

Общероссийский математический портал

А. Наджафизаде, А. М. Агдам, Ф. Карими, Об идеалах колец без кручения ранга 1 и 2, Mamem. заметки, 2012, том 91, выпуск 3, 432–439

DOI: https://doi.org/10.4213/mzm9317

Использование Общероссийского математического портала Math-Net.Ru подразумевает, что вы прочитали и согласны с пользовательским соглашением http://www.mathnet.ru/rus/agreement

Параметры загрузки:

IP: 106.51.226.7

9 августа 2022 г., 19:03:09

Математические заметки

Том 91 выпуск 3 март 2012

УДК 512.522.12

Об идеалах колец без кручения ранга 1 и 2

А. Наджафизаде, А. М. Агдам, Ф. Карими

Пусть A — абелева группа без кручения ранга 1 или 2. Получены необходимые и достаточные условия на множество типов группы A, при которых подгруппа группы A является идеалом в любом кольце с аддитивной группой A. Библиография: 6 названий.

- 1. Введение. Здесь рассматриваются только абелевы группы с операцией сложения. Для данной абелевой группы A мы называем R кольцом над A, если группа A изоморфна аддитивной группе кольца R. В такой ситуации мы пишем R = (A, *), где * обозначает умножение в кольце. Это умножение не предполагается ассоциативным. Каждую группу можно превратить в кольцо тривиальным образом, полагая все произведения равными нулю; такое кольцо называется ny-кольцом. Если это единственное умножение над группой A, то мы называем A nu-группой. Фред [1] охарактеризовал подгруппы абелевой группы, которые являются идеалами в любом кольце. Страттон [2] изучил множество типов абелевой группы без кручения ранга 2, на которой существует нетривиальная структура кольца, и классифицировал все возможные множества типов таких групп. Агдам [3] использовал классификацию Страттона, чтобы описать кольца над группами без кручения ранга 2. Мы используем множество типов и кольца над абелевой группой без кручения ранга 2 4 для характеризации подгрупп группы 4, которые являются идеалами в каждом кольце над 4.
- **2.** Обозначения и предварительные сведения. Пусть A абелева группа без кручения. Для данного простого числа p $h_p^A(x)$ обозначает p-высоту элемента x, т.е. наибольшее целое k, для которого p^k делит x в группе A; если такого максимального целого нет, то мы полагаем $h_p^A(x) = \infty$. Пусть p_1, p_2, \ldots возрастающая последовательность всех простых чисел. Тогда последовательность

$$\chi_A(x) = (h_{p_1}^A(x), h_{p_2}^A(x), \dots, h_{p_n}^A(x), \dots)$$

называется последовательностью высот элемента x. Мы не пишем индекс A, когда ясно, о какой группе идет речь. Для любых двух последовательностей высот $\chi = (k_1, k_2, \ldots, k_n, \ldots)$ и $\mu = (l_1, l_2, \ldots, l_n, \ldots)$ мы полагаем $\chi \geqslant \mu$, если $k_n \geqslant l_n$ для всех n. Последовательности χ и μ считаются эквивалентными, если сумма $\sum_n |k_n - l_n|$ конечна (мы считаем, что $\infty - \infty = 0$). Класс эквивалентности последовательности высот называется munom. Если $\chi(x)$ принадлежит типу \mathbf{t} , то мы

говорим, что элемент x имеет тип \mathbf{t} . Произведение двух последовательностей высот $\chi=(k_1,k_2,\ldots,k_n,\ldots)$ и $\chi_1=(l_1,l_2,\ldots,l_n,\ldots)$ определяется как

$$\chi \chi_1 = (k_1 + l_1, k_2 + l_2, \dots, k_n + l_n, \dots),$$

где ∞ плюс что угодно, естественно, считается равным ∞ . Последовательность высот χ идемпотентна (т.е. $\chi^2=\chi$), в точности когда для любого n либо $k_n=0$, либо $k_n=\infty$. Умножение согласовано с определенным выше отношением эквивалентности, поэтому можно говорить о произведении tt_1 типов t и t_1 и об идемпотентных типах ($t^2=t$). Для двух типов t_1 и t_2 мы пишем $t_1\leqslant t_2$, если существуют последовательности высот $\chi\in t_1$ и $\mu\in t_2$, для которых $\chi\leqslant \mu$. Через T(A) мы обозначаем частично упорядоченное множество типов $t(x), x\in A\setminus 0$. Группа без кручения A, в которой все ненулевые элементы имеют один и тот же тип t, называется $\partial nopo\partial nou$. Например, любая группа A ранга 1 однородна. Мы используем обозначение t(A) для множества типов группы A ранга 1, которое содержит единственный элемент – тип любого ненулевого элемента группы A. Кроме того, для любого типа $t\in T(A)$ мы определяем вполне инвариантную чистую подгруппу A(t) группы A как

$$A(t) = \{ a \in A \mid t(a) \geqslant t \}.$$

Наконец, чистую подгруппу группы A, порожденную элементом x, мы обозначаем через $\langle x \rangle_*$. (В [4; с. 109] указано, где можно найти основные факты о типах, а также определения понятий, которые не были определены выше.)

ТЕОРЕМА 2.1. Пусть A – группа ранга 2 без кручения. Если A не является ниль-группой, то множество T(A) содержит не более трех элементов, причем среди них есть единственный минимальный элемент.

Доказательство. См. [2; теорема 3.3].

Наши рассуждения в основном основываются на рассмотрении следующих случаев, которые, как вытекает из доказательства теоремы 2.1, исчерпывают все возможности для множеств типов абелевой группы без кручения, не являющейся ниль-группой:

- (а) один тип, причем этот тип обязан быть идемпотентным;
- (b) два типа, причем один из них минимален, а другой максимален;
- (c) три типа, причем один из этих типов минимален, а два других максимальны; в этом случае один из максимальных типов обязан быть идемпотентным.

В заключение этого пункта мы докажем две теоремы, которые дают примеры колец над группами без кручения ранга 2 с множеством типов мощности 2.

ТЕОРЕМА 2.2. Пусть A – группа без кручения ранга 2 и $T(A) = \{t_1, t_2\}$, причем $t_1 < t_2$. Предположим, что $x, y \in A$, $t(x) = t_1$ и $t(y) = t_2$. Тогда

- (1) xy = cy, yx = dy и $y^2 = ey$ для некоторых $c, d, e \in \mathbb{Q}$;
- (2) если $t_1^2 \neq t_1$, то $x^2 = by$ для некоторого $b \in \mathbb{Q}$;
- (3) $ecnu \ t_2^2 \neq t_2, mo \ y^2 = 0;$
- (4) $ecnu t_1t_2 > t_2$, mo xy = yx = 0.

Доказательство. 1) Из предположения $t_1 < t_2$ вытекает, что $t(xy) \geqslant t(y) = t_2$, поэтому xy и y принадлежат подгруппе $A(t_2)$, которая является подгруппой ранга 1

в группе A. Следовательно, элементы xy и y зависимы. Это означает, что xy=cy для некоторого $c\in\mathbb{Q}$. Из тех же соображений вытекает, что xy=dy и $y^2=ey$ для некоторых $b,c\in\mathbb{Q}$.

- 2) Ясно, что $t(x^2) > t(x) = t_1$, поскольку $t_1^2 \neq t_1$. Из того, что $T(A) = \{t_1, t_2\}$, вытекает равенство $t(x^2) = t_2$. Значит, $x^2 \in A(t_2)$. Таким образом, $x^2 = by$ для некоторого $b \in \mathbb{Q}$.
- 3) Если тип t_2 не идемпотентен, то $t(y^2) > t(y) = t_2$. Следовательно, $t(y^2) \notin T(A)$, откуда получаем $y^2 = 0$.
- 4) Имеем $t(xy) \geqslant t(x)t(y) = t_1t_2 > t_2$; значит, $t(xy) \notin T(A)$, т.е. xy = 0. Аналогично получаем yx = 0.

ТЕОРЕМА 2.3. Пусть A – неразложимая группа без кручения ранга 2, и пусть $T(A) = \{t_1, t_2\}$, причем $t_1 < t_2$. Если $\{x, y\}$ – независимое множество, для которого $t(x) = t_1$ и $t(y) = t_2$, то во всех нетривиальных кольцах над A выполнены соотношения $x^2 = by$ и $xy = yx = y^2 = 0$ для некоторого рационального числа b.

Доказательство. См. [3; лемма 3].

3. Идеалы колец без кручения ранга 1. В этом пункте приводится необходимое и достаточное условие, при котором подгруппа группы без кручения ранга 1 является идеалом в любом кольце. Хорошо известно, что две группы без кручения ранга 1 A и B имеют одинаковый тип тогда и только тогда, когда они квазиизоморфны, т.е. существует элемент $r \in \mathbb{Q}$, для которого A = rB. Пусть A – абелева группа и E(A) – кольцо эндоморфизмов группы A. Положим

$$I(A) = \langle \varphi(A) \mid \varphi \in \text{Hom}(A, E(A)) \rangle;$$

иными словами, пусть $\mathrm{I}(A)$ – подгруппа в E(A), порожденная всеми гомоморфными образами группы A в кольце E(A). Ясно, что $\mathrm{I}(A)$ является идеалом в E(A). Ядро группы A, обозначаемое через N(A), определяется как

$$N(A) = \{ \alpha \in \mathbb{Q} \mid \alpha.x \in A$$
 для всех $x \in A \}.$

Мы обобщаем это определение на произвольную подгруппу C группы A следующим образом:

$$N(C) = \{ \alpha \in \mathbb{Q} \mid \alpha.x \in C \text{ для всех } x \in C \}.$$

ТЕОРЕМА 3.1. Подгруппа C группы A является идеалом в любом кольце над A, если и только если подгруппа C I(A)-допустима, т.е. I(A). $C \leq C$.

Доказательство. См. [4; теорема 117.2].

ТЕОРЕМА 3.2. Кольцо без кручения ранга 1 либо является нулевым кольцом, либо изоморфно подкольцу поля рациональных чисел. Группа без кручения ранга 1 не является ниль-группой, если и только если ее тип идемпотентен.

Доказательство. См. [4; теорема 121.1].

ПРЕДЛОЖЕНИЕ 3.3. Пусть A – группа без кручения ранга 1 и C – ее подгруппа. Тогда C является идеалом в любом кольце над A, если и только если $\mathrm{I}(A)\subseteq N(C)$.

Доказательство. (\Rightarrow) Если подгруппа C является идеалом в любом кольце над A, то по теореме 3.1 имеем $I(A).C \leqslant C$. Поскольку A – группа ранга 1, она изоморфна подгруппе поля $\mathbb Q$; значит, I(A) – подкольцо поля $\mathbb Q$. Следовательно, из $I(A).C \leqslant C$ вытекает, что $r.c \in C$ для всех $c \in C$ и всех $r \in I(A)$, а это означает, что $r \in N(C)$.

 (\Leftarrow) Необходимость очевидна. Действительно, $I(A)C\subseteq N(C)C\subseteq C$.

ТЕОРЕМА 3.4. Пусть A – группа без кручения ранга 1, над которой определено ненулевое кольцо R, и пусть C – произвольная подгруппа группы A. Тогда C является идеалом в R, если и только если C = rR для некоторого $r \in R$.

Доказательство. (\Rightarrow) Из предположения, что A не является ниль-группой, и теоремы 3.2 вытекает, что

$$t(A) = (k_1, k_2, \dots),$$

где $k_i = 0$ или ∞ . Если C – идеал в кольце R и $t(C) = (l_1, \ldots, l_j, \ldots)$, то $C.R \leqslant C$, откуда $t(C.R) \leqslant t(C)$. С другой стороны, имеем

$$t(C) \leqslant t(C)t(R) \leqslant t(CR) \leqslant t(C);$$

значит, t(C) = t(C).t(R), а это означает, что

$$l_i = l_i + k_i. (3.1)$$

Но t(A) – идемпотент; следовательно, из (3.1) получаем $l_i = k_i$, откуда вытекает, что t(C) = t(R). Поскольку подгруппа C и кольцо R имеют ранг 1, имеем $C \cong R$; значит, C = rR для некоторого $r \in R$.

- (\Leftarrow) Если C = rR, то, очевидно, C является идеалом в R.
- **4.** Идеалы колец без кручения ранга 2. Напомним некоторые определения из [5]. Пусть $\{x,y\}$ независимое множество в группе без кручения A ранга 2. Каждый элемент w группы A можно единственным образом представить как w=ux+vy, где u и v рациональные числа. Пусть

$$U_0 = \{u_0 \in \mathbb{Q} : u_0 x \in A\}, \qquad U = \{u \in \mathbb{Q} : ux + vy \in A \text{ для некоторого } v \in \mathbb{Q}\},$$

$$V_0 = \{v_0 \in \mathbb{Q} : v_0 y \in A\}, \qquad V = \{v \in \mathbb{Q} : ux + vy \in A \text{ для некоторого } u \in \mathbb{Q}\}.$$

Тогда U_0 и V_0 — подгруппы групп U и V соответственно. Группы U, U_0 , V и V_0 называются группами ранга 1, индуцированными независимым множеством $\{x,y\}$. Мы обобщаем эти определения на произвольную подгруппу C группы A следующим образом:

$$U_0^C = \{u_0 \in \mathbb{Q} : u_0 x \in C\}, \qquad U^C = \{u \in \mathbb{Q} : ux + vy \in C \text{ для некоторого } v \in \mathbb{Q}\},$$
 $V_0^C = \{v_0 \in \mathbb{Q} : v_0 y \in C\}, \qquad V^C = \{v \in \mathbb{Q} : ux + vy \in C \text{ для некоторого } u \in \mathbb{Q}\}.$

Ясно, что $U_0^A=U_0,\,V_0^A=V_0,\,U^A=U$ и $V^A=V.$ Для любых двух подгрупп R и S поля $\mathbb Q$ мы полагаем

$$Rx\dotplus Sy=\{rx+sy\in A:r\in R,\,s\in S\}.$$

Наконец, мы говорим, что собственная подгруппа C группы A является cunbhoй nunb-nodepynnoй группы A, если для любого кольца (A,.) над A и для любых элементов $a \in A$ и $c \in C$ выполнено условие a.c = c.a = 0. Подгруппа C является сильной нениль-подгруппой группы A, если она не является сильной ниль-подгруппой.

ТЕОРЕМА 4.1. Пусть A – группа без кручения ранга 2 и $T(A) = \{t_0, t_1, t_2\}$, где $t_0 < t_1$ и $t_0 < t_2$. Предположим, что $x, y \in A$, $t(x) = t_1$ и $t(y) = t_2$. Тогда если $t_1^2 = t_1$ и $t_2^2 \neq t_2$, то $x^2 = ax$ и $y^2 = xy = yx = 0$ для некоторого рационального a.

Доказательство. См. [6; лемма 3].

В теореме 4.2 мы используем подгруппу

$$T = \{r \in \mathbb{Q} : x^2 = rx, y^2 = xy = yx = 0 \text{ определяют кольцо над } A\}$$

группы U_0 .

Теорема 4.2. Пусть A – группа без кручения ранга $2\ u$

$$T(A) = \{t_0, t_1, t_2\}, \quad \text{ide} \quad t_0 < t_1, \quad t_0 < t_2, \quad t_1^2 = t_1, \quad t_2^2 \neq t_2.$$

Предположим, что $x, y \in A$, $t(x) = t_1$ и $t(y) = t_2$. Тогда подгруппа C группы A является идеалом в каждом кольце над A, если и только если

$$TUU^C \subseteq U_0^C$$
.

В частности, если подгруппа C ранга 1 является идеалом в каждом кольце над A, то она представляет собой сильную нениль- или сильную ниль-подгруппу в A тогда и только тогда, когда $C = U_0^C(nx)$ для некоторого ненулевого целого n или, соответственно, $C \leq V_0 y$.

Доказательство. Пусть C – подгруппа группы A. Тогда для любых

$$\varphi \in \text{Hom}(A, \text{End}(A)), \quad a = ux + vy \in A, \quad c = \alpha x + \beta y \in C$$

имеем

$$(\varphi a)(c) = a.c.$$

С другой стороны, из теоремы 4.1 вытекает, что $a.c = ru\alpha x$ для некоторого $r \in T$; значит, $I(A).C = TUU^Cx$. Первое утверждение теоремы теперь следует из предложения 3.3.

Предположим, что C – подгруппа ранга 1 в группе A, которая является идеалом в любом кольце над A. Предположим также, что C является сильной нениль-подгруппой. По теореме 4.1 в любом кольце над A выполнены соотношения

$$x^2 = rx \qquad \text{if} \qquad y^2 = xy = yx = 0$$

для некоторого $r \in T$. С другой стороны, при доказательстве теоремы 121.1 в [4] определен элемент $c \in C$, удовлетворяющий условию $c^2 = mc$ для некоторого ненулевого $m \in \mathbb{Z}$. Пусть $c = \alpha x + \beta y$ для рациональных α и β ; тогда $c^2 = \alpha^2 rx$. Следовательно, $\alpha^2 rx = m\alpha x + m\beta y$, откуда получаем $\beta = 0$ и $m = \alpha r$. Значит,

 $c=\alpha x\in C$. Мы заключаем, что существует целое l, для которого $lx\in C$; следовательно, $C=U_0^C(nx)$ для некоторого ненулевого целого n. Наконец, предположим, что C является сильной ниль-подгруппой. Возьмем произвольный элемент $c=\alpha x+\beta y$ подгруппы C. Если $\alpha\neq 0$, то $0=cx=\alpha rx$ для некоторого $r\in T$, откуда $0=\alpha r$. Это выполнено для всех колец над A; значит, $\alpha=0$ — мы пришли к желаемому противоречию. Следовательно, C является подгруппой группы V_0y .

ТЕОРЕМА 4.3. Пусть A – группа без кручения ранга 2 и $T(A) = \{t_0, t_1, t_2\}$, где $t_0 < t_1$ и $t_0 < t_2$. Предположим, что $x, y \in A$, $t(x) = t_1$ и $t(y) = t_2$. Если $t_1^2 = t_1$ и $t_2^2 = t_2$, то $x^2 = ax$, $y^2 = by$ и xy = yx = 0 для некоторых рациональных чисел a и b, не равных нулю одновременно.

Доказательство. См. [3; предложение 9].

В дальнейшем нам понадобятся следующие подгруппы T и S групп U_0 и V_0 соответственно:

$$T=\{r\in\mathbb{Q}:x^2=rx,\,y^2=sy,\,xy=yx=0$$
для некоторой кольцевой структуры на A и некоторого $s\in\mathbb{Q}\},$
$$S=\{s\in\mathbb{Q}:x^2=rx,\,y^2=sy,\,xy=yx=0$$
для некоторой кольцевой структуры на A и некоторого $r\in\mathbb{Q}\}.$

Теорема 4.4. Пусть A – группа без кручения ранга $2\ u$

$$T(A) = \{t_0, t_1, t_2\}, \quad \text{ide} \quad t_0 < t_1, \quad t_0 < t_2, \quad t_1^2 = t_1, \quad t_2^2 = t_2.$$

Пусть $x,y \in A$, где $t(x) = t_1$ и $t(y) = t_2$. Тогда подгруппа C группы A является идеалом в любом кольце над A, если и только если

$$TUU^C \subseteq U^C \qquad u \qquad SVV^C \subseteq V^C.$$

В частности, подгруппа C ранга 1, которая является идеалом в любом кольце над A, представляет собой сильную нениль-подгруппу и $C=U_0^C(nx)$ или $V_0^C(my)$ для некоторых целых m и n.

Доказательство. Пусть C – подгруппа в A. Тогда для любых

$$\varphi \in \text{Hom}(A, \text{End}(A)), \qquad a = ux + vy \in A, \quad c = \alpha x + \beta y \in C$$

имеем

$$(\varphi a)(c) = a.c = u\alpha rx + v\beta sy,$$
 где $r \in T$, $s \in S$.

Следовательно,

$$I(A).C = TUU^C x \dotplus SVV^C y.$$

Теперь первое утверждение вытекает из предложения 3.3.

Пусть C — подгруппа ранга 1 группы A, которая является идеалом в любом кольце над A. Рассуждая от противного, предположим, что C является сильной ниль-подгруппой. Пусть R — произвольное кольцо над A. Тогда $x^2=rx,\ y^2=sy$ и xy=yx=0 ля некоторых $r,s\in\mathbb{Q}$. С другой стороны, для произвольного элемента $c=\alpha x+\beta y$ подгруппы C имеем $c^2=0=\alpha^2 rx+\beta^2 sy$, откуда вытекает,

что $\alpha^2r=\beta^2s=0$. Это условие выполнено в любом кольце над A, т.е. для любых $r\in T$ и $s\in S$; следовательно, $\alpha=\beta=0$, а значит, C=0. Мы получили противоречие, которое доказывает, что C является сильной ниль-подгруппой в A. Если $c=\alpha x+\beta y\in C$, где $\alpha\neq 0$ и $\beta\neq 0$, то $xc=\alpha rx\in C$ и $yc=\beta sy\in C$. Отсюда вытекает, что все ненулевые кратные элементов x и y лежат в C. Поэтому C имеет ранг 2, а это противоречит предположению, что C – подгруппа ранга 1. Мы заключаем, что $\alpha=0$ или $\beta=0$. Из тех же соображений, что и в доказательстве теоремы 4.2, имеем $C=U_0^C(nx)$ или $C=V_0^C(my)$ для некоторых целых m и n.

Пусть A — неразложимая группа без кручения ранга 2 и $T(A) = \{t_1, t_2\}$, где $t_1 < t_2$. Если $\{x,y\}$ — независимое множество, причем $t(x) = t_1$ и $t(y) = t_2$, то по теореме 2.3 во всех нетривиальных кольцах над A выполнены соотношения $x^2 = by$ и $xy = yx = y^2 = 0$ для некоторого рационального числа b. Во втором случае определим такую подгруппу группы V_0 :

$$W = \{r \in \mathbb{Q} \mid x^2 = ry, y^2 = xy = yx = 0 \text{ определяют кольцо над } A\}.$$

ТЕОРЕМА 4.5. Пусть A – неразложимая группа без кручения ранга 2 и $T(A) = \{t_1, t_2\}$, где $t_1 < t_2$. Предположим, что $\{x, y\}$ – независимое множество, причем $t(x) = t_1$ и $t(y) = t_2$. Тогда произвольная подгруппа C группы A является идеалом в любом кольце над A, если и только если

$$WUU^C \subseteq V_0^C$$
.

Более того, если подгруппа группы A имеет ранг 1 и является идеалом в любом кольце над A, то она представляет собой сильную ниль-подгруппу и является подгруппой в V_0y .

Доказательство. Пусть C – подгруппа группы A. По теореме 2.3 для любых $\varphi \in \operatorname{Hom}(A,\operatorname{End}(A)), \ a = ux + vy \in A$ и $c = \alpha x + \beta y \in C$ имеем $(\varphi a)(c) = \alpha uby$ для некоторого $b \in W$. Это означает, что $\operatorname{I}(A).C = WUU^Cy$; таким образом, первое утверждение вытекает из предложения 3.3.

Предположим, что C — подгруппа группы A и C является идеалом в любом кольце над A. Рассуждая от противного, предположим, что C является сильной нениль-подгруппой. Если R — ненулевое кольцо над A, то найдется элемент $b \in W$, для которого $x^2 = by$ и $xy = yx = y^2 = 0$. Те же рассуждения, что и в доказательстве теоремы 4.2, доказывают, что C содержит ненулевой элемент $c = \alpha x + \beta y$, для которого $c^2 = mc$ при некотором ненулевом целом m. По предположению имеем $0 = c^2 = m\alpha x + m\beta y$, откуда $\alpha = \beta = 0$. Следовательно, C = 0. Мы получили противоречие. Отсюда уже легко вывести требуемое утверждение.

Авторы искренне признательны рецензенту за внимательное чтение статьи и ряд полезных замечаний, которые значительно улучшили первоначальную версию.

СПИСОК ЦИТИРОВАННОЙ ЛИТЕРАТУРЫ

- [1] E. Fried, "On the subgroups of an abelian group that are ideals in every ring", *Proc. Colloq. Abelian Groups*, Akadémiai Kiadó, Budapest, 1964, 51–55.
- [2] A. E. Stratton, "The type set of torsion-free rings of finite rank", Comment. Math. Univ. St. Paul., 27 (1979), 199–211.

- [3] A. M. Aghdam, "On the strong nilstufe of rank two torsion free groups", *Acta Sci. Math.* (Szeged), 49:1-4 (1985), 53-61.
- [4] L. Fuchs, Infinite Abelian Groups, Vol. II, Pure Appl. Math., 36-II, Academic Press, New York, 1973.
- [5] R. A. Beaumont, R. J. Wisner, "Rings with additive group which is a torsion-free group of rank two", *Acta Sci. Math.* (*Szeged*), **20** (1959), 105–116.
- [6] A. M. Aghdam, A. Najafizadeh, "Square subgroups of rank two abelian groups", Collog. Math., 117:1 (2009), 19–28.

А. Наджафизаде

University of Tabriz, Иран

E-mail: ar_najafizadeh@yahoo.com

Поступило 15.03.2011 Исправленный вариант

01.05.2011

А. М. Агдам

University of Tabriz, Иран

 $E ext{-}mail: mehdizadeh@tabrizu.ac.ir}$

Ф. Карими

University of Tabriz, Иран E-mail: karimi@tabrizu.ac.ir