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Obesity and insulin resistance: lessons learned from the Pima Indians Obesity and insulin resistance: lessons learned from the Pima Indians 

Abstract Abstract 
Diabetes and obesity are epidemic in the Pima Indians of the Southwestern United States, and the 
prevalence of diabetes is increasing. The most likely link between obesity and diabetes is tissue insulin 
resistance. If obesity is defined as an excess of body fat, then it can only be accurately assessed by 
measurements of body composition and not by approximations such as body mass index or percent of 
ideal weight. To compare the metabolic data of individuals of varying size, an accurate measure of 
metabolic size is needed. Total body weight is not an appropriate means of comparing individuals since 
obese subjects have a greater proportion of nonmetabolizing mass (triglyceride). Body surface area 
shows a sex difference, and this may distort data if both sexes are present. From studies of metabolic 
rate we have determined that metabolic rate is indirectly proportional to the fat-free mass plus 18 kg, and 
we suggest that this weight can be equated with metabolic size. Glucose storage in skeletal muscle 
appears to be important in the disposal of an intravenous glucose load. Consistent with its role in 
glycogen storage, glycogen synthase enzyme is activated in proportion to the ability to dispose of glucose 
during a hyperinsulinemic, euglycemic clamp. The role of glycogen synthase is most notable at 
supraphysiological plasma insulin concentrations; and since glucose uptake at these insulin 
concentrations is highly familial independent of the degree of obesity, we suggest that there may be a 
specific genetic defect expressed in skeletal muscle that reduces insulin responsiveness in some 
subjects. The lack of correlation between 24 hour respiratory quotient measured in a metabolic chamber 
(a measure of the proportion of fat derived calories) and degree of obesity indicates that in obese Pima 
Indians insulin resistance is not due to an inhibition of glucose metabolism by free fatty acids (glucose-
fatty acid-ketone cycle). Obesity is associated with an increase in fat-free mass almost kilogram- for 
kilogram with fat mass when compared to the lean state. A role for this increase in fat-free tissue in 
producing insulin resistance has been given insufficient attention in the past. With an increase in fat-free 
mass, muscle cells are hypertrophied and capillaries in muscle are more widely spaced. We propose that 
these biophysical changes in muscle mediate, at least in part, the effects of obesity to produce a 
reduction in insulin sensitivity and the abnormal kinetics of insulin action found in the obese. We suggest 
therefore that insulin resistance is a combination of a genetic defect and obesity-induced changes in the 
biophysical properties of skeletal muscle. These defects may in turn lead to the development of non-
insulin-dependent diabetes mellitus. 
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Obesity and Insulin Resistance: Lessons Learned from the 

Pima Indians 

S. Lillioja and C. Bogardus zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Clinical Diabetes and Nutrition Section, National Institute zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof Diabetes and Digestive and Kidney 

Diseases, National Institutes of Health, Phoenix, Arizona zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA85016 

I. INTRODUCTION 

Obesity is so frequently a feature of persons 
with non-insulin-dependent diabetes mellitus that 
Ethan A. H. Sims coined the team diabesity to 
describe this increasingly occurring syndrome. 
The reasons for the association of these two meta- 
bolic disorders are not fully known, but it is 
hypothesized to be a result of the association of 
obesity with insulin resistance, which is a common 
finding in subjects with non-insulin-dependent 
diabetes mellitus. In this brief report we will re- 
view data from studies performed with the cooper- 
ation of the Pima Indians of the Gila River Indian 
Community that are relevant to an increased un- 
derstanding of the relationship of obesity and 
insulin resistance. 

11. BACKGROUND AND EPIDEMIOLOGIC 
STUDIES 

The Pima Indians are a relatively genetically 
homogeneous population' whose ancestors have 
lived in the same arid environment in central 
Arizona for about 2,000 years. The current study 
population consists of over 4,000 individuals who 
are at least one-half Pima heritage, are at least 5 
years of age, and reside on the Gila River Indian 
Reservation. They are examined every 2 years and 
the examination includes an oral glucose tolerance 
test (75 grams). Diabetes mellitus is diagnosed 
according to the 1985 WHO criteria' at a survey 
examination or in the course of routine medical 
care. The diabetes in the Pima is not ketosis-prone, 
not associated with islet-cell antibodies, and is 
therefore, even in the young, entirely non-insulin- 
dependent diabetes me l l i t ~s .~ ,~  As late as 1940, 
only 21 Pima Indians were identified with diabetes 

DiabetesiMetabolism Reviews, Vol. 4, No. 5, 517-540 (1988) 
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and it was concluded that diabetes prevalence was 
similar in American Indians and the general popu- 
l a t i ~ n . ~  Only since the 1950s has diabetes been 
reported as an unusually frequent disease among 
the Pimas.6 By the 1970s, 40% of the males aged 
45-74 years and 68% of the females aged 55-64 
years had diabetes (Figure l),' and between then 
and 1980 the prevalence rates continued to in- 
crease. In the mid-1970s the diabetes incidence 
rate, age- and sex-adjusted to the 1970 U.S. Cau- 
casian population, was 26.5 * 1.9 cases/per 1,000 
person-years (rate ? S.E.), 19 times the rate in 
Rochester, Minne~ota.~ The incidence rates in- 
creased further by the mid-l980s.* 

The Pimas are also commonly obese. The 
mean body mass indices-weight (kg) divided by 
height (mete?)-of males and females exceed 
those of the U.S. population at all ages (Figure 2).9 
Longitudinal studies showed that the incidence of 
diabetes increases with increasing body mass in- 
dex.' This observation was essential in demon- 
strating the pathophysiologic relevance of the high 
prevalence of obesity to the high prevalence of 
diabetes. 

However, obesity is not the only risk factor for 
the development of diabetes mellitus among the 
Pimas. There are Pimas who are obese and do not 
have diabetes. Obesity is therefore not a sufficient 
abnormality to cause diabetes. Other risk factors 
for the development of diabetes among the Pimas, 
independent of degree of obesity, include duration 
of obesity," and parental diabetes status (Figure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
3).9 The mechanisms of the association of obesity 
duration and parental diabetes with increased risk 
of diabetes are currently unknown, but insulin 
resistance has been hypothesized as the mecha- 
nism of the association of obesity with an in- 
creased risk of diabetes. 

CCC 0742-4221/88/050517-24$04.00 



518 OBESITY AND INSULIN RESISTANCE IN PIMAS zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
70 

60 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
50 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
40 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
30 

20 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
10 

0 

% 

I I I I I I 

5-14 15-24 25-34 35-44 45-54 55-64 65-74 75-84 

Age (years) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Figure 1, Prevalence of DM in Pima Indians (from Knowler et a17). 

111. RELATIONSHIP BETWEEN OBESITY AND 
INSULIN RESISTANCE 

Obesity has frequently been associated with 
insulin resistance,”-14 but few investigators have 
carefully examined the relationship of degree of 
obesity with insulin resistance in a large number of 
subjects representing a broad range of body com- 
position. A major, and infrequently discussed, 
problem in such studies of obesity and insulin 
action is how to appropriately estimate degree of 
obesity, and, equally important, how to compare 
rates of insulin-mediated glucose disposal among 
subjects of different body sizes. In the past zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 years 
we have addressed these issues as part of our 
metabolic studies of the Pimas. 

A. Estimating Degrees of Obesity 

The word ”obesity” is derived from Latin, 
ob-over and edere-to eat. It is defined as an excess 
of body fat. How much excess of body fat mass is 
sufficient to label someone obese is arguable since 
it requires an arbitrary limit, or cut-off point, of a 

continuously distributed variable. Also, the defi- 
nition of excess body fat necessitates expressing 
degree of obesity in relative rather than absolute 
terms. For example, a Y-fOOt, 100-kg male with a 
15-kg fat mass (15% body fat) is leaner than a 
4-foot, 50-kg female with a similar absolute body 
fat mass (30% body fat). Degree of obesity is 
therefore expressed as a fraction or percentage of 
the body mass that is fat. There are many methods 
available to assess percent body fat, including: 
densitometry underwater weighing, water dilu- 
tion, total body K’, impedance, etc. Many, but not 
all, of these methods require specialized and/or 
expensive equipment. Densitometry is a method 
readily available to most hospital-based investiga- 
tors. Subjects can be weighed underwater in the 
physical therapist’s water immersion tank, and 
residual lung volume can be measured in the 
pulmonary lab. It is preferable to measure the 
residual lung volume while the subject is im- 
mersed in water-but if this is not possible, cor- 
rection can be made to the residual lung volume 
measured in air-with small error. 
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Figure 2. Prevalence of obesity (from Knowler et a17). zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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Figure 3. Incidence of DM by BMI and parental diabetes in Pima Indians (from Knowler et a19). 
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Table 1. Subject Characteristics 

Males (n zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 117) Females (n = 96) 

Mean * S.E. Range Mean zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt- S.E. Range 

Age (yrs) 
Height (cm) 
Weight (kg) 
Surface area (m') 
Body mass index (kg/m2) 
Body fat (%) 
Fat-free body mass (kg) 
Waist circumference (inches) 
Thigh circumference (inches) 
WaisVthigh 
Fasting glucose (mg/dl) 
2-hr post-load glucose (mg/dl) 
Fasting plasma insulin (uU/dl) 
2-hr uost-load insulin (uU/ml) 

26 * 1 
1.71 t- 0.45 
98.2 t- 25 
2.08 * 0.02 
33.7 * 0.8 

28 * 1 
68.2 t- 1.0 
42.2 * 0.7 
25.6 * 0.3 
1.64 ? 0.02 

92 ? 1 
119 ? 2 
33 * 2 

181 * 16 

18-39 
1.60-1.82 
50.3-188.1 
1.52-2.78 
19.2-64.3 

9 4 8  
44.3-101.0 
25.6-60.0 
17. a36.5  
1.27-2.08 

73-126 
&188 

20-1191 
9-90 

26 * 1 
1.59 t- 0.51 
88.9 t- 2.0 
1.90 ? 0.02 
35.0 * 0.8 

39 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 1 
53.6 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 0.9 
42.0 t 0.7 
26.5 2 0.4 
1.59 ? 0.02 

94 " 1 
136 ? 3 
4 4 t 2  

246 t 15 

18-41 

47.9-131.5 
1.45-2.35 

2G51 
34.8-76.3 
28.4-59.0 
17.5-35.0 
1.24-2.11 
77-119 
71-199 
11-113 
31-816 

i . 4 a i .  70 

19.1-50.4 

uU = microunits zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBApu. 

Unfortunately, many investigators estimate 
percent body fat from measures of body weight 
and height, rather than trying to directly assess 
body composition. One of the most commonly 
used estimates of percent body fat is the body 
mass index, or BMI. It is calculated as the body 
weight (in kg) divided by height (in meters) 
squared. It was first used by Quetelet over 100 
years ago. However, he did not use BMI to es- 
timate degree of obesity. As reviewed by Keys et 
al.,I5 Quetelet simply noted that weight/height* 
was more constant than W/H or W/H3 with in- 
creasing height. 

Keys et aI.l5 were the first to coin the term 
body mass index and to assess its utility as an 
estimate of percent body fat. Keys and co-workers 
assumed that a good index of percent body fat 
should be independent of height-and BMI was. 
They then assessed the correlation of BMI with 
percent body fat as determined by densitometry. 

The studies were performed on 180 college- 
aged males (aged 18-24) and an older group of 249 
"executive" males (aged 49-59) in Minnesota. In 
the younger group, body density significantly cor- 
related with BMI zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(Y = -0.850), as it did in the older 
group ( r  = -0.666). BMI therefore satisfied the 
authors' criteria for a good index of percent body 
fat: It was independent of height and correlated 
significantly with percent body fat by den- 
sitometry. It was the preferred index since it also 
was better correlated with body density than W/H 
and W/H3. However, Keys was careful to point out 
that BMI was not significantly better correlated 
with body density than body weight. In the stu- 
dents, the correlation coefficient between body 
density and body weight was -0.777 (as compared 

to -0.850 for BMI); and in the executive men was 
-0.618 (as compared to -0.666). 

We have also examined the relationships be- 
tween BMI, body weight, and percent body fat by 
densitometry among nondiabetic Pima males and 
also among nondiabetic Pima females (Table I) 
(Figures 5 and 6). The relationship of fat mass and 
fat-free mass in a group of nondiabetic Pimas is 
also shown (Figure 4). Fat mass and fat-free mass 
both increase in obesity. It is apparent from Figure 
5 that the relationship between BMI and percent 
body fat is not linear, as previously discussed by 
Garrow.16 (This is confirmed statistically since in 
the linear regression model the coefficient of the 
quadratic term is significant, independent of the 
coefficient of the linear function.) At the same 
BMI, women, on average, have a -10% greater 
percentage of body fat compared to men. Among 
men, the linear correlation between percent body 
fat and BMI was 0.88 ( p  < 0.0001)-quite similar to 
the correlation observed by Keys et zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAal.I5 in simi- 
larly aged men. The correlation is improved by 
using a quadratic equation to relate the two vari- 
ables (Y = 0.91, p < 0.0001). Among Pima females, 
the correlation coefficients between percent body 
fat and BMI were 0.76 ( p  < O.OOOl), using a linear 
relationship, and 0.79 ( p  < 0.0001) using a qua- 
dratic function. 

We also analyzed the relationship between 
percent body fat and body weight (Figure 6). The 
relationship between percent body fat and body 
weight is similar to the relationship between per- 
cent body fat and BMI, in both males and females. 
Among Pima males, the correlation coefficient 
between percent body fat and body weight was 
0.90 ( p  < 0.0001) (using a quadratic model), no 
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FAT FREE MASS ( k 9 )  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Figure 4. Relationship of fat mass to fat-free mass in 241 nondiabetic Pima Indians. X, females; zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0, 

males. Slope zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 1.15 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAkg fat mass for each kg fat-free mass. Slopes for both sexes are the same ( p  = 0.5 for 
a difference). Intercept signficantly greater for females (by 22.4 kg) (p  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 0.0001). 

different than the correlation of percent body fat 
and BMI (0.91). Similarly, in females, these cor- 
relation coefficients were 0.79 and 0.79, respec- 
tively. Thus, similar to the findings of Keys et al.,I5 
we could not demonstrate that the correlation 
between percent body fat and BMI was better than 
the correlation of percent body fat and body 
weight. 

We are aware of no data that have found BMI 

r 
5 0  

8 40 

30 

c. 

Y 

c 

* 
g 2 0  
m 

10 

to be significantly better correlated to percent body 
fat than body weight. Thus, the commonly held 
belief that BMI is a better estimate of percent body 
fat than body weight is not well-founded. Also, it 
is clear that at the same BMI, women are fatter. 
Finally, in either sex, the BMI, or body weight, 
accounts for only about two-thirds of the variance 
of percent body fat. Thus direct, rather than indi- 
rect, measures of body composition should be 
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Figure 5. The relationship between percent body fat as determined by densitometry and body mass 
index in 117 nondiabetic Pima males and 96 nondiabetic Pima females (see Table I for subject 
characteristics). In males (a), r = 0.91, p < 0.0001; and in females (X), Y = 0.79, p < 0,0001. 
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Figure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA6 .  The relationship between percent body fat as determined by densitometry and body weight 
in 117 nondiabetic Pima males and 96 nondiabetic Pima females (see Table I for subject characteristics). 
In males (.), r = 0.90, y < 0.0001; and in females (X), r = 0.79, p < 0.0001. 

used to assess body composition in metabolic 
studies. This is particularly necessary when at- 
tempting to perform correlation analyses between 
degree of obesity and other metabolic variables. 
Unnecessary error may be introduced by only 
estimating percent body fat from means of body 
height and weight. In large-scale, population- 
based studies, body composition studies may not 
be feasible due to the cost and/or time considera- 
tion. But certainly metabolic studies with small 
study samples involving comparisons of individu- 
als of potentially differing body composition (e.g., 
male vs. female, diabetic vs. nondiabetic) cannot 
rely on estimates of body composition and should 
make use of direct measurements. 

B. Normalizing Data on Insulin Action Among 
Lean and Obese Persons 

In studies of the relationship between degree 
of obesity and insulin action, there is not only the 
problem of estimating body composition, but there 
is also the problem of how to compare rates of 
insulin-mediated glucose disposal between sub- 
jects with different body sizes. For example, dur- 
ing an insulin infusion as part of a hyperinsuline- 
mic, euglycemic clamp, the absolute rate of 
glucose infusion to maintain euglycemia in a short, 
lean, normal glucose tolerant female may be 350 
mg/minute. A similar, absolute glucose infusion 
rate may be observed in a tall, obese male with 
impaired glucose tolerance or diabetes mellitus. 

However, since the male has a greater meta- 
bolically active tissue mass, it is assumed that he 
should consume more glucose than the smaller 
female. Thus to compare the rates of insulin- 
mediated glucose disposal rate between these two 
subjects the mean rate of glucose disposal must be 
normalized to the size of the metabolically active 
tissue mass. 

The best way to estimate metabolic body size 
is to directly measure the body metabolic rate 
using direct or indirect calorimetric techniques. 
This is rarely done. Most investigators estimate 
metabolic body size by calculating body surface 
area according to the formula of DuBois and Du- 
Bois.17 We have examined the relationship be- 
tween body surface area and metabolic rate in a 
large group of nondiabetic Pima males and females 
living on our metabolic ward to examine how well 
body surface area correlates with metabolic body 
size. Resting metabolic rate was determined by 
indirect calorimetry'* in all subjects after they had 
lived on our metabolic ward for at least 7 days 
while consuming a weight-maintaining diet. Body 
surface area is significantly correlated with the 
resting metabolic rate in males (r = 0.89, p < 
0.0001) and females (r = 0.86, p < 0.0001) (Figure 
7A). However, as can be seen in the figure, the 
relationship is different between males and fe- 
males. At any given body surface area, the resting 
metabolic rate is higher in males than in females ( p  
< 0.0001). Thus, body surface area is probably a 
good estimate of metabolic body size and could be 
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Figure 7A. The relationship between resting metabolic rate, as determined by indirect calorimetry, and 
body surface area in 117 nondiabetic Pima males and 96 nondiabetic Pima females (see Table I for subject 
characteristics). In males (-), r = 0.89, p < 0.0001; and in females (X), r = 0.86, p < 0.0001. The 
relationship is different between the sexes: p < 0.0001. 

used to normalize rates of insulin-mediated glu- body composition techniques such as den- 
cose disposal, but only if comparing subjects of the sitometry. Similar to body surface area, the fat-free 
same sex. body mass is closely correlated with the resting 

An alternative way to estimate metabolic body metabolic rate in males zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( r  = 0.87, p < 0.001) and 
size is to calculate the fat-free body mass using females ( r  = 0.85, p < 0.0001) (Figure 7B). In this 
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Figure 7B. The relationship between resting metabolic rate determined by indirect calorimetry and 
fat-free body mass determined by densitometry in 117 nondiabetic Pima males (0)  and 96 non-diabetic 
Pima females (X) (see Table I for subject characteristics). In males, Y = 0.87, p 0.0001; and in females, r = 
0.85, p < 0.0001. The relationship is the same in males and females, and the equation relating resting 
metabolic rate (RMR) to fat-free body mass (FFM) is: RMR = 1.4 FFM + 0.08 (giving a zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx axis intercept of 
- 17.7 kg). 
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instance, however, the relationship between these 
two variables is similar in males and females. 
Thus, in estimating the metabolic body size, the 
fat-free body mass has an advantage over using 
body surface area, in that it is similar between 
sexes. Thus comparisons of normalized data can 
be done on data from mixtures of males and 
females if the fat-free body mass is used. 

It must be remembered, however, that the 
relationships between metabolic rate and fat-free 
body mass has an intercept significantly different 
from zero. Unless this intercept is taken into 
account when estimating the metabolic body size 
from fat-free body mass, the metabolic body size 
will be underestimated in those with a smaller 
fat-free body mass in comparison to those with a 
larger fat-free body mass. Each investigator should 
establish the magnitude of this intercept in hidher 
own laboratory to make the necessary correction. 

In summary, to best normalize rates of insu- 
lin-mediated glucose disposal, it is preferable to 
estimate the metabolic body size by measuring the 
metabolic rate of the body. Since this may not 
always be possible, the next best estimate of meta- 
bolic body size is: fat-free body mass zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA+ 17.7 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAkg. 
The 17.7 kg corrects for the intercept in the rela- 
tionship between fat-free body mass and resting 
metabolic rate (at least in Pima Indians). Lastly, 
surface can be used-but only when analyzing zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

0 

0 0  

0 

0 

relationships within one sex. The only exception to 
these guidelines would be if the metabolic rate 
were increased or decreased due to disease pro- 
cesses. In this situation the metabolic rate does not 
accurately reflect metabolic body size. For exam- 
ple, this complication obtains when studying sub- 
jects with untreated diabetes mellitus and marked 
fasting hypergly~emia.",'~ In this situation, it is 
probably best to use the metabolic body size as 
estimated by: fat-free body mass + 17.7 kg. 

IV. RELATIONSHIP BETWEEN DEGREE OF 
OBESITY AND INSULIN ACTION 

The relationship between degree of obesity 
and in vivo insulin action has been studied in a 
large group of nondiabetic male and female Pima 
Indians (Table I). Degree of obesity was estimated 
by densitometry and in vivo insulin action was 
measured using a two-step, hyperinsulinemic, eu- 
glycemic clamp technique. *' In vivo insulin action, 
at physiologic plasma insulin concentrations is 
expressed as either mg/kjoule (Figure 8A) or as 
mg/minute X (kg - ffm + 17.7 kg) (Figure 8B). As 
seen in the figures, there is a significant, negative, 
nonlinear relationship between degree of obesity 
and in vivo insulin action at these physiologic 
insulin concentrations, as previously described in 
a smaller group of Pima males.21 Note that at a 
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Figure 8A. The relationship between insulin-mediated glucose disposal during the hyperinsulinemic, 
euglycemic clamp and percent body fat determined by densitometry in 213 nondiabetic Pima males and 
females (r = -0.61, p < 0.0001). The rate of insulin-mediated glucose disposal is normalized to the 
metabolic rate as determined by indirect calorimetry and therefore is expressed as mg/kjoule. The mean 
plasma insulin concentration was 126 -C 3 uU/ml and the mean plasma glucose concentration was 95 * 0 
mg/dl. 
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Figure 8B. The relationship between insulin-mediated glucose disposal rate during the hyperinsulin- 
emic, euglycemic clamp and percent body fat determined by denistometry in 213 nondiabetic Pima 
males and females zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( r  = -0.61, p < 0.0001). The rate of insulin-mediated glucose disposal is normalized 
to the fat-free body mass plus 17.7 (see text). The mean plasma insulin concentration was 126 ? 3 uU/ml 
and the plasma glucose concentration was 95 -C 0 mg/dl. 

percent body fat less than -30%, there is a decline 
in insulin action with increasing obesity, whereas 
above a percent body fat of -30% this relationship 
does not exist. 

At maximally stimulating plasma insulin con- 
centrations there is a significant, negative linear 
relationship between degree of obesity and insulin 
action in males (Figure 9A and B). The relationship 

is much weaker at these higher insulin concentra- 
tions than at physiologic insulin concentrations. 

It is important to realize that degree of obesity 
only accounts for -36% of the variance of insulin 
action at physiologic insulin concentrations; and 
even less, -15%, at maximally stimulating insulin 
concentrations. As we have published else- 
where,22 there is a significant familial, and possibly 

Figure 9A. The relationship between maximal insulin-stimulated glucose disposal rate during the 
hyperinsulinemic, euglycemic clamp and percent body fat in 213 nondiabetic Pima males and females 
( r  = -0.36, p < 0.0001). The rate of insulin-mediated glucose disposal is normalized to the metabolic rate 
as measured using indirect calorimetry and is expressed as mg/kjoule. The mean plasma insulin 
concentration was 1981 * 35 uU/ml and the mean plasma glucose concentration was 95 -C 0 mg/dl. 
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Figure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA9B. The relationship between maximal insulin-stimulated glucose disposal rate during the 
hyperinsulinemic, euglycemic clamp and percent body fat determined by densitometry in 213 non- 
diabetic Pima males and females ( r  = -0.30, p < 0.0001). The rate of insulin-mediated glucose disposal is 
normalized to the fat-free body mass plus 17.7 (see text). The mean plasma insulin concentration was 
1981 k 35 uu/ml and the mean plasma glucose concentration was 95 k 0 mg/dl. 

genetic, component that accounts for a significant 
portion of the variance of in vivo insulin action not 
accounted for by degree of obesity (Figure 10). 

V. BODY FAT DISTRIBUTION AND INSULIN 
RESISTANCE 

Jean Vague reported many years ago that 
subjects with non-insulin-dependent diabetes 
mellitus have a more centralized distribution of 
body fat compared to nondiabetics.= This was 
subsequently confirmed by Feldman et al.24 In 
more recent years, Evans et al.25 have reported that 
women with truncal or upper-body distribution of 
body fat are more insulin-resistant than equally 
obese women with predominantly lower body 
obesity. We have assessed the relationship be- 
tween truncal versus lower body obesity and total 
body fat and insulin resistance in a large group of 
nondiabetic Pima Indian males and females. Body 
fat distribution was estimated by measuring the 
supine, waist circumference at the level of the 
umbilicus. This was divided by the thigh circum- 
ference immediately below the gluteal fold. 

The relationship between waist/thigh circum- 
ference (WTC) and percent body fat in Pima males 
and females is shown in Figure 11. In males, WTC 
is linearly, closely correlated with percent body fat zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
( r  = 0.71, p < 0.0001). Conversely, in Pima females 
WTC is poorly correlated with percent body fat ( r  
= 0.22, p < 0.03). Thus, knowing that WTC in 

Pima males provides little more information than 
knowing percent body fat, and vice versa. In Pima 
females, WTC is nearly independent of degree of 
obesity, so that knowing the WTC may add further 
information regarding relationship between body 
fat and other metabolic variables. 

In Pima males, WTC is not significantly cor- 
related with in vivo insulin action independent of 
degree of obesity. This is true both at physiologic 
and at maximally-stimulating insulin concentra- 
tions. In females, WTC is significantly correlated 
with insulin action at physiologic ( p  < 0.04) and 
maximally-stimulating insulin concentrations ( p  < 
0.02), independent of degree of obesity. The rea- 
son(s) for the association of central obesity with 
reduced insulin action is (are) unknown. In partic- 
ular, it is not established whether they are causally 
related to each other or only are both secondary to 
a pathogenic third factor. 

VI. MECHANISMS OF INSULIN RESISTANCE 

A. Glucose Oxidation and Storage 

Felber et a1.26 and Boden et al.27 demonstrated 
that diabetic subjects have reduced storage of 
glucose after an oral glucose load. We compared 
the rates of oxidation and storage of glucose dur- 
ing the euglycemic clamp in lean and obese sub- 
jects with normal glucose tolerance.'* There was a 
wide range of insulin resistance in the group. In 
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Figure 10. Insulin action at supraphysiological insulin concentrations (Max M) by family. Glucose 
uptake was adjusted for individual variations in age, sex, and percent body fat. (*) Individual adjusted 
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Figure 11. The relationship between waist/thigh circumferences and percent body fat as determined by 
densitometry in 117 nondiabetic Pima males (a) and 96 nondiabetic Pima females (X). In males, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAr = 0.71, 
p < 0.0001 and in females, r = 0.22, p < 0.03. 
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subjects with the lowest glucose uptake rates dur- 
ing hyperinsulinemia, there was almost no glucose 
storage. This added to the observations of Thie- 
baud et aLZ9 and Jacot et al.30 in lean young men 
whose glucose storage was never less than 55% of 
glucose uptake. Over the range, from those sub- 
jects with the greatest in vivo insulin resistance to 
those with the least insulin resistance, storage 
made a progressively greater contribution to glu- 
cose uptake. This study suggested that even in 
subjects with normal glucose tolerance, storage 
has a critical role in distinguishing between those 
who are insulin resistant and those who are not. 
Since other studies have shown that under the 
conditions of a clamp there is little hepatic uptake 
but significant peripheral glucose ~ p t a k e , ~ ' - ~ ~  these 
studies emphasize the role of skeletal muscle glu- 
cose storage in determining insulin resistance. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
8. The Role of Fatty Acid Oxidation in 
Regulating Glucose Uptake 

It has been proposed that increased avail- 
ability of free-fatty acids or ketones for oxidation 
may be responsible for an inhibition of carbohy- 
drate metabolism in muscle, thus producing a 
reduction in glucose tolerance. The concept has 
been extended to suggest that one role of insulin is 
to control glucose uptake by controlling in the rate 
of release of fatty acid from adipose tissue.3Mo 

As we have noted, glucose disposal has com- 
ponents of both glucose oxidation and glucose 
storage. There is good evidence for a role of lipid 
oxidation in the regulation of the oxidative com- 
ponent, and we find strong correlations of glucose 
oxidation and liquid oxidation rates. (Such cor- 
relations are not simply due to the method of 
calculating lipid and carbohydrate oxidation, since 
for each individual the respiratory quotient and 
total oxygen consumption vary independently. We 
have discussed this in more detail el~ewhere.~') As 
recently noted, nonoxidative glucose disposal 
might have several components-lactate forma- 
tion and muscle glycogen f~rmation.~' The lack of 
correlation and lipid oxidation with storage4' could 
be due to there being opposing actions of lipid 
oxidation on components of nonoxidative glucose 
disposal. Alternatively, the lack of correlation 
could be due to fatty acids not affecting nonoxi- 
dative disposal at all. 

There is some suggestion, however, that ke- 
tones may promote glycogen formation.36 There 
are several conflicting reports about the effect of 

fatty acids on glucose storage. In one report, 
maintaining basal FFA concentrations during hy- 
perinsulinemia reduced oxidation, but did not 
affect storage.42 Similar conclusions were drawn 
from a study examining the effect of age on sub- 
strate disposal.43 In another report, storage was 
reduced by fatty acid infusionu; in this study, 
however, subjects did not serve as their own 
controls, and fatty acid levels were raised to levels 
higher in general than basal levels. 

Furthermore, a biochemical basis for a role of 
lipid oxidation in regulating glucose storage is 
lacking. On the other hand, a correlation of pyru- 
vate dehydrogenase activity with glucose oxida- 
tion rates, and of glycogen synthesis activity with 
glucose storage rates has recently been demon- 
~ t r a t e d . ~ ~  In conclusion, it seems that the com- 
ponents of glucose uptake, namely glucose oxida- 
tion and storage, are probably regulated by 
different mechanisms. If this is true, then the 
glucose fatty acid-ketone cycle may at best have 
only a partial role in producing insulin resistance. 

Finally, we have recently shown that the pro- 
portion of 24 hour calorie expenditure derived 
from fat (24 hr R.Q.) is not correlated with degree 
of obesity (% fat). Therefore the insulin resistance 
found in obese Pima Indians is not due to the 
glucose-fatty acid-ketone 

C. Glucose Disposal and Muscle 
Glycogen Synthase 

Since current evidence suggests a crucial role 
for skeletal muscle in insulin-mediated glucose 
d i~posa l ,~~"~  and since glucose storage is also an 
important component of glucose disposal, it is 
logical to examine the role of glycogen synthesis 
and its regulatory enzyme, glycogen synthase, in 
insulin action in muscle. That whole body uptake 
of glucose can reasonably be assumed to reflect 
muscle glucose metabolism comes from the obser- 
vation that forearm or leg glucose disposal is 
well-correlated with whole body glucose dispo- 
~ a l , ~ * * ~  and that during intravenous glucose infu- 
sion the liver takes up little glucose33 but the 
muscle does take up glucose.31 

There is now considerable evidence in both 
Pima Indians and Caucasians that glycogen syn- 
thase enzyme from vastus lateralis is activated by 
insulin infusions, and activated in proportion to 
the ability of insulin to stimulate glucose uptake 
during the euglycemic clamp or related techniques 
(Figure 12).41,45-51 For example, we showed that 
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after glycogen-depleting exercise, the rate of glu- 
cose uptake and storage was correlated with the 
proportion of active enzyme present prior to insu- 
lin-glucose infusion.47 We subsequently showed 
that in a group of normal and diabetic subjects 
without exercise, glucose uptake and storage were 
correlated with muscle glycogen synthase activity 
after insulin stimulation and with the change in 
muscle glycogen synthase activity during insulin 
~t imulat ion.~~ We then measured the effect of the 
induction of insulin resistance by overfeeding on 
glycogen synthase. Overfeeding produced a re- 
duction in the percent of active glycogen syn- 
thase. 45 

Taken together, these data indicate an impor- 
tant relationship between the regulation of glyco- 
gen synthase enzyme and in vivo insulin action. 
Further studies have indicated that glucose-6- 

phosphate levels in muscle fall rather than rise 
with the activation of glycogen synthase, and that 
increasing glucose uptake by increasing plasma 
glucose concentrations does not in itself increase 
glycogen ~ynthase.~',~' These studies indicate that 
activation of glycogen synthase is dependent on 
insulin stimulation, rather than glucose uptake per 
se. Future work, aimed at determining the bio- 
chemical step at which defects in activation of 
glycogen synthase occur, will help to determine 
the specific biochemical defects in insulin resis- 
tance. Given that glucose uptake at supraphysio- 
logical insulin concentrations is highly familial" 
and the major role of glucose storage and glycogen 
synthase activation at these insulin concentrations, 
it seems possible that a specific genetic defect that 
determines insulin resistance in many individuals 
may be located at a step between the insulin 
receptor and glycogen synthase activation. 

D. Insulin Action and Muscle Fiber Type 

There is good evidence for a relationship be- 
tween insulin action and muscle fiber type in 
animals. Fibers that differ by staining and contrac- 
tile properties (twitch speed) show differences in 
oxidative capacity, capillary supply, tyrosine ki- 
nase activity, and insulin stimulated glucose up- 
take.5240 In animals, fibers of different twitch char- 
acteristics differ in their insulin sensitivity and 
responsiveness, although the mechanism is un- 
known. We have demonstrated a correlation of 
fiber type and glucose uptake at physiological and 
supraphysiological insulin concentrations (for per- 
cent type I fibers: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAr = 0.29, p < 0.02, r = 0.29, p < 
0.03, respectively; for IIB fibers: r = -0.38, p < 
0.003, r = -0.32, p < 0.01, respectively) (Figure 
13).61 Whether this is a direct effect, or an effect of 
an association with obesity or capillary density, is 
not certain since in our data both obesity (Figure 
14) and capillary density correlated with fiber type 
(for type I fibers: r = -0.32, p < 0.01, r = 0.39, p < 
0.002, respectively; for type IIB fibers: r 0.32, p < 
0.02, r = -0.27, p < 0.04, respectively) (findings 
illustrated in Figure 14B). However, since fiber 
type may be inherited,62 the findings might also 
provide a mechanism for the familial dependence 
of insulin action.22 

E. Insulin Action and Muscle Capillary Density 

Several human studies have indicated that 
muscle cell size and muscle capillary supply are 
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Figure 13. 
Caucasians. 

Correlation of Submax M and percent type 2B fibers (Y = -0.38, p < 0.003). X, Indians, 0 ,  

associated with changes in fasting insulin concen- 
trations and glucose t o l e r a n ~ e . ~ ~ '  We have inves- 
tigated the relationship of muscle capillary density 
in vastus lateralis and in vivo insulin action mea- 
sured by the euglycemic hyperinsulinemic 
clamps6' We found the capillary density very sig- 
nificantly correlated with insulin-mediated glucose 
uptake at physiological (Figure 15) and supra- 
physiological plasma insulin concentrations (r = 
0.63, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI = 0.47, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp I 0.0001 for both). Capillary 
density also correlated significantly with fasting 
glucose (Figure 16) and fasting insulin concentra- 

X 

Y 70 

0)  
Q 

4 0 .  

3 0 -  

c 
C 

L 

a" 2 0 .  

a 

X 
X 

tion (r = -0.46, r = -0.47, p 5 0.0001 for both). 
Capillary density was lower in the most obese (r = 

-0.59, p I 0.0001) (Figure 17) (illustrated in Figure 
14B) and muscle cell size was greater (r = 0.39, p < 
0.002). 

These data may be interpreted in several 
ways. Capillary density is correlated with oxida- 
tive capacity of muscle ce11s.52,53,59,60 These cor- 
relations therefore might be due to a correlation 
between some biochemical mechanism associated 
with oxidative capacity and insulin action, but 
there is currently no evidence to support this 
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Figure 14A. 
(T = -0.39, p < 0.002). X, Indians, a, Caucasians. 

Relationship of percent type 1 muscle fibers in m. vastus lateralis and waistkhigh ratio 



LILLIOJA AND BOGARDUS zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
LEAN zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAOBESE 

531 

.) T y p e 1  fibers,slow twitch. high oxidative, more capillaries 

@ Type 2 A  Intermediate zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
0 Type zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA28 f ibers, fast twitch, qlycolytic, fewer capi l lar ies zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
o Capi l la ry  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Figure 14B. A cross-section of skeletal muscle. This illustrates the following: fiber size correlates with 
obesity (Y  = 0.39, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp < 0.002). Capillary density negatively correlates with obesity (r = -0.59, p I 0.0001). 
Percent of type 1 fibers was lower and type 28 greater in the obese (Y = -0.32, p < 0.01, r = 0.32, p < 
0.02, respectively). (Percent type 2A fibers was not correlated with % fat or W/T ratio.) Capillaries/mm2 
correlated with percentage of type 1 fibers (r = 0.39, p < 0.002) and negatively with % type 2B fibers 
(r = -0.27, p < 0.04). Drawing is similar to an actual microscopic preparation except that capillary 
diameter is not drawn to scale. 

contention. An alternative explanation is that since 
oxidative capacity and twitch characteristics are 
~ o r r e l a t e d , ~ ~ - ~ ~  then perhaps the induction of slow 
twitch genes also induces some biochemical 
changes that lead to alteration in insulin insensi- 
tivity (such as tyrosine kinase activity).57 Since the 
correlation of capillary density and insulin action 
was stronger than those of fiber type and insulin 
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blood flow to skeletal muscle is reduced. At rest 
not all capillaries have significant f l o ~ ~ ~ , ~ '  and 
anatomical studies do not permit an assessment of 
which or how many capillaries are in use. Sub- 
strate uptake into tissues is regulated both by 
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Figure 15. Relationship of glucose uptake at submaximally stimulating insulin concentrations and 
capillary density. The relationship is nonlinear and therefore plotted on a log scale for M (r = 0.63, p 5 
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blood flow and its ability to diffuse into the tis- 
A low extraction ratio,68i69 i.e., a small or 

modest decrease of insulin or glucose concentra- 
tion between artery and vein, is direct evidence 
that diffusion, and not blood flow, may be primar- 
ily limiting their uptake.70 Recently, James et al. 
reported that blood flow was not a factor in deter- 
mining insulin resistance in rats.71 We suggest 
therefore that a possible explanation for the associ- 
ation of insulin resistance with capillary density 
relates to biophysical changes in muscle that result 
from enlarged muscle cells and greater diffusion 
distances from capillaries to tissues. The following 
interpretations of capillary density are based on 

the principle first proposed by Krogh”-that since 
capillaries are aligned parallel to muscle fibers, 
each capillary supplies a cylinder of tissue. This 
cylinder varies in radius with the capillary density. 

With enlargement of muscle cells, the surface 
to volume ratio of cells is decreased. Therefore, to 
obtain equivalent insulin action or glucose uptake 
per unit muscle mass, the insulin actiodcon- 
centration or glucose uptake per unit cell surface 
area must be increased. Therefore, enlargement of 
muscle cells irrespective of the capillary supply 
will reduce insulin action. 

With greater inter-capillary distances, there is 
a greater distance for insulin or glucose to diffuse 
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Figure 18. Effects of intra-arterial infusions of insulin on insulin concentrations in the hindlimbs of 
dogs. Arterial (dotted line), venous (dashed line), lymphatic (solid line). (Redrawn from Camu F, and 
Rasio E, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAEur ] zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAClin Invest 1972.82) 

to all parts of muscle cells. Diffusion of insulin or 
glucose over 50U to 100U-the distance between 
capillaries-would be rapid in simple aqueous 
solutions. The cleft between muscle fibers may, 
however, be very narrow (?l-0.1U),73 and this 
could possibly slow the rate of diffusion of insulin. 

More important than just the diffusion dis- 
tance, however, is the effect that an increased 
distance between capillaries might have on the 
ability of insulin to equilibrate within the muscle 
tissue. Two factors are involved in this equili- 
bration: (1) when blood insulin concentration 
changes, insulin must pass through capillary walls 
and deep into interfiber clefts; and (2) muscle cell 
membrane is presumably constantly taking up 
insulin and degrading it. Capillaries in skeletal 
muscle are ~nfenestrated,~~ hence they present a 
barrier between blood plasma and cell wall, espe- 
cially for larger molecules such as insulin. 

There are several lines of evidence that sug- 
gest that insulin penetrates the capillary wall 
slowly and equilibrates in tissues slowly. In spite 
of active transport of insulin through the capillary 
wall,75 current evidence suggests that diffusion of 
insulin through the capillary wall is the same or 
worse than inulin a molecule of similar s i ~ e . ~ ~ ' ~  On 
insulin infusion, arterial insulins are not matched 
by equivalent peaks in limb lymph and the lym- 

phatic peaks are delayed 30-45 minutes (Figure 
18).78,79 Glucose peaks in limb lymph are not 
delayed like this. Neither is there this much delay 
in insulin appearance in lymph draining the liver 
(where capillaries are fenestrated), nor in thoracic 
duct lymph.78,79 In the basal state, limb lymph 
insulin concentrations are apparently lower than 
arterial  concentration^.^',^^ Since lymphatics do not 
drain interfiber areas," the differences between 
arterial insulin and deep muscle insulin may be 
even more marked than lymphatic insulin indi- 
cates. 

Studies of insulin kinetics'' have indicated 
that insuiln equilibrates slowly (greater than 60 
minutes) with a nonvascular compartment. Glu- 
cose uptake closely follows the calculated insulin 
concentration in this compartment which was 
thought to represent interstitial space in muscle 
and adipose tissue (Figure 19).81 These two lines of 
evidence indicate that diffusion of insulin into 
skeletal muscle is sufficiently slow to have impor- 
tant physiological effects. 

If muscle cell membranes are able to take up 
and degrade insulin more rapidly than the diffu- 
sion of insulin from capillary to interstitial space 
and down between fibers, then the following prin- 
ciples apply at steady state: (1) there is a concentra- 
tion drop of insulin across the capillary wall; (2) 
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Figure 19. Computer-derived estimates of insulin levels in model compartments for primed-contin- 
uous infusions of insulin. Compartment 3 is a large and slowly equilibrating compartment that may 
represent interstitial fluid of muscle and adipose tissue. Note that glucose uptake follows the insulin 
concentration in this compartment not the plasma compartment (compartment 1). (Redrawn from 
Sherwin RS, Kramer KJ, Tobin JD, Insel PA, Liljenquist JE, Berman M, and Andres R, J zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAClin Invest 1974.91 

with reduced capillary density, each capillary has a 
larger volume of tissue and greater area of cell 
membrane to supply-and the insulin concentra- 
tions drop is likely to be greater; (3) there will be a 
further concentration drop of insulin between in- 
terstitial space adjacent to the capillary and the 
most distance parts of the muscle cell; (4) this drop 
will be exaggerated with greater diffusion dis- 
tances; (5) if so, the overall effect is that the 
average insulin concentration around a muscle cell 
with a poorer capillary supply will be reduced 
even at steady state (Figure 20). We propose that 
the correlations of fasting glucose, fasting insulin, 
and insulin resistance measurements with capil- 
lary density may be explained by these mecha- 
nisms. 

Our discussion thus far has been concerned 
with the effect of capillary density on insulin 
access to muscle. We now wish to extend this to 
suggest that insulin action is reduced in obese 
subjects because lower capillary density results in 
reduced access of insulin to the muscles of obese 
subjects. Obese subjects have an increased size of 
visceral cells,82 and several studies also indicate 
muscle cells are enlarged in the ~ b e s e . ~ ' , ~ ~ '  This 
increase in muscle fiber size is not simply due to 

increased tissue fat which is found in only small 
amounts in skeletal muscle.52 Fat-free mass in- 
creases with obesity (Figure 4)83; and since muscle 
cells do not multiply,84 they must hypertrophy. 
The number of capillaries per fiber was not in- 
creased in obesity in our data, so that obese 
subjects had lower capillary densities ( r  = -0.59, p 
I 0.0001).61 We propose therefore that at least 
some of the insulin resistance associated with 
obesity is explained by the effects of capillary 
density on insulin action. 

There are several other observations that 
might be explained by an association of obesity 
with reduced capillary density. We have reported 
that obesity explains much less of the variability of 
insulin action at supraphysiological plasma insulin 
concentration (-19%) than at lower plasma insulin 
concentrations (-43%).22 This might be because 
very high insulin concentrations overwhelm the 
effects of capillary density on insulin diffusion and 
the effect of decreased surface to volume ratio of 
muscle cells on insulin action. 

Several studies have observed a delay in onset 
of insulin action in obese subjects. Prager et al.85 
noted that the onset of insulin action was delayed 
in the obese. Higher insulin concentrations in both 
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Figure 20. A demonstration of the theoretical fall in hormone or substrate concentrations from capillary 
to deep in the interfiber space. The scale on the y axis is given solely for illustrative purposes. The scale 
on the x axis represents the extremes in our data and the two curves represent (1) high capillary density 
and small diffusion radius (25 U), and (2) low capillary density and large diffusion radius (45 U). The 
figure is designed to show the possible effect of capillary wall on insulin concentrations and the possible 
effect of the interfiber space on concentrations. The relative proportions of the capillary wall or interfiber 
space effect are not known and the absolute values are not known. The figure is also designed to show 
the possible effects of decreased capillary density. Such as occurs in obesity. Future research needs to be 
directed at determining if these gradients occur. Support for this analysis is given by reports of 
whole-body insulin kinetics in obese subjects. In obese subjects at steady state, tissue insulin 
concentrations are reduced relative to plasma insulin concentrations compared to lean subjects (26% 
reduction of tissue insulin in the obese for the same plasma ins~l in) . '~ mf, muscle fiber; w, width of 
interfiber space. Cc, capillary insulin concentration; Co, insulin concentration immediately outside 
capillary; Cr, concentration of insulin at radial distance R; Rc, capillary radius; Rt, radius of tissue 
cylinder. The development of this mathematical model is based on the principles that insulin diffuses 
from the capillary and is taken up and degraded by muscle cell membrane. We are grateful to Dr. 
Timothy Secomb of the Department of Physiology at the University of Arizona in Tucson for his 
theoretical analysis of possible insulin gradients in muscle. 
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Figure 21. Time course of glucose uptake in lean and obese subjects at four insulin infusion rates: -15, 
40, 120, and 1,200 mU/m2/minute. The insulin infusions were started at a constant rate (i.e., not primed 
as in Figure 18), but T1/2 to reach an insulin steady state was the same in lean and obese. Note the 
delayed activation of glucose uptake in the obese and the fact that higher insulin infusions appear to 
overcome this delay. (Redrawn from Prager R, Wallace P, and Olefsky JM, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAClin Invest, 78:472-481,1986 
by permission of the American Society for Clinical Investigation.) Compare this figure with Figure 19. 
These data suggest reduced penetration of insulin into skeletal muscle in obesity. Furthermore, kinetic 
analyses suggest that in the obese at steady state tissue insulin concentrations are reduced at any given 
plasma insulin concentration compared to lean  subject^.'^ 

the lean and the obese accelerated the onset of 
insulin action, suggesting that higher concentra- 
tions could overcome the kinetic defect (Figure 21). 
A comparison of Figures 19 and 21 suggests insu- 
lin’s equilibration in muscle is delayed in the 
obese. Parenthetically insulin action is not delayed 
in obese subjects in the liver-an organ with 
fenestrated capillaries even though glucagon does 
not suppress as well in the obese.85 Doeden et a1.86 
also noted a delayed onset of action of insulin in 
obese subjects, the effect of which was most no- 
ticeable while changing plasma insulin concentra- 
tions. 

Finally, studies of whole-body insulin kinetics 
suggest that in obese subjects the steady-state 
insulin concentration in tissue is reduced relative 
to plasma in obese subjects compared to lean 
subjects. The obese subject’s tissue insulins are 
26% lower than in lean subjects at the same plasma 
insulin c~ncentrat ion.~~ Qualitatively this is what 
we have predicted might occur if capillary density 
is reduced (Figure 20). All of these studies suggest 
that in obese subjects the insulin penetration into 
skeletal muscle is reduced and its equilibration in 
muscle may be slowed. We propose that this might 

be an effect that is due to reduced capillary supply 
to skeletal muscle in obese subjects. 

We conclude that the correlation of insulin 
resistance and basal insulin and glucose levels 
with capillary density may be a result of biophys- 
ical restraints on glucose and insulin access to 
cells. Furthermore, the effects of obesity on capil- 
lary density may partially explain the relationship 
of insulin resistance and obesity, explain the poor 
correlation of obesity and insulin action at supra- 
physiological plasma concentrations of insulin, 
and explain the delayed onset of action of insulin 
in the obese. Finally, the development of insulin 
resistance and slightly elevated plasma glucose 
concentrations that signal the pancreas that insulin 
resistance is present might initiate a vicious cycle 
of pancreatic glucose insensitivity, further hyper- 
glycemia, and noninsulin-dependent diabetes 
mellitus (see Ref. 22). 

VII. SUMMARY 

Diabetes and obesity are epidemic in the Pima 
Indians of the Southwestern United States, and 
the prevalence of diabetes is increasing. The most 
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likely link between obesity and diabetes is tissue 
insulin resistance. 

If obesity is defined as an excess of body fat, 
then it can only be accurately assessed by measure- 
ments of body composition and not by approxi- 
mations such as body mass index or percent of 
ideal weight. 

To compare the metabolic data of individuals 
of varying size, an accurate measure of metabolic 
size is needed. Total body weight is not an appro- 
priate means of comparing individuals since obese 
subjects have a greater proportion of nonmetabo- 
lizing mass (triglyceride). Body surface area shows 
a sex difference, and this may distort data if both 
sexes are present. From studies of metabolic rate 
we have determined that metabolic rate is directly 
proportional to the fat-free mass plus 18 kg, and 
we suggest that this weight can be equated with 
metabolic size. 

Glucose storage in skeletal muscle appears to 
be important in the disposal of an intravenous 
glucose load. Consistent with its role in glycogen 
storage, glycogen synthase enzyme is activated in 
proportion to the ability to dispose of glucose 
during a hyperinsulinemic, euglycemic clamp. The 
role of glycogen synthase is most notable at supra- 
physiological plasma insulin concentrations; and 
since glucose uptake at these insulin concentra- 
tions is highly familial independent of the degree 
of obesity, we suggest that there may be a specific 
genetic defect expressed in skeletal muscle that 
reduces insulin responsiveness in some subjects. 

The lack of correlation between zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA24 hour respi- 
ratory quotient measured in a metabolic chamber 
(a measure of the proportion of fat derived calories) 
and degree of obesity indicates that in obese Pima 
Indians insulin resistance is not due to an inhibi- 
tion of glucose metabolism by free fatty acids 
(glucose-fatty acid-ketone cycle). 

Obesity is associated with an increase in fat- 
free mass almost kilogram- for kilogram with fat 
mass when compared to the lean state. A role for 
this increase in fat-free tissue in producing insulin 
resistance has been given insufficient attention in 
the past. With an increase in fat-free mass, muscle 
cells are hypertrophied and capillaries in muscle 
are more widely spaced. We propose that these 
biophysical changes in muscle mediate, at least in 
part, the effects of obesity to produce a reduction 
in insulin sensitivity and the abnormal kinetics of 
insulin action found in the obese. We suggest 
therefore that insulin resistance is a combination of 
a genetic defect and obesity-induced changes in 
the biophysical properties of skeletal muscle. 

These defects may in turn lead to the development 
of non-insulin-dependent diabetes mellitus. 
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