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Obesity is a global health concern among adults and

children of both sexes and has major societal and economic

costs. The number of women of reproductive age who are

overweight (body mass index [BMI] ¼ 25–30 kg/m2) or

obese (BMI > 30 kg/m2) continues to increase, with the

incidence of obesity among pregnant women now

estimated at between 18.5 and 38.3%.1 The economic cost

of obesity in pregnancy is greater than $100 million annu-

ally.2 Maternal obesity affects the continuum of pregnancy.

Fertility and fecundity rates are lower among overweight

and obese women, in spontaneous conception as well as in

artificial reproductive techniques.1 During pregnancy,

these women are more susceptible to hypertensive disor-

ders, gestational diabetes, respiratory complications, and

thromboembolic events.1,3–6 While unknown cause

remains the most common contributor to stillbirth with

40% of these cases occurring in late gestation,7 up to 25% of

stillbirths between 37 and 42 weeks of gestation are

perhaps due to obesity.8 Indeed obesity may explain the

increased morbidity including the increased risk (2.8 fold)

of late stillbirth, particularly inmales, in such pregnancies.9

Overweight women also have a slower labor progression

rate; higher rates of cesarean deliveries10; and more

surgery-related complications such as difficult spinal,

epidural, or general anesthesia, wound infection, and

endometritis.1,3 From the fetal and newborn perspective,

complications include congenital malformations,11 large-

for-gestational-age infants,12 intrauterine growth restric-

tion, stillbirth, and shoulder dystocia. Finally, the effects are

not confined to pregnancy alone. Obese and also gestational

diabetic women have greater rates of type 2 diabetes13 and

cardiovascular disease later in life.
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Abstract An increasing number of women of reproductive age are obese which affects the

continuum of pregnancy and is associated with an increased incidence of adverse

maternal and fetal outcomes, including preeclampsia, preterm birth, stillbirth, congen-

ital anomalies, and macrosomia. Maternal obesity is associated with an increased

incidence of metabolic and cardiovascular disease later in life in the mother and in the

offspring who are developmentally programed by the obese pregnancy environment.

The placenta transduces and mediates the effect of the adverse maternal environment

to the fetus. The obese maternal environment is characterized by hyperlipidemia and an

exaggerated state of inflammation and oxidative stress compared with normal preg-

nancy. Heightened inflammation and oxidative/nitrative stress are found in the placenta

in association with placental dysfunction. We have described reduced mitochondrial

respiration and ATP generation in trophoblast isolated from placentas of obese

compared with lean women, again suggesting compromised placental function. In

utero development exhibits sexual dimorphism with the male fetus at greater risk of

poor outcome. We have shown dimorphism in inflammation-mediated regulation of

trophoblast mitochondrial respiration. There is also increasing evidence that the obese

in utero environment may cause epigenetic changes in placenta leading to altered

function.
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Obesity and Developmental Programing

By virtue of its location and roles at the interface between the

mother and fetus, the placenta is the key regulator of fetal

growth and development.14 The placenta not only conveys the

maternal metabolic environment to the fetus but can also

becomeboth a target and a source of pathogenic factors affecting

the fetus.15Developmental programing occurswhen the normal

developmental pattern is disrupted by inappropriate or ill-timed

signals reaching the fetus or neonate which is then set on an

altereddevelopmental trajectory that can lead todisease in adult

life.16A largebodyofevidence17 shows that anadverseor altered

intrauterine or early postnatal environment, including obesity,

can program for disease in adult life including cardiovascular

disease, obesity andmetabolic syndrome, diabetes, osteoporosis,

cancer, and disorders of the hypothalamic/pituitary/adrenal

axis.1,3,18–20Hence,while obesewomenmay havebabieswithin

the normal birth weight range, with normal sized placentas and

apparently a normal outcome there may be a programing effect

on the fetus that is only revealed subsequently. While it is clear

that maternal obesity programs the fetus, the mechanism and

physiological consequences of the adverse metabolic and

inflammatory environment of obesity for placental function

and fetal development are just now being elucidated.

Sexual Dimorphism and Developmental
Programing

It is clear that male and female fetuses respond differently to the

adverse intrauterine environment. This may then relate to their

risk of developing disease in adult life where differences in

incidence of various diseases are clearly documented. Even in

“normal” pregnancy and development, there is a sexually

dimorphic effect. Male fetuses grow faster and are usually larger

than females.21 However, male fetuses are at much higher risk

during pregnancy and showgreater incidences of preterm birth,

preterm premature rupture of membranes, placenta previa,

lagging lung development, greater incidence of macrosomia

with maternal glucose intolerance, and more late stillbirths

associated with pregestational diabetes.22 The female neonate

canmore readily adapt to ex utero life evenwhen delivered in a

highly immature state at midgestation, an effect possibly medi-

ated by in utero adaptations to an adverse environment prior to

delivery.23 The male fetus is claimed “to live dangerously in the

womb” to maximize its growth potential but with consequent

high risk when facedwith additional adverse events.22 It is likely

that there is a complex interaction between the adverse

environment of obesity and fetal sex.

Sexual Dimorphism and the Placenta

The placenta is a fetal tissue that shows sexual dimorphism.

Microarray analysis revealed distinct sexually dimorphic

profiles of gene expression in the human placenta; in partic-

ular immune genes were expressed at higher level in female

placenta compared with male.24 Gene expression in the

placenta also responds to maternal inflammatory status in

sex-dependent manner.25 Expression of 59 genes was

changed in the placenta of women with asthma versus no

asthma with a female fetus compared with only 6 genes

changed in those with asthma with a male fetus.26 Some of

these genes were associated with growth, inflammatory, and

immune pathways. Changes in diet provide distinctive signa-

ture of sexually dimorphic genes in placenta with expression

generally higher in genes in female than in male placenta.27

The male placenta has higher toll-like receptor 4 (TLR4)

expression and a greater production of tumor necrosis factor

(TNF)-α in response to lipopolysaccharide (LPS) than the

female placenta, which can underlie the propensity to

preterm birth in males.28 The mechanisms of sexual dimor-

phism in placenta with obesity remain unstudied; however,

evidence from other complicated pregnancies links sex differ-

ences to gonadal steroids. Women with preeclampsia have

increased plasma testosterone levels compared with those of

healthy pregnant women, with significantly higher levels in

male- than in female-bearing preeclamptic pregnancies.29 At

the same time, the placental levels of aromatase, a rate-

limiting enzyme converting androgens to estrogens, varied

depending on fetal sex: it wasmuch higher in the preeclamp-

tic placentas with female than male fetuses.30 Interestingly,

aromatase can be downregulated by TNFα, hypoxia, insulin,

and leptin, whichmirror the actual conditions of the placenta

in the context of maternal obesity.31–34

Inflammation in Pregnancy with Obesity

Pregnancy per se is an inflammatory state.35 This is enhanced

in pregnancies complicated by obesity,36 where increased

concentrations of inflammatory cytokines can be seen in

maternal plasma37 and the placenta.38 The increased placen-

tal inflammation in obese pregnancy may be stimulated by

endotoxin,36 lipids,39 reactive oxygen species (ROS),40 or

oxidized lipids.41 Chronic low-grade inflammation in obese

women prior to pregnancy initiates a cascade of events which

translate into an inflammatory in utero environment. Signif-

icant accumulation of subsets of macrophages has been

shown in placentas from obese patients resulting in produc-

tion of proinflammatory cytokines and adipokines including

interleukin-6 (IL-6), leptin, TNF-α, monocyte chemotactic

protein 1, and TLR4.42–44 Uncontrolled placental inflamma-

tion leads to the impairment of overall placental function

such as increased free fatty acid (FFA) delivery to the fetal

circulation, which is expected to alter fetal growth and

development.45 We found that TNF-α, used to simulate the

inflammatory milieu of obesity, decreases trophoblast mito-

chondrial respiration but in a sexually dimorphicmanner. The

effect is seen only in trophoblasts of a female placenta and is

mediated by the transcription factor NFκB1.46

Effect of Obesity on Maternal and Placental
Metabolism in Pregnancy

Pregnancy is a state of profound metabolic changes charac-

terized by increased fat mass, insulin resistance, low-grade

inflammation,35 andmild hyperlipidemia,47where phospho-

lipids, total LDL and HDL cholesterol, and triglycerides all
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increase. The metabolic changes become exacerbated with

pregravid obesity.48 Obese pregnant women are character-

ized by high levels of FFA, higher circulating levels of leptin,

TNF-α, IL-1, IL-6, IL-8, oxidative stress, and reduced levels of

adiponectin.49

The placenta, particularly syncytiotrophoblast, has tre-

mendous oxygen consumption50 and metabolic activity,

the energy for which is derived from ATP mainly generated

by oxidative phosphorylation inmitochondria. Glucosewas

traditionally thought of as the major (if not sole) substrate

for energy generation in fetus and placenta.51 However, the

placenta does not appear to utilize anaerobic glycolysis to

generate energy during periods of anoxia.52 Work in the

past 10 years has shown that the placenta can generate

energy from fatty acids53 via fatty acid oxidation (FAO).54

Long chain fatty acids necessary for placental FAO are

abundant in maternal plasma in late gestation but are

markedly increased with obesity and thought to play a

role in insulin resistance.55 Deficiencies in placenta of

enzymes involved in FAO lead to accumulation of toxic

long chain metabolites and are associated with maternal

HELLP syndrome and with preeclampsia.56 Saturated fatty

acids, palmitate and stearate, activate inflammatory

signaling pathways via interaction with TLRs and via secre-

tion of cytokines including TNF-α, Il-1β, and IL-6.57 We find

significantly increased level of TNF-α in the placenta of

female fetuses of obese women.46 Fatty acids also reduce

mitochondrial function through induction of proinflam-

matory cytokines, and chronically elevated fatty acids are

associated with increased production of reactive oxygen

and nitrogen species.58 There has not been an investigation

of FAO in the placenta of obese pregnancies, nor has it been

studied in relation to circulating maternal saturated or

unsaturated fatty acids, inflammatory cytokines, or oxida-

tive stress or to fetal outcomes.

Free Fatty Acids and Lipid Transport in
Placenta during Maternal Obesity

Although maternal hyperglycemia has long been associated

with increased fetal growth,59 maternal triglycerides also

contribute with aberrant fetal growth seen with gestational

diabetesmellitus (GDM) despite good glucose control. Indeed

in multivariate analysis, increased birth weight positively

correlates only with hypertriglyceridemia in women with

GDM.60 However, such studies have not been performed in

pregnancies complicated by obesity alone, nor in relation to

fetal adiposity.

Placental uptake of FFAs from the maternal circulation

provides fatty acids both for placental metabolism and deliv-

ery to the fetus.61 Cells involved in active lipid trafficking

express discrete fatty acid binding proteins (FABP), implicated

in cellular uptake and transport of fatty acids and coordina-

tion of metabolic and inflammatory pathways.62,63 FABP1,

FABP3, FABP4, FABP5, and FABP plasma membranes are

expressed in human trophoblasts.64 Maternal obesity can

alter lipid content and increase the expression of FABP4 in

trophoblasts.65 An ovine model of maternal obesity showed

significantly higher concentration of FFA in the fetal circula-

tion of obese ewes at midgestation than in control ewes.45 In

addition, the level of peroxisome proliferator-activated

receptor gamma which is known to be essential for placental

development and placental uptake of fatty acids was found to

be activated in the placenta of obese ewes.61 As fatty acids are

ligands for TLR4, which drives the inflammatory response,66

it was postulated that excessive fatty acids in the fetal

circulation in the setting of maternal obesity would activate

TLR4 signaling, resulting in inflammation of fetal tissues.

Placental Oxidative/Nitrative Stress and
Obesity

Pregnancy is a state of oxidative stress. Mitochondria are the

major source of ROS under physiologic conditions. Increased

metabolic activity in placental mitochondria and the reduced

scavenging power of antioxidants may be responsible for

rapid ROS generation by different placental cell types.67,68

At the same time, mitochondrial function itself can be

compromised by severe and/or prolonged oxidative stress.

Oxidative inactivation of mitochondrial DNA polymerase

gamma could slow down mitochondrial DNA (mtDNA) repli-

cation and eventually lead to inhibition of oxidative phos-

phorylation.69 The placenta can also produce nitric oxide

(NO.) and this molecule in combination with excess superox-

ide can result in the production of peroxynitrite (ONOO�),

leading to nitrative stress. Peroxynitrite is a powerful proox-

idant that can modify tyrosine residues within a protein

sequence to give nitrotyrosine, or protein nitration. Covalent

modification of proteins by nitration may be a physiologic

regulatory mechanism in redox regulation for signaling path-

ways.70 Nitrotyrosine residues have been demonstrated in

the placenta of pregnancies complicated by preeclampsia,71

pregestational diabetes,72 and chronic hypoxia at high alti-

tude.73 We have previously shown nitration of several pro-

teins in the human placenta, and demonstrated that the

extent of nitration is increased in obese compared with

lean and overweight placentas.40 Koeck et al74 provided

evidence for rapid and selective oxygen-regulated protein

tyrosine denitration/nitration in the mitochondria. Nitrated

proteins can be eliminated frommitochondria during hypox-

ia/anoxia and regenerated during reoxygenation. This nitra-

tion/denitration in mitochondria may affect cellular energy

and redox homeostasis and therefore cell and tissue viability.

Placental Mitochondrial Energetics and
Obesity

As stated previously, the placenta can generate energy from

fatty acids53 following FAO and generation of acetyl CoA. We

have shown that with increasing maternal adiposity, there is

a significant fall in mitochondrial respiration by oxidative

phosphorylation and in ATP generation in the placenta75 that

is not compensated for by glycolysis. In galactose-containing

medium, the trophoblast from obese pregnancies cannot

increase oxidative phosphorylation, that is, they show

metabolic inflexibility. This would suggest that with obesity,
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the generation of acetyl CoA by FAO is compromised. Fatty

acids also reduce mitochondrial function perhaps via proin-

flammatory cytokines and/or increased production of reac-

tive oxygen and nitrogen species.58 In turn, mitochondrial

dysfunction can lead to a reduction in mitochondrial FAO.76

Saturated fatty acids (palmitate, stearate) may be more

damaging while unsaturated fatty acids (oleic, DHA) may

be beneficial.

Mitochondria generate most of the cell’s supply of ATP,

used as a source of chemical energywhich are also involved in

a range of other processes, such as signaling, cellular differ-

entiation, apoptosis and programed cell death, control of the

cell cycle and cell growth, regulation of the membrane

potential, regulation of cellular metabolism, and steroid

synthesis. Damage, reduced content, and functional capacity

of mitochondria are involved in neurodegenerative and car-

diovascular diseases,77 obesity and diabetes.78,79 Diminished

FAO and greater dependence on glucose for ATP synthesis,80

ectopic lipid accumulation in skeletal muscle, the liver, and

other cells81 and low basal ATP concentrations43 are seen

with obesity.Mitochondrial oxidative capacity is decreased in

skeletal muscle of obese individuals,76 in the kidney of high-

fat diet (HFD)-fed mice,82 as well as in the liver and the heart

of ob/obmice.83,84 An isoenergetic HFD in healthy youngmen

for only 3 days was sufficient to reduce the expression of

genes involved in mitochondrial complexes I and II, and

mitochondrial carriers.85 While oxidative stress and mito-

chondrial dysfunction are often proposed as mechanisms

mediating dysfunction in various organs in obesity models,

little data are available for the placenta.

Sexual Dimorphism in the Effect of
Inflammation on Placental Mitochondria

MicroRNAs (miRNAs) are conserved, regulatory molecules

that have an important role in the posttranscriptional

regulation of target gene expression by promoting mRNA

instability or translational inhibition.86 MicroRNA-210,

which has been traditionally linked to hypoxia,87 targets

and decreases activity of mitochondrial subunits in placen-

ta,88 hence reducing cellular respiration. We have shown that

expression of miR-210 was significantly increased in pla-

centas of obese and overweight women conceived with

female, but notmale, fetuses comparedwith female placentas

of lean women.46 We also demonstrated increased TNF-α in

female but not male placentas of overweight and obese

women, and that via NFκB1 (p50) signaling this resulted in

activation of miR-210 expression. Chromatin immunoprecip-

itation assay showed that NFkB1 binds to placental miR-210

promoter in a fetal sex-dependent manner such that female

but not male trophoblast treated with TNF-α showed over-

expression of miR-210, reduction of mitochondrial target

genes, and decreased mitochondrial respiration. Overall,

our data suggest that the inflammatory intrauterine environ-

ment associated with maternal obesity induces an NFκB1-

mediated increase in miR-210 in a fetal sex-dependent

manner, leading to inhibition of mitochondrial respiration

and placental dysfunction in the placentas of female fetuses.

We propose that impairedmitochondrial function in placenta

and hence altered placental metabolism can evoke changes in

the fetus and may potentially link maternal obesity to meta-

bolic and cardiovascular disease in the offspring.

We have recently shown that increasing maternal adiposi-

ty is associated with increased generation of ROS and de-

creased mitochondrial respiration in the placenta.75 Total

antioxidant capacity and activity of superoxide dismutase

are significantly greater in the lean male placentas than in

lean female placentas or placentas of either sex from an obese

mother (unpublished data, L. Myatt PhD, 2015), that is, there

is sexual dimorphism and an effect of obesity. The connection

of oxidative stress to mitochondrial dysfunction has refo-

cused use of antioxidants in pregnancy toward alleviation of

mitochondrial dysfunction. Selenium is a trace element nec-

essary for normal cellular function and which protects tro-

phoblast mitochondria against oxidative stress89 by

upregulating activity of antioxidant enzymes glutathione

peroxidases, thioredoxin reductases, and iodothyronine

deiodinases.90

Obesity and Epigenetics in the Placenta

Epigenetics describes heritable changes in gene expression

that are not mediated by DNA sequence alterations91 but are

susceptible to environmental influences.92 Several diverse

factors epigenetically regulate genes, including age, lifestyle,

inflammation, gender, genotype, stress, nutrition, metabo-

lism, drugs, and infection.93 Epigenetic information is con-

veyed in mammals via a synergistic interaction between

mitotically heritable patterns of DNA methylation94 and

chromatin structure.95 Local chromatin conformation regu-

lates specific methylation patterns to control gene transcrip-

tion.96 Epigeneticmechanisms havebeenpostulated to have a

role in developmental programing of obesity and type 2

diabetes in offspring by the intrauterine environment97 and

may therefore also regulate placental function. There are

several mechanisms that regulate epigenetic changes.

Gene expression can be altered via posttranslational cova-

lent modifications of chromatin by histone methylation or

acetylation which determines accessibility to transcription

factors98 leading to transcriptionally repressive or permissive

chromatin structures.99,100 Repressive histone modifications

seem to confer short-term, flexible silencing important for

developmental plasticity, whereas DNA methylation is

believed to be a more stable, long-term silencing mecha-

nism.101Differential histone modification occurs in a gender-

specific manner,102 and in primates103 and rats,104 consump-

tion of a maternal HFD gave altered histone modifications of

fetal hepatic genes accompanied by alterations in hepatic

gene expression. There is, however, relatively little data105 on

histone modification in the human placenta with pregnancy

complications.

Hypermethylation of DNA in promoter regions typically is

associated with transcriptional repression of genes, whereas

hypomethylation leads to gene activity.106 Global DNAmeth-

ylation in the placenta increases with advancing gestational

age,107 but with greater interindividual variation in the third
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trimester suggesting environmental factors may influence

methylation, gene expression, and function of the placenta.

Variations in DNA methylation profiles in the term placenta

are seen in relation to pregnancy outcome (reviewed in

Koukoura et al108). Recently, a novel modification DNA

hydroxymethylation has been described.109 Ten-eleven

translocase (TET) enzymes convert 5mC to 5hmC. Although

5mC is repressive, 5hmC is permissive for gene expression.

Therefore, the balance of 5mC to 5hmc at particular CpGsmay

control gene expression. Alpha ketoglutarate (αKG) and

ascorbate are cofactors for TET enzymes, suggesting a link

between cellular metabolism and epigenetic regulation of

cellular activity as αKG is produced in the citric acid cycle.

Maternal nutritional status may alter the epigenetic state of

the fetal genome and imprinted gene expression.110 Hyper-

glycemia induces demethylation of specific cytosines

throughout the genome111 with altered gene expression.

In mammalian genomes, DNA methyltransferase (DNMT)

enzymes mediate the transfer of methyl groups from

S-adenosylmethionine to cytosine,112 establish and maintain

DNA methylation patterns at specific regions of the genome,

and contribute to gene regulation. DNMT1 is primarily a

maintenance methyltransferase preserving methylation

patterns during cell division, while DNMT3 enzymes are

responsible for de novo methylation. The metabolic/inflam-

matory milieu of obesity increases DNMT3a expression of

DNMT3a in adipose tissue of obese mice113 and correlates

with gene suppression. There is little data available onDNMTs

in human placenta.

The Influence of Nutrition and the Metabolic
Environment on Epigenetic Modifications

While there is increasing evidence from other tissues that

metabolic regulation of epigenetic mechanisms occurs, it is

relatively unstudied in placenta. Tight regulation of epigenet-

ic changes is essential especially in the early phase of gesta-

tion where global DNA demethylation in the zygote is seen

but may subsequently be influenced by the maternal meta-

bolic environment. Chromatin-modifying enzymes including

DNMTs can sense and respond to alterations to the nutritional

environment through their effects on intermediary metabo-

lites.114 Differences in DNA methylation have been reported

in individuals exposed to famine during the Dutch Hunger

Winter.115,116 In later life, the epigenome appears to be

capable of responding to changes in nutrients including

deficiencies in methyl donors,117 folic acid supplementa-

tion,118 as well as fat119 and caloric restriction.120 The dra-

matic changes in methylation seen in early gestation and the

relative hypomethylation of the placenta suggest it to be

susceptible to dietary influences. Recently, intrauterine calo-

ric restriction in mice, which programs male offspring for

glucose intolerance, increased fat mass, and hypercholester-

olemia, gave a significant decrease in overall methylation

throughout the placental genome.121 The level of demethyla-

tionwas greater in placentas ofmalemice than in placentas of

female mice and imprinted genes appeared to be more

susceptible to methylation changes.

Conclusion

The intrauterine environment found in the obese women is

associated with poor pregnancy outcomes and importantly

with programing the fetus for disease in later life. This effect is

mediated via the placenta (►Fig. 1), which displays altered

function and compromised energetics related to the obese

environment of hyperlipidemia, heightened inflammation,

and oxidative stress. Evidence that the metabolic environ-

ment of obesity causes epigenetic changes is accumulating

and needs to be studied in the placenta to link cellular

metabolism to changes in gene expression and cellular func-

tion. There is also an overarching effect of fetal and placental

sex, which now needs to be considered when studying

placental function.
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