37] both do taint flow analysis. Therefore, they do not care about allocations, typing,
exceptions, or monitoring of events and do not output them at all.

JN-SAF [32] is a static analysis-based taint tracking tool. Owing to its static nature, it cannot work with the
Pack DEX version. Moreover, JN-SAF targets only native methods and does not handle AOTC-compiled code and,
thus, it misses the AOTC version. Because JN-SAF aims at tracking flows, it does not log explicitly the conditions
and the operations made by the code. However, these elements are part of the flow process, i.e.„ the propagation
algorithm. That is why some partial information about operations and conditions is captured. Finally, because
JN-SAF relies on classical symbolic execution, obfuscated assembly can overload its analysis, preventing the
JNI+obf version from being handled.

Digital Threats: Research and Practice, Vol. 4, No. 2, Article 30. Publication date: August 2023.

OATs’inside: Retrieving Object Behaviors From Native-based Obfuscated Android Applications • 30:19

Malton [37] is a hybrid tool that realizes data taint tracking over framework libraries and system calls.
Therefore, it does not retrieve information about the internal code methods and classes. That is why all its
outputs are qualified as partial. Moreover, because Malton is dynamic, it can handle the Pack DEX version. The
symbolic analysis that is conducted is concolic: Like OATs’inside, it follows the execution and, thus, is not sen-
sitive to obfuscation (unlike JN-SAF) and can tackle the JNI+obf version. Finally, Malton works with the AOTC

version, because it does not rely on the APK structure but bases all its analysis on executed assembly instructions.
Thanks to the conducted review of state-of-the-art tools, we believe that OATs’inside is the only one that can

work with DHA obfuscated applications and recover a CFG of the executed part of the code for every tested
categories.

6.3 Analysis of OWASP UnCrackable App for Android

To assess if OATs’inside is practical to use, then we used OATs’inside to reverse an application dubbed UnCrackable

App for Android. This application was developed by OWASP, a nonprofit foundation that works on improving
the security of software. To that end, they released a manual called “Mobile Security Testing Guide” (MSTG)7

that aims at defining the industry standard for mobile application security. UnCrackable apps8 are examples used
among this manual. Four levels are proposed. The first level is a pure Java application hiding a password: It is of
no interest for OATs’inside. The next three levels uses native code to evaluate the password entered by the users.
In this section, we present in detail how OATs’inside solves the level 2, and we briefly explain levels 3 and 4.

6.3.1 Level 2. UnCrackable level 2 is presented as an application that “hides away data and functionality
in native libraries”9 and tries to fool debuggers. The goal for a reverser is to find a password that makes the
application show “Success.” This is a well-suited target for evaluating OATs’inside’s capability against real-world
applications, since it is precisely designed to use native code to complexify analyses and to represent what a real
developer could do.

First observations. First, to analyse this application, we installed it on a real phone and ran it using OATs’inside.
After launching, the application shows a screen asking for a “secret string.” By typing “password test” and clicking
on the verify button, the application answers “That’s not it. Try again.” We then closed the application.

During this first analysis, OATs’inside traced 2,455 methods. Since the methods are grouped inside their respec-
tive classes and packages (around five hundreds), we started by generating the olCFG for all methods that do not
belong to a default Android library (e.g., java.*, android.*). Then, we searched in the 15 remaining methods
for anything that could be related to password checking. During this search, we first found three interesting
methods:

• b.a: searches for the binary su using the $PATH environment variable.
• b.b: searches for the string “test-keys” in the build tags.
• b.c: searches for rooting applications artifacts such as Superuser.apk or /system/etc/.has_su_deamon.

All these anti-analysis tricks are transparently avoided, since OATs’inside does not need to root Android or to
use an emulator but rather comes as a genuine Android version.

Finally, we generated an olCFG where the string that we have entered (“password test”) appears. This is the
bar method’s olCFG, shown in Figure 7(a). This method is a good candidate to deeper analysis: It returns a
Boolean that could indicate a good or bad password and manipulates the entered password by computing its
length.

7OWASP MSTG: https://mobile-security.gitbook.io/.
8UnCrackable levels 1 to 4 source code: https://github.com/OWASP/mastg-crackmes/tree/master/Android.
9UnCrackable level 2 presentation: https://mobile-security.gitbook.io/mobile-security-testing-guide/android-testing-guide/0x05j-testing-

resiliency-against-reverse-engineering#bypassing-debugger-detection.

Digital Threats: Research and Practice, Vol. 4, No. 2, Article 30. Publication date: August 2023.

https://mobile-security.gitbook.io/
https://github.com/OWASP/mastg-crackmes/tree/master/Android
https://mobile-security.gitbook.io/mobile-security-testing-guide/android-testing-guide/0x05j-testing-resiliency-against-reverse-engineering#bypassing-debugger-detection

30:20 • P. Graux et al.

Fig. 7. olCFGs of bar generated by OATs’inside.

Digital Threats: Research and Practice, Vol. 4, No. 2, Article 30. Publication date: August 2023.

OATs’inside: Retrieving Object Behaviors From Native-based Obfuscated Android Applications • 30:21

Deeper analysis of the bar method. We chose to deeply analyse the bar method by leveraging the concolic
analysis of OATs’inside. To use the Concolic analyzer, we re-ran the application entering the same inputs
(“password test”) using the Memory dumper. With the help of the output dump, OATs’inside generated the olCFG
shown in Figure 7(b). Based on it, we can state that False is returned when the length of the entered password
is different from 23 (0x17 in the graph). Thus, we re-ran the application but, this time, entering a 23 character-
long password (“qawsedrftgyhujikolpzxcv”). The corresponding concolic-improved olCFG was computed and
revealed that False is also returned if the eight first characters of the password are not “Thanks f.” By repeating
this process three other times, i.e., setting the password accordingly to the olCFG, we obtained the olCFG in
Figure 7(c). In this olCFG, the correct password (“Thanks for all the fish”) appears immediately in the sixth
execution, which returns True. This password has been validated using the application.

Remarks. Using OATs’inside, we have been able to analyze transparently an obfuscated native Android appli-
cation. Indeed, by looking at the UnCrackable source code10: We can note that some native anti-debugger tricks
such as auto-debugging have not even been noticed during the analysis. While the analyst still has to guide the
tool using its expertise, knowledge, and time for de-obfuscating the application are not necessary. Note that,
even if all modules presented in Figure 1 communicate automatically, the analyst still has the opportunity to
adapt his choices with the findings after an execution. Additionally, some other tools such as IntelliDroid [33]
may give relevant information to assist its investigation. The easy retrieval of the secret password shows that
OATs’inside is of practical use.

6.3.2 Level 3. OATs’inside helps to solve similarly the level 3 of the OWASP Uncrackable application. Using
25 executions, we have incrementally retrieved: (1) the length of the password and (2) the 24 characters of the
password, one by one. The olCFG obtained has been given in Appendix A. When applying the method previously
described, the only noticeable difference for level 3 is the number of comparisons made by the application: The
level 2 processes blocks of eight bytes while level 3 checks one byte at a time. However, when looking at the source
code of level 3, we can observe that several obfuscation techniques have been used for creating the native part
of the application: opaque predicates, custom comparison functions, and randomness usage. From OATs’inside

perspective, these obfuscation techniques have no impact on the analysis.

6.3.3 Level 4. The level 4 of the OWASP Uncrackable application is not similar to levels 2 and 3. It embeds
several libraries dedicated cryptography or anti-debugging. The password itself is checked after being processed
by cryptographic algorithms. The dynamic part of OATs’inside has been able to correctly retrieve the Java actions
performed by the native code. Nevertheless, the symbolic analysis has not produced any output. Indeed, during
the analysis, the symbolic execution has to go through cryptographic functions, which are known to challenge
symbolic analysis. In our case, the analysis ends due to lack of internal memory space: The internal stack of the
analysis is full. The modification of the internal memory space of angr is left as future work.

6.4 Performance Overhead

To quantify the overhead of the Runner module, we ran an AES-128 over a 16-byte block of data using
OATs’inside and a Sony Xperia X under AOSP Android 7.0. We used two implementations: one in full Java that
stores intermediate results in Java arrays (hereinafter AES-J), and the other is a native implementation manipu-
lating C variables (hereinafter AES-C). AES-J intensively stressed the heap, either from the interpreted version
(AES-J DEX) or from the compiled version (AES-J AOTC). Indeed, the ratio between computation and heap ac-
cesses was unbalanced in favor of the latter. The results are given in Table 4. The overhead was reasonable for the
AES-J DEX implementation and non-existent for the AES-C implementation. For these versions, a lot of the time
(68% and 41%) was consumed by protobuf for sending logs to the host. For AES-C, no performance overhead is

10UnCrackable level 2 source code: https://github.com/OWASP/mstg-crackmes/tree/master/Android/Level2.

Digital Threats: Research and Practice, Vol. 4, No. 2, Article 30. Publication date: August 2023.

https://github.com/OWASP/mstg-crackmes/tree/master/Android/Level2

30:22 • P. Graux et al.

Table 4. Time Overhead and Number of Actions/Events for 1000 AES-128 Computations and OWASP UnCrackable
App Level 2

*: OWASP UnCrackable application level 2 with password filled at startup.

The validation buttons are clicked automatically and then the application quits itself.

observed, because no objects of the Java level are manipulated by the C code, and hence no events are generated.
The overhead was much higher for the fully compiled version (AOTC): A factor of 10,260 was observed because
of the generation of the SEGV and BP events.

These three cases can be considered as extreme cases: AES-J AOTC generates numerous events and does not
use any whitelisted library while AES-C generates nothing. To quantify the overhead on more real cases, we
have customized OWASP UnCrackable level 2 so that the application automatically fills a password and exits
after checking it. This way, we are able to measure the overhead during the full life of an application. The obtained
overhead, execution slowed down by 13 times, is reasonable for an analysis system. This shows the effectiveness
of the whitelisting mechanism in real cases.

Figure 8 shows the evolution of the overhead depending on the number of actions. Time is represented with a
logarithmic scale. We observed that the overhead was linear with the number of actions. The highest overhead
was induced by SEGV actions.

To assess the overhead of the Memory dumper module, we dumped the contents of two applications: a simple
“hello world” and the biggest ARMv8-compatible APK from AndroZoo, which was retrieved in 2019 (md5 given
in Table 5). The results are shown in Table 5. The time and the size of the dump stay almost the same while
the application is 1, 000 times bigger. Indeed, most of the memory contained libraries and areas allocated for all
applications.

6.5 OATs’inside Robustness against Dedicated Attacks

OATs’inside stealthiness. Obfuscated applications could try avoiding being analyzed. Then, it is important to
assess the capacity of OATs’inside not being detected. One could argue that the behavior of OATs’inside is fin-
gerprintable by detecting the generation of SEGV and TRAP signals. However, they can never be caught by the
application, because we capture them. Additionally, OATs’inside induces a time overhead when running the ap-
plication. Then, an application could fingerprint the time of the execution. It could also measure the difference

Digital Threats: Research and Practice, Vol. 4, No. 2, Article 30. Publication date: August 2023.

OATs’inside: Retrieving Object Behaviors From Native-based Obfuscated Android Applications • 30:23

Fig. 8. Runner module overhead with No. of actions.

Table 5. Dump Size Depending on the APK Size

APK name Hello world 7146b3c02f0f4e3420c4471c2034de9d

APK size 174 Kb 140 Mb

Dump size 1.5 Gb 1.7 Gb

Dump time 8,687 9,257

between the time spent for accessing a variable or a field. Such techniques can be defeated by hooking the syscall
gettimeofday and changing its return value to a nominal one [36]. Also, a standard way to avoid being debugged
is to check that no breakpoints have been set up or that the code has not been modified by using checksums.
OATs’inside does not modify the application code but rather modifies call and return addresses to redirect them
to breakpoints. An application could scan these addresses, trying to detect specifically OATs’inside. OATs’inside

controls the MMU and could redirect the accesses for the breakpoint area to the legitimate code area [34], making
them stealth. These questions are left as future work.

Finally, an application could try to check if the running device is a legitimate one, that is, if the phone is rooted
or emulated or if analysis systems such as debugging or binary analyzers are installed [23]. Such behaviors have
been encountered when analyzing OWASP UnCrackable application level 4. The analysis itself is described in
Section 6.3. When looking at its source code, we can note that the application uses a library11 dedicated to de-
tect rooted devices. OATs’inside is not detected by the employed techniques, since its dynamic component is
a legitimate Android system: It is not different from a custom Android image compiled by a smartphone con-
structor. Even if these techniques are not targeting OATs’inside specifically, bypassing them transparently makes
OATs’inside more practical to use, since numerous malware use these on-the-shelf analysis countermeasures.

11https://github.com/scottyab/rootbeer.

Digital Threats: Research and Practice, Vol. 4, No. 2, Article 30. Publication date: August 2023.

https://github.com/scottyab/rootbeer

30:24 • P. Graux et al.

OATs’inside robustness. Additionally to trying to detect OATs’inside, malware can try to bypass OATs’inside

by circumventing the monitoring made by the Runner module. The main idea for the malware would be to
modify the functions or the values that are used by OATs’inside to perform its dynamic analysis. For instance,
the application would hook the logging commands or modify, after OATs’inside sets its hooking breakpoints, the
methods addresses. The malware can also generates fake events by forging them. In these cases, OATs’inside

outputs would be incorrect by either missing events or exposing non-existing ones. Similarly to the stealthiness
problem, since OATs’inside controls the whole system, dedicated solutions could be imagined for each problem.
A general solution based on MMU to protect critical points is left as future work.

7 CONCLUSION

This article presents a new methodology combining a dynamic analysis and a concolic execution for capturing
all Java behaviors of the native obfuscated part of an application. These behaviors were systematically catego-
rized and, for each behavior, we have designed a dedicated way to retrieve it either online during the execution
or offline during the symbolic analysis. We have systematically reviewed state-of-the-art tools against the com-
bination of all possible behaviors with three application formats (DEX, OAT, JNI) and thee types of obfuscation
(Packing, native obfuscation using Tigress, DHA). In these cases, OATs’inside, achieves the largest coverage of
obfuscated behavior retrieval among other related tools. Nevertheless, some advanced obfuscation techniques
applied to the native code may fool OATs’inside by attacking its symbolic execution engine angr. The output
would then contain very complex expressions.

Experiments show that the overhead induced by OATs’inside is linear in the number of events that bypass
the JNI interface. Combined with implemented optimizations such as Android library white-listing, this result
shows the practicality of the proposed approach. We also illustrated the benefit of OATs’inside on applications
containing anti-debugging techniques provided by the OWASP foundation. We easily recover the hidden pass-
word from the native code by identifying the appropriate control flow conditions and the tests that are performed
by the native code. With few iterations, we recover the expected password, solving the challenge. It works for
two levels of difficulty, the third one being only partially analyzed.

Our proposal is released as an open source tool and patches that modify the Android source code. The benefit
of deploying the analysis in the heart of Android is the stealthiness of the analysis: OATs’inside is, from the
application point of view, another modified Android version, a very common practice in the Android ecosystem.
Further work can be conducted in this direction, especially by investigating the countermeasures that an attacker
could implement to detect OATs’inside. Porting OATs’inside to newer versions of Android is also of independent
interest for analyzing applications that are only compatible with recent versions of Android.

Digital Threats: Research and Practice, Vol. 4, No. 2, Article 30. Publication date: August 2023.

OATs’inside: Retrieving Object Behaviors From Native-based Obfuscated Android Applications • 30:25

A OWASP UNCRACKABLE APP LEVEL 3-GENERATED OLCFG

Fig. 9. Final olCFG of bar.

Figure 9 shows the final olCFG obtained when analyzing OWASP UnCrackable application level 3 using
OATs’inside. For the sake of clarity, only three executions are represented. As stated in Section 6.3, this graph is
obtained as simply as the one of level 2. The additional obfuscation used by the native code is handled transpar-
ently for the analyst. The only difference between the two levels lies in the comparison process: Level 3 compares
byte by byte while level 2 checks blocks of 8 bytes.

REFERENCES
[1] Vitor Monte Afonso, Paulo L. de Geus, Antonio Bianchi, Yanick Fratantonio, Christopher Kruegel, Giovanni Vigna, Adam Doupé, and

Mario Polino. 2016. Going native: Using a large-scale analysis of android apps to create a practical native-code sandboxing policy. In

Proceedings of the Network and Distributed System Security Symposium.

[2] Android. 2018. Dalvik Executable Format. Retrieved from https://source.android.com/devices/tech/dalvik/dex-format.

[3] Android. 2019. Dalvik Bytecode. Retrieved from https://source.android.com/devices/tech/dalvik/dalvik-bytecode.

[4] ARM. 2017. ARM Architecture Reference Manual: ARMv8, for ARMv8-A Architecture Profile.

Digital Threats: Research and Practice, Vol. 4, No. 2, Article 30. Publication date: August 2023.

https://source.android.com/devices/tech/dalvik/dex-format
https://source.android.com/devices/tech/dalvik/dalvik-bytecode

30:26 • P. Graux et al.

[5] Michael Backes, Sven Bugiel, Oliver Schranz, Philipp von Styp-Rekowsky, and Sebastian Weisgerber. 2017. Artist: The android runtime

instrumentation and security toolkit. In Proceedings of the IEEE European Symposium on Security and Privacy. IEEE, Los Alamitos, CA,

481–495.

[6] Roberto Baldoni, Emilio Coppa, Daniele Cono D’elia, Camil Demetrescu, and Irene Finocchi. 2018. A survey of symbolic execution

techniques. Comput. Surv. 51, 3 (July 2018).

[7] Sebastian Banescu, Christian S. Collberg, Vijay Ganesh, Zack Newsham, and Alexander Pretschner. 2016. Code obfuscation against

symbolic execution attacks. In Proceedings of the 32nd Annual Conference on Computer Security Applications (ACSAC’16). 189–200.

[8] Judong Bao, Yongqiang He, and Weiping Wen. 2018. DroidPro: An AOTC-based bytecode-hiding scheme for packing the android appli-

cations. In IEEE International Conference on Trust, Security and Privacy in Computing and Communications/IEEE International Conference

on Big Data Science and Engineering. IEEE, Los Alamitos, CA, 624–632.

[9] Luca Cardelli and Peter Wegner. 1985. On understanding types, data abstraction, and polymorphism. Comput. Surv. 17, 4 (December

1985).

[10] Christian Collberg, Sam Martin, Jonathan Myers, Bill Zimmerman, Petr Krajca, Gabriel Kerneis, Saumya Debray, and Babak Yadegari.

[n. d.]. The Tigress C Diversifier/Obfuscator. Retrieved from https://tigress.wtf/.

[11] Christian Collberg and Jasvir Nagra. 2009. Surreptitious Software: Obfuscation, Watermarking, and Tamperproofing for Software Protection.

Number 1. Addison-Wesley Professional.

[12] Valerio Costamagna and Cong Zheng. 2016. ARTDroid: A virtual-method hooking framework on android ART runtime. In Proceedings

of the International Workshop on Innovations in Mobile Privacy and Security Co-located with the International Symposium on Engineering

Secure Software and Systems. CEUR Workshop Proceedings, 20–28.

[13] Yue Duan, Mu Zhang, Abhishek Vasisht Bhaskar, Heng Yin, Xiaorui Pan, Tongxin Li, Xueqiang Wang, and XiaoFeng Wang. 2018. Things

you may not know about android (Un) packers: A systematic study based on whole-system emulation. In Proceedings of the Network

and Distributed System Security Symposium.

[14] William Enck, Peter Gilbert, Seungyeop Han, Vasant Tendulkar, Byung-Gon Chun, Landon P. Cox, Jaeyeon Jung, Patrick McDaniel, and

Anmol N. Sheth. 2014. TaintDroid: An information-flow tracking system for realtime privacy monitoring on smartphones. In Proceedings

of the USENIX Conference on Operating Systems Design and Implementation. USENIX, 393–407.

[15] Pierre Graux, Jean-Francois Lalande, Pierre Wilke, and Valérie Viet Triem Tong. 2020. Abusing android runtime for application obfus-

cation. In Proceedings of the Workshop on Software Attacks and Defenses. IEEE.

[16] Aric Hagberg, Pieter Swart, and Daniel Chult. 2008. Exploring network structure, dynamics, and function using NetworkX. In Proceed-

ings of the Python in Science Conference. 11–16.

[17] Peter Hornyack, Seungyeop Han, Jaeyeon Jung, Stuart Schechter, and David Wetherall. 2011. These aren’t the droids you’re looking for:

Retrofitting android to protect data from imperious applications. In Proceedings of the ACM Conference on Computer and Communications

Security. ACM, New York, NY, 639–652.

[18] Patrik Lantz and Bjorn Johansson. 2015. Towards bridging the gap between Dalvik bytecode and native code during static analysis of

Android applications. In Proceedings of the International Wireless Communications and Mobile Computing Conference. IEEE, 587–593.

[19] Hongliang Liang, Yudong Wang, Tianqi Yang, and Yue Yu. 2018. AppLance: A lightweight approach to detect privacy leak for packed

applications. In Proceedings of the Nordic Conference on Secure IT Systems. Springer, 54–70.

[20] Yibin Liao, Jiakuan Li, Bo Li, Guodong Zhu, Yue Yin, and Ruoyan Cai. 2016. Automated detection and classification for packed android

applications. In Proceedings of the International Conference on Mobile Services. IEEE, 200–203.

[21] Carey Nachenberg. 1996. Understanding and managing polymorphic viruses. The Symantec Enterprise Papers 30 (1996).

[22] Nicholas Nethercote and Julian Seward. 2007. Valgrind: A framework for heavyweight dynamic binary instrumentation. In Proceedings

of the ACM SIGPLAN Conference on Programming Language Design and Implementation. ACM, 89–100.

[23] Thanasis Petsas, Giannis Voyatzis, Elias Athanasopoulos, Michalis Polychronakis, and Sotiris Ioannidis. 2014. Rage against the virtual

machine: Hindering dynamic analysis of android malware. In Proceedings of the ACM European Workshop on System Security. ACM, 5.

[24] Chenxiong Qian, Xiapu Luo, Yuru Shao, and Alvin T. S. Chan. 2014. On tracking information flows through JNI in Android applications.

In Proceedings of the IEEE/IFIP International Conference on Dependable Systems and Networks. IEEE, 180–191.

[25] Ali Razeen, Alvin R. Lebeck, David H. Liu, Alexander Meijer, Valentin Pistol, and Landon P. Cox. 2018. SandTrap: Tracking information

flows on demand with parallel permissions. In Proceedings of the Annual International Conference on Mobile Systems, Applications, and

Services. ACM, 230–242.

[26] Rolf Rolles. 2009. Unpacking virtualization obfuscators. In Proceedings of the USENIX Workshop on Offensive Technologies. USENIX,

Montreal, Canada.

[27] Paul Sabanal. 2015. Hiding behind ART. In Proceedings of the Black Hat Asia.

[28] Yan Shoshitaishvili, Ruoyu Wang, Christopher Salls, Nick Stephens, Mario Polino, Audrey Dutcher, John Grosen, Siji Feng, Christophe

Hauser, Christopher Kruegel, and Giovanni Vigna. 2016. SoK: (State of) the art of war: Offensive techniques in binary analysis. In

Proceedings of the IEEE Symposium on Security and Privacy. IEEE.

[29] Mahendra Pratap Singh and Manoj Kumar Jain. 2014. Evolution of processor architecture in mobile phones. Int. J. Comput. Appl. 90,

4 (March 2014).

Digital Threats: Research and Practice, Vol. 4, No. 2, Article 30. Publication date: August 2023.

https://tigress.wtf/

OATs’inside: Retrieving Object Behaviors From Native-based Obfuscated Android Applications • 30:27

[30] Nikolaos Totosis and Constantinos Patsakis. 2018. Android hooking revisited. In IEEE International Conference on Dependable, Autonomic

and Secure Computing, International Conference on Pervasive Intelligence and Computing, International Conference on Big Data Intelligence

and Computing and Cyber Science and Technology Congress. IEEE, 552–559.

[31] Xabier Ugarte-Pedrero, Davide Balzarotti, Igor Santos, and Pablo G. Bringas. 2015. SoK: Deep packer inspection: A longitudinal study

of the complexity of run-time packers. In Proceedings of the IEEE Symposium on Security and Privacy. IEEE, 659–673.

[32] Fengguo Wei, Xingwei Lin, Xinming Ou, Ting Chen, and Xiaosong Zhang. 2018. JN-SAF: Precise and efficient NDK/JNI-aware inter-

language static analysis framework for security vetting of android applications with native code. In Proceedings of the ACM SIGSAC

Conference on Computer and Communications Security. ACM, 1137–1150.

[33] Michelle Y. Wong and David Lie. 2016. IntelliDroid: A targeted input generator for the dynamic analysis of android malware. In Pro-

ceedings of the Network and Distributed System Security Symposium. 21–24.

[34] Michelle Y. Wong and David Lie. 2018. Tackling runtime-based obfuscation in Android with TIRO. In Proceedings of the USENIX Security

Symposium. USENIX, 1247–1262.

[35] Rafael J. Wysocki. 2007. Freezing of Tasks. Retrieved from https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/

Documentation/power/freezing-of-tasks.txt?h=v3.10.

[36] Lei Xue, Xiapu Luo, Le Yu, Shuai Wang, and Dinghao Wu. 2017. Adaptive unpacking of Android apps. In Proceedings of the International

Conference on Software Engineering. IEEE, 358–369.

[37] Lei Xue, Yajin Zhou, Ting Chen, Xiapu Luo, and Guofei Gu. 2017. Malton: Towards on-device non-invasive mobile malware analysis

for ART. In Proceedings of the USENIX Security Symposium. USENIX, 289–306.

[38] Lok-Kwong Yan and Heng Yin. 2012. DroidScope: Seamlessly reconstructing the OS and dalvik semantic views for dynamic android

malware analysis. In Proceedings of the USENIX Security Symposium. USENIX, 569–584.

[39] Wenbo Yang, Yuanyuan Zhang, Juanru Li, Junliang Shu, Bodong Li, Wenjun Hu, and Dawu Gu. 2015. Appspear: Bytecode decrypting and

dex reassembling for packed android malware. In Proceedings of the International Symposium on Recent Advances in Intrusion Detection.

Springer, 359–381.

[40] Yueqian Zhang, Xiapu Luo, and Haoyang Yin. 2015. Dexhunter: Toward extracting hidden code from packed android applications. In

Proceedings of the European Symposium on Research in Computer Security. Springer, 293–311.

Received 23 April 2022; revised 19 September 2022; accepted 26 January 2023

Digital Threats: Research and Practice, Vol. 4, No. 2, Article 30. Publication date: August 2023.

https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/Documentation/power/freezing-of-tasks.txt?h=v3.10

