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Obstructive sleep apnea is a common disorder whose prevalence is
linked to an epidemic of obesity in Western society. Sleep apnea is
due to recurrent episodes of upper airway obstruction during sleep
that are caused by elevations in upper airway collapsibility during
sleep. Collapsibility can be increased by underlying anatomic alter-
ations and/or disturbances in upper airway neuromuscular control,
both of which play key roles in the pathogenesis of obstructive sleep
apnea. Obesity and particularly central adiposity are potent risk
factors for sleep apnea. They can increase pharyngeal collapsibility
through mechanical effects on pharyngeal soft tissues and lung
volume, and through central nervous system–acting signaling pro-
teins (adipokines) that may affect airway neuromuscular control.
Specific molecular signaling pathways encode differences in the
distribution and metabolic activity of adipose tissue. These differ-
ences can produce alterations in the mechanical and neural control
of upper airway collapsibility, which determine sleep apnea suscep-
tibility. Although weight loss reduces upper airway collapsibility
during sleep, it is not known whether its effects are mediated
primarily by improvement in upper airway mechanical properties
or neuromuscular control. A variety of behavioral, pharmacologic,
and surgical approaches to weight loss may be of benefit to patients
with sleep apnea, through distinct effects on the mass and activity of
regional adipose stores. Examining responses to specific weight loss
strategies will provide critical insight into mechanisms linking
obesity and sleep apnea, and will help to elucidate the humoral
and molecular predictors of weight loss responses.
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Obstructive sleep apnea is a common chronic disease in
Western society whose prevalence is estimated at 2% of women
and 4% of men in the general population (1). It is characterized
primarily by recurrent occlusion of the upper airway that results
in oxyhemoglobin desaturation and periodic arousals from sleep
(2). It now appears that even mild to moderate sleep apnea is
associated with the development of hypertension, diabetes
mellitus (3), and cardiovascular risk (4, 5). With increasing
obesity, sleep apnea can contribute to the development of
daytime alveolar hypoventilation (obesity hypoventilation syn-
drome), cor pulmonale, and frank respiratory failure (6, 7).
Thus, given its high prevalence and morbidity, sleep apnea
poses a significant clinical burden to Western society.

Concerns about the health impact of sleep apnea have been
increasing in light of the growing epidemic of obesity in
Western society and worldwide (8, 9). The most recent National

Health and Nutrition Examination Survey (NHANES) data
document a dramatic rise in the prevalence of obesity, with
prevalence estimates of approximately 60% (body mass index
[BMI] . 25 kg/m3) and 30% (BMI . 30 kg/m3) in overweight
and obese adults, respectively (10). The NHANES data also dem-
onstrate that the prevalence of severe obesity (BMI . 40 kg/m2)
has risen to epidemic proportions from 2.9% of the U.S. adult
population in 1988–1994 to 4.8% in 2003–2004. Current data
from the Behavioral Risk Factor Surveillance System indicate
that increases in severe obesity have disproportionately affected
African Americans, women, young adults, and those of lower
socioeconomic status in American society (8, 9), and clinical
data from bariatric case series document the presence of sleep
apnea in the vast majority of the severely obese (11). Neverthe-
less, the mechanisms linking obesity to the development and
progression of sleep apnea remain unclear.

SLEEP APNEA RISK FACTORS: ROLES OF OBESITY, SEX,
FAT DISTRIBUTION, AND HERITABLE FACTORS

Several risk factors, including obesity, male sex, age, and
heritable factors, have been associated with an increased prev-
alence of obstructive sleep apnea in the general population (1).
Among these, obesity is one of the strongest sleep apnea risk
factors (12–15). Mild to moderate obesity has been associated
with markedly increased sleep apnea prevalence (3, 14, 16). In
a community-based cohort of middle-aged subjects, Young and
colleagues (1) showed that a 1-SD increase in BMI was associ-
ated with a fourfold increased risk for prevalent sleep apnea, and
we have demonstrated a sleep apnea prevalence of approximately
40% in moderately overweight men from the community who
are otherwise healthy (3). In severe obesity (BMI . 40 kg/m2),
the prevalence of sleep apnea was estimated to vary between 40
and 90% (17–24), and the severity of sleep apnea was generally
greater than that found in leaner clinical populations (17, 25,
26). In addition, Peppard and colleagues have provided further
evidence for a link between sleep apnea and obesity by demon-
strating that a 10% change in body weight was associated with
a parallel change of approximately 30% in the apnea–hypopnea
index (AHI), the major index of sleep apnea severity (16).

It is well recognized that male sex also constitutes a partic-
ularly strong risk factor and confers a two- to threefold in-
creased risk of sleep apnea in the population at large (14, 27).
This increased risk may be related to the differences in the
distribution of adipose tissue in men (28–30), who exhibit
a predominantly central fat deposition pattern around the neck,
trunk, and abdominal viscera compared with women (31, 32).
Increases in visceral fat with age may also account for an
increase in sleep apnea prevalence in middle-aged and older
men and in postmenopausal women (33). Newman and coau-
thors (34) have compared the effect of weight change on sleep
apnea progression in male and female participants in the Sleep
Heart Health Study, a multicentered epidemiologic cohort
study of cardiovascular correlates of sleep apnea in middle-
aged and older Americans. These authors demonstrated that
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relatively small increases in body weight were associated with an
increasing severity of sleep apnea, and that this increase was
particularly striking in men compared with women. Thus, obesity
and central obesity constitute potent risk factors for the pres-
ence and progression of sleep apnea.

Despite the preponderance of evidence linking obesity and
central adiposity with sleep apnea, considerable variability exists
in the prevalence and severity of this disorder, even among those
who are markedly obese. In severely obese patients presenting
for bariatric surgery, sleep apnea severity did not correlate with
the degree of obesity, as assessed by BMI (35). To determine
the prevalence and severity of sleep apnea in markedly obese
men and women, a large cohort of bariatric surgery patients
(n 5 114) was screened at the Johns Hopkins Sleep Disorders
Center with overnight sleep studies. Using specific cutoff values
of the AHI to define the prevalence and severity of sleep apnea,
we found that sleep apnea was present in 95.7% of men and
65.9% of women at a cutoff of AHI . 10 events/hour, and that
moderate to severe sleep apnea was present in 65.2% of men
and 23.1% of women at an AHI cutoff of . 30/hour. Although
age was comparable between men and women, indices of
central adiposity were substantially higher in men than women,
as expected (see neck, waist, and sagittal girth in Table 1), and
remained elevated even after these dimensions were normalized

to stature (height; data not shown). In those with sleep apnea
(AH1 . 10/h), sleep apnea was more severe in men than women
(Table 2), as evidenced by significantly higher AHI, lower
average low oxyhemoglobin saturation (SaO2

), larger desatura-
tions (DSaO2

), and a greater proportion of complete apnea (vs.
hypopnea). Using multiple linear regression, we found that the
percentage of variability in AHI explained (R2) by age, BMI,
and neck circumference was estimated for males and females. In
women, sleep apnea severity (AHI) correlated with BMI, age,
and neck circumference. These factors each accounted for 7.5,
11.1, and 11.2% of the variability in AHI, respectively, and
together accounted for 23.1% of the variability in AHI. In
contrast, these parameters were not significantly associated with
AHI in the men either singly or in combination, and could only
account for 15.7% of the variability in AHI at maximum. These
findings indicate that, despite marked variation in body weight
and fat distribution, the most potent sleep apnea risk factors
only predict a small proportion of the variability in sleep apnea
severity, and suggest that underlying mechanisms linking sleep
apnea and obesity remain to be elucidated.

In addition to obesity, hormonal status may impact on sleep
apnea susceptibility, particularly in women. Postmenopausal
women demonstrate increases in sleep apnea prevalence and
severity compared with premenopausal women (36–40). Nev-
ertheless, it is unclear whether female sex hormones protect
obese women from developing sleep apnea, because conflicting
responses to hormone replacement therapy have been observed
in clinical and epidemiologic studies (41–43). Androgens appear
to play a significant role in the pathogenesis of sleep apnea in
obese women with polycystic ovarian disease, in whom the
prevalence of sleep apnea well exceeds that in similarly obese
women without this disorder (44). Moreover, the severity of
sleep apnea in women with polycystic ovarian disease is related
to the serum androgen concentrations (44), suggesting that male
sex hormones promote the development of sleep apnea. Nev-
ertheless, a substantial proportion of obese women are pro-
tected from the development and/or progression of sleep apnea
(45), although the humoral mechanisms conferring protection
remain largely unknown.

TABLE 1. DISTRIBUTION OF ANTHROPOMETRIC AND SLEEP
PARAMETERS IN SEVERELY OBESE MEN AND WOMEN

Males (n 5 23) Females (n 5 91)

Mean SD Mean SD P Value

Age, yr 40.9 8.9 41.9 9.3 0.653

Anthropometrics

BMI, kg/m2 51.5 7.5 49.1 0.9 0.207

Neck, cm 47.7 4.7 40.8 0.4 ,0.001

Waist, cm 151.6 16.4 130.0 1.7 ,0.001

Hip, cm 150.2 18.7 142.7 2.0 0.088

Waist-to-hip ratio 1.01 0.09 0.93 0.02 0.104

Girth, cm* 35.2 5.0 31.8 4.2 0.002

Sleep architecture

Total sleep time, min 342.7 93.0 391.3 65.9 0.005

Sleep efficiency, % 81.1 13.7 85.4 11.7 0.129

Stage 1, % 24.5 19.6 13.7 13.3 0.002

Stage 2, % 57.4 16.9 60.6 11.3 0.280

Stage 3/4, % 5.0 7.1 11.1 9.2 0.004

Non-REM, % 87.0 9.7 85.4 7.5 0.406

REM, % 13.0 9.7 14.6 7.5 0.405

Apnea–hypopnea index, events/h

Non-REM 54.1 38.2 23.6 32.9 ,0.001

REM† 56.8 28.5 38.0 29.0 0.014

Total 54.6 36.1 26.4 31.6 ,0.001

Baseline SaO2
, %

Non-REM 95.0 2.4 95.8 1.6 0.062

REM† 93.6 5.9 95.1 2.6 0.101

Total 94.9 2.8 95.7 1.6 0.079

Average low SaO2
, %

Non-REM 88.4 5.2 91.2 2.7 ,0.001

REM† 84.7 8.5 88.8 5.6 0.012

Total 87.9 5.4 90.5 2.9 0.002

DSaO2
, %

Non-REM 6.7 3.5 4.6 1.9 ,0.001

REM† 8.9 4.8 6.2 3.6 0.010

Total 7.0 3.5 5.2 2.0 0.001

Ratio of apnea to total disordered breathing time

Non-REM 0.33 0.31 0.18 0.23 0.003

REM† 0.40 0.36 0.23 0.28 0.034

Total 0.32 0.26 0.19 0.21 0.009

Definition of abbreviation: BMI 5 body mass index.

* Girth was measured in 78 women and 21 men.
† Twelve subjects (7 women and 5 men) had no REM sleep.

TABLE 2. SLEEP-DISORDERED BREATHING PARAMETERS IN MEN
AND WOMEN WITH SLEEP APNEA*

Males Females

n Mean SD n Mean SD P Value

Apnea–hypopnea index, events/h

Non-REM 20 61.6 7.8 47 41.9 5.5 0.049

REM 16 63.1 5.8 70 44.7 3.2 0.014

Total 22 57 7.5 60 37.5 4.4 0.025

Baseline SaO2
, %

Non-REM 20 94.8 0.1 47 95.6 0.3 0.168

REM 16 93.1 1.5 70 94.8 0.3 0.084

Total 22 94.8 0.6 60 95.5 0.2 0.121

Average low SaO2
, %

Non-REM 20 87.7 1.2 47 90.4 0.4 0.009

REM 16 83.7 2.1 70 88.2 0.7 0.013

Total 22 87.5 1.1 60 90.0 0.4 0.010

DSaO2
, %

Non-REM 20 7.1 0.8 47 5.2 0.3 0.007

REM 16 9.4 1.2 70 6.7 0.4 0.014

Total 22 7.3 0.7 60 5.5 0.3 0.009

Ratio of apnea to total disordered

breathing time

Non-REM 18 0.42 0.07 45 0.23 0.04 0.010

REM 13 0.53 0.09 53 0.29 0.04 0.010

Total 16 0.36 0.06 53 0.23 0.03 0.059

* Apnea–hypopnea index . 10 episodes/hour.
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Investigators have examined whether heritable factors can
be implicated as determinants of sleep apnea susceptibility.
Recent studies demonstrating familial aggregation and a racial
predisposition to sleep apnea in individuals of African-American
and Asian descent have suggested that heritable factors con-
tribute to the development of sleep apnea (46–48) and to upper
airway structural phenotypes (49). Further studies of the Cleve-
land Family Study cohort have demonstrated that sleep apnea
(AHI) and obesity phenotypes are heritable (50). In further
analyses, these investigators have demonstrated that AHI and BMI
cosegregate. Obesity contributed substantially to the heritability
of sleep apnea (51), and obesity accounted for the strongest
associations between sleep apnea and specific genetic loci (52).
Currently, the challenge in identifying distinct polymorphisms
linked to sleep apnea may reflect the inherent phenotypic
heterogeneity of this complex, polygenic disorder (53), rather
than a lack of genotypic resolution. It will be necessary to
establish specific intermediate traits that predispose or protect
from sleep apnea before genetic markers of sleep apnea and
obesity can be decoupled.

OBESITY AND UPPER AIRWAY
NEUROMECHANICAL CONTROL

Modeling Upper Airway Function

Investigators have pointed to alterations in upper airway
collapsibility during sleep as a key determinant of sleep apnea
susceptibility. In early studies, upper airway collapsibility during
sleep was found to vary along a continuum from health to
disease (54–56). The severity of upper airway obstruction during
sleep is related to quantitative differences in pharyngeal col-
lapsibility, as reflected by elevations in the critical closing
pressure (Pcrit). Moreover, as Pcrit fell below a minimally
negative threshold of approximately 25 cm H2O, sleep apnea
remitted, suggesting that changes in Pcrit play a pivotal role in
the pathogenesis of this disorder (see Figure 1, right) (25, 57–
61). In further studies, investigators have demonstrated that
Pcrit is determined by mechanical and neural factors that
regulate pharyngeal collapsibility (62–67). Investigators mea-
suring airway collapsibility in the absence of neuromuscular
activity have demonstrated small, but consistent elevations in
Pcrit in patients with sleep apnea compared with normal
subjects (68–70). These findings suggest that structural alter-
ations predispose to upper airway obstruction during sleep
when neuromuscular activity wanes (71). In further studies,
investigators have demonstrated that structural defects may
arise from soft tissues that compress the pharynx (72–75) and/or
a loss of caudal traction on the upper airway from mediastinal,
ribcage, and muscle attachments (63, 74, 76, 77).

In addition to alterations in upper airway structural control,
disturbances in neuromuscular control play a role in sleep apnea
pathogenesis. In general, upper airway obstruction elicits com-
pensatory neuromuscular responses that maintain upper airway
patency and prevent sleep apnea from developing. These
responses can restore airway patency by recruiting muscles that
dilate and elongate the airway (63, 65, 66, 67, 78–84). In patients
with sleep apnea, impaired neural responses to airway obstruc-
tion account for the marked elevation in Pcrit during sleep
compared with normal individuals (54–56). A disturbance in
neuromuscular control is further suggested by comparisons of
critical pressures measured during sleep (54–56) with those
assessed in paralyzed, anesthetized subjects (69, 85). Pcrit in-
creased from 213 cm H2O during sleep to near zero (atmo-
spheric) during neuromuscular blockade in normal subjects,
which approaches levels observed in patients with sleep apnea

both during sleep and while under anesthesia. More recently,
methods have been developed for quantifying active neuromus-
cular responses in sleeping subjects, and a defect in these active
responses has been demonstrated in patients with sleep apnea
compared with normal subjects. This defect in neuromuscular
control was independent of age, obesity, and sex (86), and may be
caused by sleep-related reductions in dilator activity during sleep
compared with wakefulness (87, 88) or by a loss of compensatory
responses during sleep (87–99). Thus, current evidence indicates
that sleep apnea is associated with fundamental disturbances in
upper airway mechanical (68, 100, 101) and neuromuscular control
(80, 102–106) (see Figure 1, left), and suggests that a combined
defect is required to produce sleep apnea (86). Nevertheless, the
impact of obesity on upper airway mechanical and neural
properties has not been elucidated.

Mechanical Effects of Obesity

Obesity is associated with anatomic alterations that predispose
to upper airway obstruction during sleep. These alterations may
accrue from adiposity around the pharynx and torso as follows.
First, increases in neck circumference and fat deposited around
the upper airway (12, 72, 107–109) in obesity might narrow the
upper airway. Second, upper airway collapsibility is higher in
obese compared with nonobese individuals (25), and does not
decrease appropriately when the pharynx is dilated by advanc-
ing the mandible anteriorly (110). Third, obesity and especially
central obesity have been associated with reductions in lung
volume (111), which leads to a loss of caudal traction on the
upper airway, and an increase in pharyngeal collapsibility (63,
76–78, 84, 112, 113), increasing continuous positive airway
pressure requirements (114) and a greater severity of sleep
apnea (115). Thus, obesity imposes mechanical loads on both
the upper airway and respiratory system that predispose
to upper airway narrowing, collapse, and airflow obstruction
during sleep (Figure 1). Although central adiposity is associated

Figure 1. Obesity and the modulation of upper airway collapsibility
and sleep apnea susceptibility. Upper airway collapsibility during sleep

is represented by the critical pressure (Pcrit), which spans a range from

health (negative) to disease (positive). Pcrit is determined by the
mechanical loads imposed by boney structures and soft tissues on

the pharynx, and are offset by neuromuscular responses to airway

obstruction. Obesity can influence passive mechanical loads and

neuromuscular control, thereby modulating upper airway collapsibility
and sleep apnea susceptibility. See text for details.

Schwartz, Patil, Laffan, et al.: Obesity and Obstructive Sleep Apnea 187



with structural defects that compromise airway patency, the
mechanisms causing these elevations in upper airway mechan-
ical loads in obesity are not well understood.

Neuromuscular Effects of Obesity

Obesity may modulate upper airway neuromuscular control. Its
effect is suggested by studies demonstrating improvements in
critical pressure and sleep apnea after weight loss (25, 116).
Central adiposity may lead to disturbances in neuromuscular
control because men have a greater severity of sleep apnea in
clinical and community-based cohorts than do women (1), and
even lean men demonstrate subtle defects in upper airway
neuromuscular responses to mechanical loads compared with
lean women (87, 117–120). These findings are consistent with
the notion that central obesity is associated with a marked
blunting of upper airway neuromuscular responses (Figure 1),
although the mechanisms linking regional adiposity and neural
responses have not been delineated.

PUTATIVE ADIPOKINE MODULATORS OF UPPER
AIRWAY FUNCTION

Obesity and sleep apnea are often associated with dysregulation
of glucose and lipid metabolism (121–125), although the precise
mechanisms for these associations are not well understood. In
recent years, investigators have examined metabolic responses
to excess caloric intake and have identified specific signaling
factors responsible for disturbances in metabolic and upper
airway control. As fat accumulates in adipose stores, it secretes
humoral factors or adipokines that may influence upper airway
function during sleep (126, 127). On the one hand, these factors
regulate the distribution of body fat between the central
(visceral) and peripheral (subcutaneous) compartments, which
can influence mechanical loads on the upper airway. In rodent
models of obesity (128, 129), exogenous leptin leads to marked
reductions in visceral and total body fat compared with diet-
restricted pair-fed control animals (128, 129), whereas adipo-
nectin reduces visceral adiposity selectively (130). In humans,
leptin rises with increasing obesity, and is secreted preferen-
tially by subcutaneous rather than visceral fat (131, 132), thus
accounting for higher serum concentrations in women than men
(133). In contrast, adiponectin rises steeply with weight loss
(134), and especially with the loss of visceral adiposity (135,
136). Thus, leptin and adiponectin may lower sleep apnea sus-
ceptibility by reducing central adiposity and pharyngeal struc-
tural loads.

Obesity also induces an inflammatory state directly, because
adipose tissue is an abundant source of proinflammatory cyto-
kines, including tumor necrosis factor (TNF)-a, IL-6, and others
(131, 132, 137, 138), as well as the profibrogenic adipokine leptin
(139–141). In addition, adipose tissue elaborates humoral fac-
tors that may act centrally on the regulation of upper airway
neuromuscular control. Leptin has been demonstrated to stim-
ulate CO2 ventilatory responses in mice (126, 142–144). Its
action is antagonized by other adipose-related factors, namely
the soluble leptin receptor (sOB-R) and C-reactive protein
(CRP) (145), which bind circulating leptin and can decrease
its central nervous system (CNS) uptake and action (145, 146).
Levels of sOB-R and CRP are elevated in sleep apnea
compared with matched control patients (147, 148) and decline
with weight loss and the loss of visceral compared with central
adiposity. Other adipokines, including TNF-a, (IL-1b, and IL-6,
are markedly elevated in obesity and especially in central
obesity (131, 132, 147). Their somnogenic activity (149–153)
may lead to a global depression on CNS activity and upper

airway neuromuscular control. As disturbances in upper airway
neuromotor control ensue, increases in sleep apnea severity
(154) can trigger further elevations in proinflammatory cyto-
kines and exacerbate sleep apnea (147, 148, 155–160).

WEIGHT LOSS, SLEEP APNEA, AND UPPER
AIRWAY FUNCTION

Weight loss remains a highly effective strategy for treating sleep
apnea (25, 116, 161–168). In two controlled studies, investiga-
tors have demonstrated that a 10 to 15% reduction in body
weight leads to an approximately 50% reduction in sleep apnea
severity (AHI) in moderately obese male patients (25, 116). In
recent years, bariatric surgical procedures have been increas-
ingly used for the treatment of severe obesity. These procedures
combine gastric restriction and/or intestinal bypass to induce
early satiety and nutrient malabsorbtion, respectively (35, 169–
172), and lead to an approximately 60% loss in excess body
weight in the first 12 to 18 months postoperatively (173–185). In
a recent meta-analysis of bariatric studies involving 22,094
patients, Buchwald and colleagues (11) have documented dramatic
improvement in the vast majority of patients after surgery, with
reductions in AHI of 33.9 episodes/hour (95% confidence
interval [CI], 17.5–50.2 episodes/h) and sleep apnea resolution
in 85.7% (95% CI, 79.2–92.2%) of patients.

Improvements in sleep apnea with weight loss have been
related to effects of adiposity on upper airway function during
sleep. In controlled weight loss intervention studies, we dem-
onstrated decreases in upper airway collapsibility (Pcrit) during
sleep with weight loss (25, 116), which can be attributed to
reductions in mechanical loads or improvements in pharyngeal
neuromuscular control. These mechanisms may be related to
alterations in humoral factors, including ghrelin, adiponectin,
and leptin (134, 186–189), which have been linked to changes in
body weight and regional adiposity. Of note, increases in ghrelin
correlate with the amount of weight lost, whereas leptin,
adiponectin, and endocannabanoids (190) can modulate the loss
of weight from visceral and subcutaneous fat stores. Age-related
variations in these neurohumoral factors may also account for
the recurrence of sleep apnea over time even when substantial
weight loss is maintained (191). Thus, it appears that humoral
effects of circulating adipokines can influence weight loss pat-
terns and adipokine profiles in regional adipose depots, which
can account for wide variations in sleep apnea and upper airway
responses to weight loss.

CONCLUSIONS

Obesity is a potent risk factor for the development and pro-
gression of sleep apnea (Figure 1). Its effect on sleep apnea
susceptibility is related to the distribution of adiposity between
the central and peripheral compartments. Central obesity
accounts for the strong male predominance of this disorder,
whereas peripheral adiposity may protect women from de-
veloping sleep apnea. Obesity and particularly central adiposity
can increase sleep apnea susceptibility by increasing upper
airway mechanical loads and/or decreasing compensatory neu-
romuscular responses. These effects may be mediated by
circulating adipokines, which influence body fat distribution
and CNS activity. As patients with sleep apnea lose weight,
improvements in upper airway function and disease severity are
likely related to the amount and patterns of weight loss as well
as relative changes in protective and pathogenic adipokines.
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