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Obesity and its impact on COVID-19
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Abstract
The severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) pandemic has proven a challenge to healthcare systems
since its first appearance in late 2019. The global spread and devastating effects of coronavirus disease 2019 (COVID-19) on
patients have resulted in countless studies on risk factors and disease progression. Overweight and obesity emerged as one of the
major risk factors for developing severe COVID-19. Here we review the biology of coronavirus infections in relation to obesity.
In particular, we review literature about the impact of adiposity-related systemic inflammation on the COVID-19 disease severity,
involving cytokine, chemokine, leptin, and growth hormone signaling, and we discuss the involvement of hyperactivation of the
renin-angiotensin-aldosterone system (RAAS). Due to the sheer number of publications on COVID-19, we cannot be completed,
and therefore, we apologize for all the publications that we do not cite.
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The obesity pandemic

The worldwide prevalence of obesity increased 3-fold be-
tween 1975 and 2016, with 13% of adults being obese and
39% being overweight in 2016 (source: World Health
Organization (WHO), https://www.who.int). If this incline
continues, it is estimated that in 2030, 38% of the population
worldwide will be overweight and 20% will be obese [1].
Obesity is defined as a too high body weight compared to
height. The WHO distinguishes three groups: class I (BMI
30.034.9 kg/m2), class II (35.0–39.9 kg/m2; severe obese),
and class III (BMI >40.0 kg/m2; morbid obese) (https://
www.who.int).

Excess energy from the diet is stored as fat in the white
adipose tissue (WAT), distributed widely throughout the

body. WAT is subdivided in two major categories; visceral
fat depots (around abdominal viscera in mesentery and omen-
tum) and subcutaneous fat depots (under the skin). In addition
to fat-storing adipocytes, WAT contains immune cells.
Together, they affect whole-body homeostasis through meta-
bolic, endocrine, and immune functions. Chronic overnutri-
tion and resulting obesity cause severe derangements in these
functions, associated with increased leptin secretion, local in-
flammation, and release of inflammatory mediators that may
negatively affect the function of other tissues [2]. This low-
grade inflammatory state is a major risk factor for developing
diseases such as diabetes mellitus type 2, hypertension, car-
diovascular diseases, and fatty liver disease [2–5]. The health
consequences of obesity are linked to the side of fat storage
with the accumulation of visceral fat being associated with
more adverse health outcomes, inflammation, and metabolic
syndrome, as opposed to the healthier fat accumulation in the
subcutaneous depots [6, 7]. Excessive fat in WAT is stored
largely without the number of adipocytes increasing, resulting
in adipocyte hypertrophy, which is associated with reduced
oxygen supply and hypoxia, and an increase in macrophage
infiltration and inflammation [8–10]. Since the storage capac-
ity of the hypertrophic cells is limited, fat starts to accumulate
in ectopic tissues such as the liver, heart, and skeletal muscles
[8]. This dyslipidemia further promotes metabolic disorders.
However, an exception to this scenario exists as individuals
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who are chronically obese but stay—at least transiently—
metabolically healthy. Evidence from mice and a few human
studies suggests that storing a surplus of nutrients as fat
through adipocyte hyperplasia (an increasing number) is asso-
ciated with metabolic health [11]. The fat storage can be dis-
tributed over more fat cells; the individual fat cells stay small-
er, are metabolically more active, and are less inflamed [6]. So
far, little is known about the underlying molecular mecha-
nisms driving fat storage in either the hypertrophic or the
hyperplastic direction. An exception is the function of the
metabolic transcription factor C/EBPβ which was linked to
hypertrophic versus hyperplastic fat accumulation in mice
with a high-fat diet [12]. Such regulators may be attractive
targets to therapeutically prevent metabolic and immunologi-
cal complications associated with obesity.

The SARS-CoV-2/COVID-19 pandemic

In December 2019, health authorities in China reported an
outbreak of pneumonia of unknown cause in Wuhan, Hubei
Province, China. The first reported cases were linked to a local
seafood market in Wuhan City, shortly after the causative
coronavirus was isolated from lower respiratory tract samples
of pneumonia patients. The virus was named severe acute
respiratory syndrome coronavirus-2 (SARS-CoV-2), and the
disease it causes was called Coronavirus Disease 2019
(COVID-19). Human-to-human transmission is well
established in SARS-CoV-2 and the virus is mainly transmit-
ted through respiratory droplets and direct contact. Infected
patients may be asymptomatic or show symptoms such as
high fever, chills, loss of smell and taste, cough, shortness of
breath, or difficulty in breathing. Themost reported symptoms
at the onset of disease are fever (87.9%), cough (67.7%), and
fatigue (38.1%) [13–15]. The respiratory symptoms can be
mild and consist of dry cough, shortness of breath, or rhinitis.
In the more severe COVID-19 cases, these symptoms can
progress to bilateral pneumonia and acute respiratory distress
syndrome (ARDS). Furthermore, multi-organ dysfunction in-
cluding acute cardiac and kidney injuries, arrhythmias, gastro-
intestinal, and liver function abnormalities, and thromboem-
bolic complications have been documented in infected pa-
tients. Management of severe disease progression usually re-
quires admission to the intensive care unit (ICU) and is asso-
ciated with high mortality of ∼30–40% [16–18]. The viral
incubation period ranges from 2–14 days with an average of
5.2 days [13]. The diagnostic method of choice is the detection
of viral genetic material in a nasopharyngeal swab or sputum
sample using polymerase chain reaction (PCR), more recently
supplemented with detection of SARS-CoV-2 antigens with
antibody-based tests. An additional diagnostic tool is a com-
puter tomography (CT) scan of the chest which shows ground-
glass opacities, interstitial infiltration, or multiple patchy

consolidations in both lungs [19]. Due to globalization, the
virus was able to spread rapidly worldwide and on
March 11, 2020, the WHO officially declared COVID-19 a
pandemic. As of March 2021, COVID-19 caused more than
120 million reported infected cases and around 2.7 million
reported deaths worldwide (https://www.who.int). Although
no effective antiviral drugs exist, vaccines against SARS-
CoV-2 are now available and world-wide vaccination pro-
grams are expected to be completed during 2021.

The biology of coronaviruses

The family of coronaviruses consists of two subfamilies; the
Totovirinae and the Coronavirinae [20]. The Totovirinae
mainly cause disease in terrestrial and aquatic animals. The
Coronavirinae, in particular the genus of betacoronaviruses,
cause a wide variety of diseases in mammals, differentiating
from the common cold tomore severe respiratory diseases like
SARS andMERS in humans [21]. Coronaviruses share a cou-
ple of important features contributing to transmission, viral
replication, and viral immunopathology [22]. Coronaviruses
have a non-segmented, single-stranded positive-sense RNA-
genome, and with approximately 30.000 bases in length, they
are the largest known mature RNA-molecules in biology [23,
24]. The virus genome codes for four main structural proteins;
the spike (S), nucleocapsid (N), membrane (M), and the en-
velope (E) proteins as well as for other non-structural proteins
required in viral replication [23]. Of the structural proteins, the
S-protein is a critical surface-located trimeric glycoprotein
which mediates attachment to host cell receptors and viral
entry [22, 25–27]. The N-protein’s function is to package
the viral RNA-genome into a ribonucleoprotein complex
[28]. The M-protein is the most abundant protein and shapes
the viral envelope [29]. The smallest structural protein is the
E-protein which has important roles in virus production and
maturation [30, 31] (Fig. 1).

Both SARS-CoV and SARS-CoV-2 enter host cells by
binding to Angiotensin-converting enzyme 2 (ACE2) through
S-proteins on their surface [22, 32], yet SARS-CoV-2 binds
ACE2 with a considerably higher affinity than SARS-CoV
[33]. Based on inter-species differences in the ACE2 gene
and modeling of S-protein ACE2-complex structure predic-
tions, SARS-CoV-2 is predicted to infect a broad range of
animals, excluding some fish, birds, and reptiles [34]. The S-
protein contains two subunits, S1 and S2. The first step of
virus entry is binding of the S1 subunit, via its N-terminal
portion, into a hydrophobic pocket in ACE2. Next, the S-
protein is cleaved by the host type II transmembrane serine
protease TMPRSS2 and possibly also by lysosomal cathep-
sins like furin [35]. The cleavage causes the S1 and S2 sub-
units to stick to each other, inducing dissociation of the S1
subunit with ACE2 and a change in S2 structure causing a
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stable post-fusion state. This process, called priming, facili-
tates the fusion between the viral and cellular membrane and
the entry of the virus into the cell [36]. The S-proteins of
SARS-CoV and SARS-CoV-2 differ by approximately 380
amino acids (the viral genomes show 79.6% similarity) [37],
including five to six vital amino acids which cause 10 to 20-
fold higher binding affinity of SARS-CoV-2 for ACE2. The
stronger SARS-CoV-2 S-protein-ACE2 interaction is respon-
sible for the high pathogenic nature of COVID-19 [16, 17, 38,
39]. ACE2 is widely expressed throughout the body with a
high expression in the lungs, intestines, and adipocytes in
WAT [40]. Some studies suggest the ACE2 receptor is upreg-
ulated by obesity, cardiovascular disease, and smoking [41,
42], while other studies suggest cellular levels of ACE2 are
the same in adipocytes of obese and non-obese individuals
[43]. Nonetheless, experiments in rats have shown upregula-
tion of ACE2 in adipose tissue in response to a high-fat diet
[44]. Taking into account the much higher volume of adipose
tissue, it is reasonable to assume increased quantities of ACE2
in adipose tissues of people with obesity.

During infection with SARS-CoV/-2, the S-protein-ACE2
complex is internalized in the cell resulting in a loss of func-
tional, membrane-bound ACE2. As we will discuss below, in
a normal situation, ACE2 has anti-inflammatory effects and is
considered to act protective in case of acute respiratory dis-
tress syndrome (ARDS). This protective mechanism is com-
promised through ACE2 receptor downregulation in SARS-
CoV/-2, resulting in more prominent ARDS [38].

Since late 2020, mutations of SARS-CoV-2 are starting to
emerge. A few variants first spread rapidly among populations

in Great Britain (lineage B.1.1.7), South Africa (lineage
501Y.V2), and Brazil (lineages B.1.1.28.P1/P2), of whom
they thank their common names [45]. These now world-
wide present variants mainly contain mutations in the spike
(S) protein that affect the ACE2 binding domain and other
parts of the protein. It has been proposed that these mutations
result in increased ACE2 binding and internalization of the
virus leading to higher transmission rates of all three SARS-
CoV-2 variants [46]. Moreover, infection with the British var-
iant is associated with an increased risk of hospitalization and
mortality in the UK and Danish populations [47–49]. In addi-
tion, mutations found in the South African and the Brazilian
variant may affect the recognition and neutralization by anti-
bodies and thereby promote immune evasion, which could
result in higher re-infection rates as has been suggested for
the Brazilian variant [50–52]. How thesemutations affect peo-
ple with obesity is not yet clear, and awaits completion of
studies currently pursued.

COVID-19 immunopathology

In 10–20% of COVID-19 patients, a second more severe
phase of the disease develops typically 7 to 14 days post-
infection. This phase is characterized by respiratory failure
and acute respiratory distress syndrome (ARDS), as well as
multi-organ failure, which ultimately can lead to death
[53–55]. Deregulated innate and adaptive immune responses
are believed to be responsible for the life-threatening develop-
ment of the disease. The most prominent feature is a hyper-

Fig. 1 SARS-CoV-2 and cellular components in viral infection. The
spike (S), nucleocapsid (N), membrane (M), and the envelope (E) pro-
teins make up the main structural proteins of SARS-CoV-2. The cellular
angiotensin-converting enzyme 2 (ACE2) exopeptidase acts as a receptor

for SARS-CoV-2 spike protein (S) binding. Subsequent cleavage of S by
the cellular transmembrane serine protease 2 (TMPRSS2) results in mem-
brane fusion of the virus and its cell entry
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inflammatory response with strongly increased inflammatory
markers in the blood of patients, such as C-reactive protein
(CRP), ferritin, inflammatory cytokines, particularly
Interleukin (IL)-6, IL-1β, tumor necrosis factor α (TNF-α),
and chemokines like CCL2, CCL3, and CCL5 [56–62]. An
increased accumulation of macrophages and other phagocytic
immune cells was found in the lungs of patients with severe
disease [63, 64]. Studies suggest that activated macrophages
provoke further attraction of innate immune cells through the
release of inflammatory cytokines, which amplifies the secre-
tion of inflammatory cytokines causing failure to terminate the
inflammatory response, a condition termed cytokine storm
syndrome (CSS) [65, 66]. High concentrations of inflamma-
tory cytokines and chemokines can induce apoptosis of epi-
thelial and endothelial cells of the lungs and leakage of vas-
culature which ultimately results in severe lung damage ob-
served in patients with ARDS [65]. Effective treatment with
anti-inflammatory drugs like dexamethasone or hydrocorti-
sone (https://www.recoverytrial.net) [67, 68] or the anti- IL-
6 receptor antibody tocilizumab (https://www.remapcap.org)
[69–71] shows that the uncontrolled inflammatory response is
an important contributor to severe disease progression.
Furthermore, a strong increase in numbers of immature
neutrophil precursors and the occurrence of dysfunctional
mature neutrophils have been observed in the blood of
patients with severe COVID-19 disease probably reflecting a
defect in myelopoiesis [72, 73]. If and how these cells con-
tribute to the health deterioration of COVID-19 patients is
currently unclear. Both in mild and severe COVID-19 cases,
a decrease of lymphocytes in the blood has been observed,
particularly of natural killer (NK) cells and T-cells. Within the
T-cell compartment, CD8+ cytotoxic T-cells seem to be more
strongly affected [74]. In patients with severe disease progres-
sion, this lymphopenia is more pronounced. In addition, mo-
lecular signs of T-cell exhaustion are detectable particularly in
severe cases suggesting that anti-viral T-cell functioning is
compromised [75, 76]. It is not completely understood what
underlying causes are responsible for lower numbers and ex-
haustion of T-cells in severe disease cases. It has been pro-
posed that COVID-19 infection can induce apoptosis signal-
ing pathways in lymphocytes [77]. In addition, macrophages
induce lymphocyte apoptosis through Fas/Fas ligand interac-
tions or lymphocyte necrosis through high levels of secreted
IL-6 [78]. Furthermore, it has been suggested interferon (INF)
type I response is impaired in patients with severe disease
progression but not in patients with mild symptoms. Type I
interferons are secreted from infected cells, pathogen-sensing
macrophages, and dendritic cells, and induce interferon-
stimulated genes (ISGs) in the target cells mediating antiviral
response. Thereby, type I interferons activate both the innate
and adaptive immune system; they furthermore enhance anti-
gen presentation and induce a defense mechanism in cells
neighboring the infection site to limit viral spread. INF-α

levels in circulating white blood cells were found to be strong-
ly decreased particularly in severe COVID-19 cases similar to
the INF response gene signature, suggesting that mounting of
an anti-viral response is dampened in severe cases [79].
However, other data contradict these findings showing that
patients with severe disease progression can have a functional
INF type I response [62, 80, 81]. It was even suggested the
INF I response could increase the inflammatory state in pa-
tients with severe COVID-19 [82]. Thus, it is not clear if and
to which extend failure to mount an INF type I response con-
tributes to the severe progression of the disease.

Obesity and COVID-19

Soon after the COVID-19 outbreak, worldwide observations
revealed 70–90% of SARS-CoV-2 infected patients suffering
from respiratory failure who were admitted to the ICU are
overweight [83–85]. Since then, multiple studies revealed a
strong correlation between ICU admission and BMI, indepen-
dent of other (metabolic) risk factors. A Dutch study showed
90% of the SARS-CoV-2 infected patients with respiratory
failure had a BMI higher than 25 kg/m2 and a mean BMI of
30 kg/m2 and that the severity of the disease increases signif-
icantly with BMI [86]. Concurrently, COVID-19 patients re-
quiring mechanical ventilation in a Seattle-based cohort had a
mean BMI of 33 kg/m2 [87]. A Southern California–based
study linked BMI >40 to greater relative risk most strikingly
among patients aged 60 years or younger and in men. [88]. An
international multicenter retrospective cohort study revealed a
linear association between BMI and the need for invasive
mechanical ventilation (IMV) for critically ill COVID-19 pa-
tients, which was more pronounced in younger females and
independent of other metabolic risk factors. In addition, a non-
linear significant association between BMI and mortality was
observed in obesity class III (≥40 kg/m2) [89].

Altogether, the studies show that progression of obesity to
morbid obesity increases the risk for mechanical ventilation
and admission to the ICU by more than 2-fold and is signifi-
cantly linked to being male and having a high BMI. Obesity is
also known as an independent risk factor for disease severity
and mortality in the 2009 H1N1 influenza pandemic [90, 91].
Longer ICU length of stay was observed in infected obese
individuals even if they did not suffer from chronic conditions
which would have increased the risk of influenza-related com-
plications [92].

Mechanically, obesity impairs pulmonary function charac-
terized by a decline in expiratory reserve volume, functional
capacity, and respiratory system compliance. Abdominal obe-
sity jeopardizes these functions even more in the supine posi-
tion because of decreased diaphragmatic excursion [93].
Nonetheless, the so-called obesity paradox is a phenomenon
of reduced mortality with septic shock or sepsis and ARDS in
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patients who are overweight or obese [94, 95]. A possible
explanation for this phenomenon is the obesity-related chronic
pro-inflammatory milieu functions as a protective environ-
ment limiting a second, more aggressive infection, such as
sepsis or ventilation-induced infections [96]. In the case of
COVID-19, however, a high BMI is related to a higher risk
of developing respiratory failure and thus the need for me-
chanical ventilation [86, 87]. Normally, obese patients are
admitted to the ICU with mechanical hypoventilation as a
result of hypercapnic respiratory failure, but in SARS-CoV-
2 infection, the clinical presentation is hypoxic respiratory
failure. These findings suggest COVID-19 elicits an unusual
response. Therefore, even though obesity-associated comor-
bidities contribute indirectly to a severe disease course, it
seems there is an independent association between obesity
and COVID-19 severity. Several recent studies suggest that
the accumulation of visceral fat and immunological alterations
associated with obesity may be involved in developing a more
severe disease course.

Obesity and the innate immune system

Hypertrophic adipocytes, in particular in the visceral WAT,
recruit polarized macrophages that induce low-grade systemic
inflammation through the production of excessive amounts of
inflammatory cytokines, of which IL-6, TNF-α, IL-1, IL-10,
and MCP-1 are the most important (Fig. 2) [90, 97]. Infection
with SARS-CoV-2 may provoke a cytokine storm, character-
ized by a similar set of cytokines (IL-6, TNF-α IL-2, IL-7,
INF-Y, MCP-1) [90, 97]. The cytokine IL-6, in particular,
appears to be associated with a more severe disease course,
as higher levels of IL-6 were observed in non-survivors com-
pared to survivors of COVID-19 [97]. Adipose tissue can act
as a reservoir for the production and secretion of IL-6 and
hence amplify the cytokine storm and contribute to higher
mortality in COVID-19 [98]. In addition, the high cytokine
levels secreted from hypertrophic fat cells into the blood-
stream, including IL-6, counteract the termination of the
anti-viral immune response in the lungs of and thereby pro-
mote a cytokine storm in COVID-19 patients with a severe
disease development.

Obesity and the adaptive immune system

In addition to the innate immune system, obesity also affects
the adaptive immune system. The activation and function of
CD4+ and CD8+ T-cells are diminished in people with over-
weight or obesity. Metabolic changes in T-cells associated
with an impaired memory T-cell response were observed,
which makes people with obesity more prone to reinfection
[100]. Moreover, obese mice infected with H1N1 influenza

virus showed a diminished number of bone marrow resident
B-cells, normally acting as the primary memory cells respon-
sible for antibody production [101, 102]. SARS-CoV-2 infec-
tion shares several features of an altered adaptive immune
response with obesity. As described above, SARS-CoV-2 in-
fection also causes a significant reduction in circulating lym-
phocytes and T-cells. Lymphopenia was noted in over 80% of
infected patients. Especially decreased numbers of CD4+ and
CD8+ T-cells were observed in peripheral blood of COVID-
19 patients and were markers for a more severe disease course
[103]. The depletion of both CD4+ and CD8+ cells enables a
macrophage and neutrophil predominance in the immune re-
sponse [104]. In contrast, specific T-helper1 (Th1) and T-
helper17 (Th17) cells seem to be activated in SARS-CoV-2
and contribute to increased inflammation [105]. Th1 and Th17
cells have pro-inflammatory effects by inducing fibrosis and
insulin resistance and are abundantly present in the adipose
tissue of people with obesity [106]. It seems likely that the
imbalanced immune system connected to obesity exacerbates
the immunological derangements of the COVID-19 infection.

The renin-angiotensin-aldosterone system

The SARS-CoV-2 entry receptor ACE2 is a key component of
the renin-angiotensin-aldosterone system (RAAS, also called
renin-angiotensin system (RAS)), which plays an essential
role in maintaining blood pressure, and liquid and electrolyte
homeostasis. The RAAS cascade (Fig. 3) begins with
angiotensinogen (AGT) produced by the liver and its
cleavage/processing into angiotensin I (Ang I) by renin pro-
duced by the kidneys. Subsequently, Ang I is cleaved by
angiotensin-converting-enzyme (ACE) to form angiotensin
II (Ang II), which binds to Ang II type 1 receptor (AT1R)
(and to a lesser extend to AT2R). The ACE/AngII/AT1R axis
serves as a potent vasoconstrictor, stimulates aldosterone re-
lease, and regulates renal sodium reabsorption and potassium
excretion. In addition, the ACE/AngII/AT1R axis also has a
potent inflammatory and pro-fibrotic role and triggers impor-
tant adverse reactions such as myocardial hypertrophy and
dysfunction, endothelial dysfunction, obesity-associated hy-
pertension, interstitial fibrosis, and oxidative stress [38, 39,
107, 108]. ACE2 is a central factor in the negative control of
the Ang I/ACE/Ang II/AT1R axis by processing Ang II into
Ang 1-7, and in addition by direct conversion of Ang I into
Ang 1-9, which is subsequently processed into Ang 1-7 by
ACE or other peptidases. Ang 1-7 binds to the mitochondrial
assembly receptor (MasR), which results in vasodilatation,
anti-inflammatory, and anti-fibrotic effects. Hence, ACE2 is
important for maintaining balance in the RAAS, and higher
levels of ACE2 can induce a shift from the inflammatory
ACE/AngII/AT1R axis towards the protective ACE2/Ang1-
7/Mas axis [107].
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ACE2 is highly expressed by alveolar type II pneumocytes,
whose function is to produce surfactant, maintain self-renew-
al, and exert immunoregulatory functions. When a cell is in-
fected by SARS-CoV-2, the S-protein-ACE2 interaction and
subsequent membrane fusion lead to internalization of the
virus but also of ACE2 and thus result in a decrease in func-
tional ACE2. Less available ACE2 means less Ang II is con-
verted into Ang 1-7. This enhances the ACE/AngII/AT1R
axis and its adverse effects and may contribute to pulmonary
inflammation and coagulation in COVID-19 disease.
Accordingly, the plasma levels of Ang II are markedly elevat-
ed in SARS-CoV-2 infected patients and associate linearly to
viral load and lung injury [109]. Typically seen in lungs of
COVID-19 patients is infiltration of interstitial mononuclear
cells such as macrophages and monocytes and chronic inflam-
matory infiltrates [38, 110] that are believed to contribute to
lung damage (see paragraph: COVID-19 immunopathology).
This is consistent with the fact that downregulation of ACE2
enhances the adhesion of monocytes and neutrophils to endo-
thelial and mesangial cells through higher Ang II levels [111].
The disturbed balance of the ACE/AngII/AT1R axis in
COVID-19 patients might also contribute to the

thromboembolic complications often seen in these patients.
ACE2 function activates the fibrinolysis inducing plasmino-
gen activator (tPA) [112] while AngII through AT1R stimu-
lates the release of plasminogen activator inhibitor-1 (PAI-1)
from endothelial cells that counteracts tPA function and there-
fore acts prothrombotic [113–115]. Thus, the lower ACE2 and
elevated AngII function seen in COVID-19 patients probably
shift the tPA/PAI-1 balance towards a prothrombotic state
[116]. The connection between the ACE/AngII/AT1R axis
and the course of COVID-19 is further supported by the find-
ing that patients with variable degree of ACE2 deficiency
associated with, i.e., older age, hypertension, diabetes, cardio-
vascular disease, seem to develop a more severe disease [39].
Furthermore, the ACE/AngII/AT1R axis is linked with car-
diovascular disease, diabetes, and hypertension, which are all
associated with higher mortality in COVID-19 [33, 42].

The RAAS pathway is interconnected with the Kallikrein-
Kinin-System (KKS), the latter also being involved in inflam-
matory and thromboembolic disorders [117, 118]. There is
some evidence and speculation in the literature suggesting that
disturbances due to ACE2 deficiency caused by SARS-CoV-2
infection could be involved in inflammatory and

Fig. 2 Adverse systemic effects of fat accumulation in hypertrophic
adipocytes. In obese individuals, a surplus of energy is stored as fat in
hypertrophic adipocytes in the WAT. The hypertrophic fat cells secrete
chemokines causing infiltration by immune cells and polarization of
resident macrophages to the pro-inflammatory M1 type, resulting in

elevated secretion of pro-inflammatory cytokines. In addition, high leptin
secretion associated with leptin resistance in obese individuals further
contributes to the inflammatory phenotype. Together, these processes
elicit adverse systemic pro-inflammatory effects that aggravate COVID-
19 symptoms. Figure based on Fig. 2 in [99]
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thromboembolic risks of COVID-19 [113]. The KKS consists
of the coagulation factor XII (FXII), Prekallikrein (PK), and
high molecular weight kininogen (HK). Its activation results
in the generation of Bradykinin (BK) that has anti-
vasodilating function [119]. BK can be further metabolized
to des-Arg9-bradikinin (DABK) which is an important pro-
inflammatory mediator through activation of a G protein-
coupled receptor B1. DABK is also present on airway epithe-
lial cells and it has been suggested that ACE2 cleaves and
thereby inactivates DABK which contributes to the anti-
inflammatory function of ACE2 [119]. Therefore, the
COVID-19 induced ACE2 downregulation probably boosts
inflammation via both AngII and DABK.

The RAAS system also plays a major role in the chronic
inflammatory state observed in obesity.

White adipose tissue produces the major components of the
RAAS-pathway locally and their expression strongly in-
creases upon obesity [120–122]. In obese individuals, adipose
tissue is actually the most prominent tissue in the body that
produces Ang II [123–125]. Ang II is considered to be a major
pro-inflammatory adipokine linked to obesity, inflammation,
and insulin resistance [120, 123, 126, 127]. It has been shown
that Ang II induces the polarization of macrophages towards,
pro-inflammatory M1-type macrophages that are involved in
RAAS-related disturbances in obese individuals. When they
infiltrate in the adipose tissue in response to elevated Ang II
and secrete pro-inflammatory cytokines, they contribute to
disturbed adipocyte function but also to systemic

inflammation [128–130]. Mice AGT overexpression in adi-
pose tissue results in elevated Ang II levels and in increased
adipose and systemic inflammation [123, 124]. On the other
hand, inactivation of AGT resulted in reduced infiltration of
adipose tissues by macrophages, reduced inflammation, and
enhanced metabolic activity [131]. In obese, diabetic mice,
Ang II blockers lowered systolic blood pressure, and also
inhibited adipocyte hypertrophy, suppressed IL-6 expression,
and relieved oxidative stress [129].

The increased pro-inflammatory cytokine production due
to a dysregulated RAAS homeostasis inWAT of patients with
obesity probably contributes to increased severity of COVID-
19. In addition, obese and diabetic individuals show reduced
ACE2 expression in the vasculature which results in increased
vascular permeability and endothelial dysfunction that could
lead to complications in patients with a severe COVID-19
development [107, 132].

Leptin and growth hormone signaling
pathways

Leptin is a hormone mainly secreted by the WAT which has
various functions in both the endocrine and immune system
[86, 133–135]. Leptin secretion can be considered a satiety
signal, and its levels rise exponentially with increasing fat
mass. Leptin acts by binding to the leptin receptor (LEPR)
in the cell membrane of a wide range of cell types

Fig. 3 Graphic representation of the RAAS system. Angiotensinogen
(AGT) produced by the liver is processed into angiotensin I (Ang I) by
renin produced by the kidneys. Ang I is cleaved by angiotensin-
converting-enzyme (ACE) to form angiotensin II (Ang II), which binds
to Ang II type 1 receptor (AT1R) and to a lesser extend to AT2R. The
ACE/AngII/AT1R axis serves as a vasoconstrictor and has potent inflam-
matory and pro-fibrotic roles triggering lung endothelial dysfunction.

ACE2 negatively controls the Ang I/ACE/Ang II/AT1R axis by process-
ing Ang II into Ang 1-7. Ang 1-7 binds to the mitochondrial assembly
receptor (MasR) receptor, which results in vasodilatation and has anti-
inflammatory and anti-fibrotic effects. Upon infection by SARS-CoV-2
ACE2 is internalized together with the virus resulting in decreased levels
of functional ACE2 and in overactivation of the detrimental Ang I/ACE/
Ang II/AT1R axis

905J Mol Med (2021) 99:899–915



throughout the body. Its actions are complex and can be
separated into central functions involving the hypothalamus
and functions in peripheral tissues. Through its central hor-
monal function, it affects food intake, physical exercise,
energy balance, and adipose tissue mass. Leptin in concor-
dance with other hormones and regulators of energy expen-
diture indirectly affects insulin sensitivity, and other hor-
mone and cytokine functions. Its crucial role in metabolism
has been shown experimentally in lepR-deficient mice
models becoming obese due to increased food intake.
Similarly, human mutations also result in severe obesity.
We refer to several other publications for more in-depth
review [136, 137]. Obese individuals develop leptin resis-
tance over time through desensitization of the leptin recep-
tor resulting in increased production and secretion of leptin.

In addition to its role in energy regulation, leptin promotes
inflammatory reactions by acting on the leptin receptor pres-
ent on immune cells of both the innate and adaptive immune
system. Leptin increases monocyte and macrophage prolifer-
ation and thus increases the level of immune factors and cy-
tokines such as tumour necrosis factor alpha (TNF-α), IL-1,
and IL-6 [138, 139]. At the same time IL-1, TNF-α, and
lipopolysaccharides (LPS) can increase leptin levels, showing
the bidirectional effect that sustains a pro-inflammatory re-
sponse [139, 140]. These effects contribute to disruption of
the immune response [130] [134].

Increased leptin levels of patients with obesity contribute to
chronic low-grade inflammation associated with obesity,
which is believed to promote several obesity related diseases
such as type-2 diabetes, autoimmune diseases, and cardiovas-
cular diseases. In contrast, in malnourished individuals, circu-
lating levels of leptin are low, which suppresses the immune
response and makes these people more susceptible to infec-
tions [133, 139]. Excessive adipose tissue and high circulating
levels of leptin may contribute to severe progression of
COVID-19 and to development of respiratory failure and
ARDS. A small study demonstrated that COVID-19 patients
who needed mechanical ventilation had significantly higher
serum/blood leptin levels compared to a control group without
the need for mechanical ventilation [86]. These high leptin
levels in these SARS-CoV-2 patients correlated with their
BMI suggesting that obesity was the underlying cause of the
observed high leptin levels and thus of the more serious pre-
sentation of the COVID-19 disease. Based on these observa-
tions, the hypothesis was mounted that high leptin levels sup-
port development of a cytokine storm and (pharmacological)
interference with leptin production might be considered a pos-
sible treatment of COVID-19 [86].

Growth hormone (GH) is produced in and secreted from
the anterior pituitaryy gland. GH stimulates muscle mass,
bone density, and bone length during childhood and puberty,
and regulates lipid and carbohydrate metabolism during the
whole lifespan. GH binds to the growth hormone receptor

(GHR) that is expressed mainly in the liver and thereby stim-
ulates the production of the growth factor insulin-like growth
factor 1 (IGF1) and -2 (IGF-2). IGF-1 binds and activates the
IGF-1 receptor present at the membrane of many different cell
types and provokes a growth and proliferation signal [141].
Furthermore, the GH–IGF-1 signaling pathway is crucial for
the development and function of the immune system and its
disruption can result in immune system impairment as shown
in rodent models [142]. It has been demonstrated that GH
stimulates the proliferation, differentiation, and survival of
antigen-responsive B and T lymphocytes [142] and induces
the polarization of macrophages towards the anti-
inflammatory M2 type [143]. Strikingly, people with obesity
that have a high risk for a severe development of COVID-19
are characterized by strongly reduced GH levels [144]. It is
therefore tempting to speculate that the lack of GH in obese
patients might contribute to the strong lymphopenia particu-
larly observed in severe cases of the disease [74–76].
Furthermore, reduced GH levels are associated with an in-
creased pro-inflammatory function of macrophages and ele-
vated secretion of inflammatory cytokines like TNFα and IL6
[145], and therefore could promote the inflammatory syn-
drome that is associated with severe COVID-19. However,
the effects of GH deficiency and GH treatment on
monocyte/macrophage function and inflammatory cytokine
secretion are discussed controversially and GH treatment can
also have pro-inflammatory effects [146].

Another complication that is often observed with severe
COVID-19 is the occurrence of thrombosis in the venous
system and to a lesser extent in the arterial system, which
contributes to the increased mortality [147]. GH deficiency
can promote thrombosis because it results in an impairment
of the fibrinolysis system [148] and therefore could be con-
nected to COVID-19 associated thrombosis. Furthermore, GH
levels decrease also during ageing [141] and are generally
lower in males compared to females [149], which fits to the
strongly increased risk for a severe COVID-19 development
in older patients [150] and to the higher risk of male patients
[151–153]. Thus, treatment with recombinant human GH
could help to activate the adaptive immune system and damp-
en the severe course of the disease and might be beneficial
particularly for obese and older COVID-19 patients that suffer
from reduced GH levels [154].

Obesity and contagiousness

It has been described that virally infected individuals with
obesity are more contagious than lean counterparts [90, 155,
156]. For example, the amount of influenza virus in exhaled
breath positively correlates with BMI [156]. Several mecha-
nisms contribute to this increased contagiousness. To begin
with, viral shedding is prolonged to 104% and thus chances of
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spreading the virus are increased [155]. Furthermore, the
disrupted immune response causes delayed production of in-
terferons which gives the virus the opportunity to replicate
more RNA and get more virulent [157, 158]. These findings
indicate that a population with a high number of patients with
obesity might increase the risk of the appearance of more
virulent viruses and will eventually lead to higher mortality
overall [90]. COVID-19 is rapidly spreading around parts of
the world particularly where obesity prevalence is alarmingly
high, for example in the United States of America, where
more than 40% of the residents live with obesity (WHO,
https:/www.who.int). It is possible that the high prevalence
of obesity contributes to the rapid and extensive spread of
SARS-CoV-2 in these countries.

Vaccination and obesity

Host factors such as age, sex, pregnancy, and immune history
play an important role in virus vaccine efficacy [159]. Obesity
also has an impact on this efficacy; adults with obesity have a
two times higher risk, respectively 9.8% compared to 5.1% in
leaner counterparts, for developing influenza or influenza-like
illnesses after developing efficient antibody response to the
given trivalent influenza vaccine [160]. It is thought that lower
effectiveness of the influenza vaccine is mediated by poor T-
cell function. In obese individuals, the activation of cytotoxic
T-cells through mononuclear cells from peripheral blood is
decreased and expression of functional markers like granzyme
B and IFN-γ is diminished [161]. Obese mice have decreased
numbers of B-cells in the bone marrow, which are the most
important memory cells responsible for formation of antibod-
ies [162]. In addition, an increased production of non-
neutralizing antibodies and a decreased production of
influenza-specific antibodies were seen in reaction to an adju-
vant influenza vaccine [163]. It was suggested that chronic
inflammation in obesity might play a role in the reduced effi-
cacy of inactivated monochronic influenza vaccine [164].
Increasing the dose or using an adjuvant was not efficient
when obese mice had been infected with the influenza virus
[163]. Another study aimed to compare the serologic response
to a monovalent H1N1 influenza vaccine in children and
adults of various BMI. After a single dose of H1N1 vaccine,
higher geometric mean titers (GMT) of hemagglutination in-
hibition antibody (HAI) were seen in adults with obesity com-
pared to leaner counterparts, even after correcting for age,
race, and pre-vaccination [165]. No difference was seen in
serologic response after two doses [161, 165, 166]. After 12
months post-vaccination, obese individuals had significantly
lower activation of CD4+ and CD8+ T-cells when challenged
with H1N1 ex vivo [161, 167]. Hence, these findings suggest
that developing an efficient immune response is not enough to
ensure long-term protection in people with obesity.

Discussion and conclusion

Here we have reviewed the literature on COVID-19 and its
relation to obesity as a major risk factor for severe disease
development. A meta-analysis assessing COVID-19 fatality
rates clearly reveals age as the foremost risk factor. The study
demonstrates that differences in the population age structure
and age-specific incidence of severe COVID-19 explain near-
ly 90% of the geographical variation in population infection-
related fatality rates (IFR; the proportion of deaths among
confirmed cases of the disease). The analysis shows an expo-
nential relationship between age and IFRwith very low values
for children and younger adults, progressively increasing to
0.4% at age 55, 1.3% at age 65, 4.2% at age 75, and 14% at
age 85 [168]. COVID-19 appears to affect men more severely
than women with higher mortality rates [151–153, 169]. A
combination of different factors, both biological and environ-
mental, likely contributes to the gender difference. For exam-
ple, plasma levels of C reactive protein (CRP), ferritin, and
other inflammatory markers are significantly higher in male
patients. This points to a heightened inflammatory response in
men with COVID-19. Different mechanisms contributing to
this heightened inflammatory response have been proposed
like lower ACE2 levels in males compared to females which
have been associated with a more severe course of infection or
the testosterone-induced expression of the transmembrane
protease, serine 2 (TMPRSS2) that is involved in SARS-
CoV-2 spike protein priming and cell fusion. Furthermore,
data from mouse models suggest a protective function of es-
trogens in COVID-19 infection through suppression of
monocyte–macrophage recruitment [169]. Another meta-
analysis revealed several comorbidities for developing severe
COVID-19, including obesity, cardiovascular disease, diabe-
tes, respiratory disease (including severe asthma), a history of
hematological malignancy or recent other cancer, kidney, liv-
er, and neurological diseases, and autoimmune conditions
[170]. Metabolic disturbances superimposed on age-related
immunological decline would explain most of the COVID-
19 cases with severe course of the disease. Since responding
(naïve) T-cells are reduced by age or through immunological
derangements caused by obesity-related systemic inflamma-
tion, the compromised immune system fails to adequately
mount an effective T-cell response upon infection with
SARS-CoV-2. In addition, the prevailing innate immune re-
sponse in the lungs causes a misbalance in inflammatory cy-
tokine secretion that might be reinforced by the chronic in-
flammation associated with ageing and/or obesity resulting in
a cytokine storm syndrome, which causes tissue damage.
Particularly, the high circulating levels of the pro-
inflammatory adipokine leptin in patients with obesity togeth-
er with the reduced expression of the anti-inflammatory-acting
ACE2 receptors in the lung epithelium of infected patients
counteract the clearance of the innate immune response with
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fatal consequences for the patients. With the use of known
anti-inflammatory-acting drugs like glucocorticoids and/or
IL-6 inhibitors, it might be able to suppress the overacting
innate immune system, which was shown to be beneficial at
least in a subset of hospitalized COVID-19 patients. At the
end, vaccination will be the most effective measure in the
battle against the SARS-CoV-2 virus and its associated com-
plications. However, also here the high-risk patients like the
elderly and those with obesity might have the disadvantage of
a less efficient immune response and/or a shorter lasting im-
mune memory that limit the vaccination effectivity.
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