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a b s t r a C t 

The epidemic of overweight and obesity is a major problem 
because of the plethora of health and economic issues 
that it induces. Key among these is the sharply increasing 
prevalence of type 2 diabetes (T2D) and cardiovascular 
disease. The development of T2D is characterised by two 
processes: 1) insulin resistance, resulting from impaired 
insulin signalling and leading to an increased demand for 
insulin, which must be met by increased insulin production 
by pancreatic b-cells (compensatory b-cell function); and 2) 
b-cell dysfunction, with T2D developing when the amount of 
insulin that is produced is insufficient to meet the demand. 
Overweight and obesity, especially in case of abdominal 
fat accumulation, are associated with systemic low-grade 
inf lammation. This low-grade inf lammation is 
characterised by, among other things, higher levels of 
circulating proinflammatory cytokines and fatty acids. 
These can interfere with normal insulin function and 
thereby induce insulin resistance, and have also been 
implicated in b-cell dysfunction. This review focuses on 
the known and emerging relations between inflammation 
and T2D. We first discuss current views on the effects of fat 
distribution on adipose tissue inflammation and adipose 
tissue dysfunction. Next we focus on the detrimental roles 
of proinflammatory cytokines and fatty acids on insulin 
signalling and b-cell function. In the last part of this 
review we provide some insight into novel players in (the 
initiation of) inflammation in overweight and obesity, and 
their effects on T2D and vascular dysfunction. 
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H o W  d o e s  o b e s i t y  C a U s e  t y P e  2 
d i a b e t e s ? 

The epidemic of overweight and obesity has caused a 
dramatic increase in the number of individuals with 
metabolic abnormalities and premature cardiovascular 
disease (CVD). The prevalence of diabetes, and especially 
of type 2 diabetes (T2D), which comprises 80-90% of 
all individuals with diabetes, also rises sharply with 
the obesity epidemic. Two processes contribute to the 
development of T2D. Impaired insulin signalling – also 
known as insulin resistance – leads to an increased 
demand for insulin and this increased demand must be 
met by an increased insulin production by the pancreatic 
b-cells, a process known as compensatory b-cell function. 
Thus, obesity-induced insulin resistance will initially lead 
to higher circulating insulin concentrations but in case 
of prolonged and/or worsening insulin resistance, b-cells 
may no longer be able to meet the high demand. This 
will eventually lead to insufficient hepatic and peripheral 
glucose disposal, subsequently to higher circulating 
levels of glucose and eventually to the development of 
T2D (figure 1). In the past three decades, both CVD 
and diabetes, in particular obesity-induced T2D, have 
been recognised as inflammatory diseases. The systemic 
low-grade inflammatory response that is often observed in 
obesity detrimentally affects both insulin signalling and 
b-cell function and may thus contribute to the development 
of T2D. 
At the population level, the relative risk of developing T2D 
rises sharply with an increase in body mass index [BMI), as 
a measure of excessive body fat. However, within a narrow 
range of BMI levels, individuals can vary enormously with 
respect to insulin resistance, and this inter-individual 
difference has been attributed, to an important extent, 
to differences in the distribution of fat over the body.1 In 
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particular, at the same BMI, more upper body fat (also 
referred to as abdominal or central obesity), as represented 
by a higher waist circumference or higher waist-to-hip 
ratio, has been found to be associated with a higher risk of 
T2D compared with less upper body fat.2,3 
Several different fat depots have been identified, each 
with specific physiological and metabolic functions. 
Subcutaneous fat is the largest fat depot in the human 
body and comprises approximately 70-80% of total body 
fat. The second largest fat depot is visceral fat, which 
comprises approximately 10-15% of total body fat.4 The 
subcutaneous fat depot should probably not be regarded 
as functionally homogeneous. For example, it may be 
divided into peripheral versus central subcutaneous 
fat, which were shown to have specific and sometimes 
contrasting metabolic functions.5-7 Another way to identify 
metabolically distinct parts of the subcutaneous fat depot 
is to divide it into superficial and deep subcutaneous fat. 
This distinction appeared to be particularly relevant for 
abdominal subcutaneous fat, where the deep subcutaneous 
depot appeared to behave metabolically more similar to 
visceral than to superficial subcutaneous fat.8 
Visceral (sometimes referred to as abdominal and/or 
omental) fat is generally considered the ‘bad’ fat depot. 
Adipocytes within the visceral fat depot show substantially 
higher fatty acid fluxes than superficial subcutaneous 

abdominal adipocytes.9 These non-esterified fatty acids 
(NEFA), often referred to as free fatty acids, can contribute 
to insulin resistance and b-cell failure (see below). Visceral 
fat is characterised by higher secretion of proinflammatory 
cytokines such as tumour necrosis factor (TNF)-a and 
interleukin (IL)-6 and lower secretion of adiponectin, the 
anti-inflammatory adipokine, as compared with abdominal 
subcutaneous fat.10,11 Both visceral and deep subcutaneous 
fat were shown to be associated with insulin resistance.4,12-15 
In addition to these main fat depots, there are additional 
fat depots that are usually referred to as ‘ectopic’ fat. These 
additional fat depots are considerably less important 
in volume, but appear highly relevant with respect to 
regulatory and metabolic functions. Generally, ectopic fat 
depots are larger in individuals who have a more central fat 
distribution with a relatively large amount of visceral fat. 
Ectopic fat includes, for example, perivascular as well as 
epicardial and pericardial fat depots – which are relatively 
small but distinct patches of fat around the vasculature 
and the heart – and intramuscular and intrahepatic fat – 
which is the accumulation of triglycerides within muscle 
and liver, respectively. 
The adipose tissue depots that are in close proximity to 
the vasculature and the heart have been implicated in 
the development of vascular dysfunction,16 probably via 
locally produced mediators that can contribute to a local 

figure 1. Development of insulin resistance and B-cell failure are involved in the development of obesity-associated T2DM
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Panel a presents the main events that underlie the development of obesity-associated t2dM and the two main metabolic hubs that are involved, i.e. 
development of insulin resistance and the development of b-cell failure. Caloric intake in excess of energy expenditure leads to the accumulation 
of fat. if this fat accumulates primarily in the superficial subcutaneous adipose tissue depot, the low-grade inflammatory response will likely be 
minimal to absent. if, however, due to genetic and/or lifestyle factors, accumulation of fat is shifted towards the abdominal fat and ectopic depots, 
a persistent low-grade inflammatory response will develop. this low-grade inflammatory response will lead to cellular insulin resistance and also 
attract proinflammatory immune cells to adipose tissue, which can worsen the inflammatory response. insulin resistance increases the demand 
for insulin, but as long as the pancreatic b-cells can respond with a sufficient compensatory insulin production, this will lead to a state of normo-
glycaemia with hyperinsulinaemia, which is often associated with dyslipidaemia, hypertension and further ectopic fat accumulation. if, however, 
due worsening of the insulin resistance and, again, to individual genetic and/or lifestyle factors, the secretion capacity of the b-cells is no longer 
sufficient, hyperglycaemia and hence t2d will develop
Panel b represents the timeline of these events. Genetic and lifestyle factors most likely determine not only the development of (abdominal) obesity 
(ow/ob), low-grade inflammation (lGi) and insulin resistance (insres) but also the time scale (years or decades) it takes to progress through the 
different stages of the development of obesity-associated t2d. the major vascular complications of t2d, i.e. macrovascular and microvascular 
disease are each presumed to start prior to the development of hyperglycaemia
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inflammatory response17,18 as well as to local insulin 
resistance, which may directly affect vascular function19,20 
and might as such contribute to hypertension and CVD 
(see also below). 
Intramuscular fat is mainly derived from the circulation 
and the amount of fat that is accumulated in muscle was 
associated with whole body insulin resistance.21 Indeed, 
T2D patients were shown to have more visceral and 
intramuscular fat than non-diabetic controls.22 Moreover, 
intramyocellular triglyceride content in the soleus muscle 
was 40% higher in offspring of T2D parents than in 
control subjects,21 suggesting that increased intramuscular 
fat may precede and contribute to the development of T2D. 
The main sources of hepatic fat are endogenous fatty 
acids, which are newly synthesised in hepatocytes, and 
(diet and adipose tissue derived) exogenous fatty acids. 
Fat accumulation in the liver (mainly as triglycerides) is 
currently considered an important risk factor for metabolic 
and cardiovascular diseases. Uncomplicated hepatic fat 
accumulation (steatosis) is the first stage of the full spectrum 
of non-alcoholic fatty liver disease (NAFLD). NAFLD may 
progress from simple steatosis to steatohepatitis, fibrosis 
and eventually liver cirrhosis. Obesity and obesity-associated 
T2D are mostly associated with the earlier NAFLD stages 
(steatosis, steatohepatitis), although also late stages of NAFLD 
i.e. liver cirrhosis, were shown to be associated with a high 
prevalence of T2D.23 The ‘portal theory’ is the concept 
that, with an increasing amount of visceral fat, the liver 
is exposed to higher concentrations of proinflammatory 
cytokines and NEFA that are released from the visceral 
fat depot and directly transported, via the portal vein, 
to the liver where they contribute to the development of 
NAFLD.24 Thus, the occurrence and severity of visceral 
fat accumulation and NAFLD are highly correlated and 
inflammatory changes in visceral adiposity and NAFLD are 
aetiologically intertwined. Hence, it is not easy to dissect 
their independent contributions to the development of 
obesity-associated T2D, especially in humans. The general 
view is that NAFLD adversely affects insulin resistance and 
the risk of T2D and CVD.25 The visceral fat depot, in turn, 
is highly relevant in an aetiological sense, as it precedes and 
induces the development of NAFLD and other ectopic fat 
depots. In addition, visceral fat may contribute directly to 
systemic low-grade inflammation and increased systemic 
levels of NEFA. 
But it appears that not all fat is bad. It has consistently been 
shown that approximately 25-30% of obese individuals 
do not develop insulin resistance; these are the so-called 
healthy obese. There is also accumulating evidence that 
expansion of the fat depot(s) will not by definition lead 
to an inflammatory response and insulin resistance. 
Efficient expandability of the superficial subcutaneous 
fat depot, through e.g. intrinsic genetic properties and/or 
an attenuated inflammatory response, is likely to improve 

flexibility to process excess caloric intake with limited 
triglyceride overflow into the visceral and ectopic fat depots. 
A large capacity for storage of triglycerides in the superficial 
subcutaneous, metabolically less active fat depot, may 
thus result in less ‘overflow’ of triglycerides into the deep 
subcutaneous and visceral fat depots.26,27 Very recently 
it was indeed shown that upon feeding healthy men a 
high-fat diet, accumulation of fat in the visceral fat depot 
was highest in those subjects who had the lowest expression 
of lipid storage-related genes in their subcutaneous fat.28 
The possibility that subcutaneous adipose tissue function 
and/or inflammation may contribute to redistribution of 
fat towards the visceral depot is also corroborated by recent 
data that infiltration of macrophages into human abdominal 
superficial subcutaneous adipose tissue was associated with 
larger visceral fat depots.29 Accordingly, the expression of 
inflammation-related genes was significantly upregulated in 
abdominal subcutaneous adipocytes of obese, as compared 
with non-obese individuals.30,31 In line with these data, 
we recently showed that preadipocytes isolated from 
subcutaneous adipose tissue of T2D patients had a gene 
expression profile that was consistent with a decreased 
differentiation capacity.32 In animal models subcutaneous 
fat expansion could, for example, be achieved by fat-specific 
overexpression of adiponectin in genetically obese mice, 
which resulted in increased peripheral obesity but less 
accumulation of ectopic fat (visceral, liver, muscle) with 
significant improvement in insulin resistance. Adiponectin-
overexpressing mice showed an increased expression of 
peroxisome proliferator-activated receptor (PPAR)-g target 
genes and, despite massive obesity, had few macrophages 
in their fat depots, concomitant with lower plasma IL-6 and 
TNF-a levels.33 Notably, recent data show that adiponectin 
can exert part of its anti-inflammatory effects on adipose 
tissue via regulation of microRNAs that can suppress 
intracellular proinflammatory pathways, such as toll-like 
receptor (TLR)-4 signalling (see below).34 MicroRNAs 
comprise a promising new field of potential novel treatment 
targets for insulin resistance and T2D, because they appear 
to have a vast functional and regulatory capacity, also in 
other pathways that may contribute to insulin resistance 
and T2D.35 PPAR-g activation by rosiglitazone in mice was 
also associated with higher body weight and adipose tissue 
expansion, but with less accumulation of fat in the liver. In 
these mice a higher macrophage infiltration into adipose 
tissue was seen, but these were primarily alternatively 
activated (M2) macrophages that are considered to have 
anti-inflammatory capacities (see below), and their presence 
was associated with ameliorated insulin resistance.36 
Together, current data suggest that visceral/omental, 
abdominal deep subcutaneous, as well as ectopic fat 
depots appear to be the culprit fat depots with respect to 
the generation of an inflammatory response and insulin 
resistance. There may, however, very well be underlying 
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metabolic characteristics of the (superficial) subcutaneous 
fat depots that contribute to the size of these visceral/
omental depots. Prevention of adipose tissue dysfunction, 
of (visceral) fat inflammation, and of ectopic fat deposition 
may therefore all help to maintain a metabolically healthy 
obese phenotype.37

obesity – fat distribution | Key points: 
• Obesity is strongly associated with T2D
• Visceral, abdominal deep subcutaneous, and 

ectopic fat were all shown to be associated with 
an adverse metabolic phenotype

• Subcutaneous fat, especially of the lower body, 
may have metabolically beneficial functions

• Better capacity for triglyceride storage in 
adipocytes of superficial subcutaneous fat 
may prevent overflow of triglycerides into the 
metabolically unfavourable fat depots

H o W  d o e s  o b e s i t y  C a U s e  C H r o n i C 
i n f l a M M a t i o n ? 

It is currently well-accepted that that obesity promotes 
a state of chronic low-grade inflammation,38-40 which is 
reflected not only by an increased production of cytokines 
and proinflammatory adipokines by adipose tissue, but also 
by a cellular component. Adipose tissue is heterogeneous 
in composition and contains, besides mature adipocytes, 
also immature adipocytes (preadipocytes), endothelial 
cells, fibroblasts, macrophages and other immune cells. 
Adipose tissue macrophages are largely bone marrow 
derived and their number is increased in obesity.41 Thus, 
local production of chemoattractants that enhance the 
homing of monocytes to adipose tissue depots can 
contribute to adipose tissue inflammation. Macrophages 
in adipose tissue are overrepresented around dead or 
dying adipocytes, thereby forming so-called crown-like 
structures.42,43 This suggests that adipocyte necrosis may 
underlie the proinflammatory response and macrophage 
attraction, but at present their concomitant presence 
represents an association and a direct causal relation 
remains to be established.44 
Accumulation of abdominal fat can induce inflammation 
via several mechanisms. For example, caloric intake 
in excess of energy expenditure will lead to expansion 
of adipose tissue and adipocyte hypertrophy, which 
may be associated with local hypoxia and adipocyte 
apoptosis, which in turn generate signals to recruit 
macrophages.45 Hypertrophic adipocytes begin to secrete 
low levels of TNF-a, which stimulate preadipocytes 
and endothelial cells to produce monocyte chemotactic 

protein (MCP)-1 (also known as CCL2).46 Indeed, in a 
study of monozygotic twins it was shown that acquired 
obesity is characterised by adipocyte hypertrophy and 
increased expression of the macrophage marker CD68 
and TNF-a in subcutaneous abdominal adipose tissue.47 
These proinflammatory changes in acquired obesity 
were associated with an increase in insulin resistance.47 
In addition to proinflammatory effects induced by local 
hypoxia, the high rate of protein synthesis during adipose 
tissue expansion may lead to accumulation of unfolded or 
misfolded proteins and hence to endoplasmic reticulum 
(ER) stress,48-50 which may then also contribute to the 
production of inflammatory and chemotactic signals. 
The exact signals from adipose tissue that initiate 
macrophage infiltration have not yet been identified. 
In obesity, TNF-a production is increased in both the 
adipocyte and the macrophage fraction of adipose tissue 
and an increase in MCP-1/chemokine (C-C motif) ligand 
(CCL2) that may be induced by TNF-a has been proposed 
as primary macrophage attractant51,52 although these data 
are not fully consistent.53 Recently it was shown that TNF-a 
also induces the production of CXCL5, which is a strong 
chemoattractant for macrophages. Moreover, mice that 
were knock-out for the receptor for CXCL5 (i.e. CXCR2) or 
treated with anti-CXCL5 were less insulin resistant.54 
Macrophages that are located within the adipose tissue may 
be pro- or anti-inflammatory, depending on their activation 
status.55 Classically activated macrophages (referred to as 
M1 macrophages) are considered proinflammatory, and the 
M1 status is induced by, among others, TNF-a and lipopoly-
saccharides (LPS). Alternatively activated macrophages 
(referred to as M2 macrophages), on the other hand, 
primarily function to resolve or dampen the M1-induced 
inflammatory response and are therefore considered 
anti-inflammatory. The M2 status is induced by, among 
others, IL4 and IL10. Although the M1 versus M2 status 
is a gradient rather than a black-and-white phenomenon, 
macrophages present in adipose tissue in obesity appear to 
be predominantly polarised towards the M1 phenotype.56 

obesity – chronic low-grade inflammation | Key 
points:
• Adipocyte hypertrophy, hypoxia and stress may 

all be involved in adipose tissue inflammation via 
induction of pro-inflammatory cytokines, as well 
as of chemokines that attract macrophages

• Adipose tissue macrophages may have a 
pro-inflammatory (M1), an anti-inflammatory 
(M2), or an intermediate phenotype, depending 
on the activating cytokines that are present

• In obesity, macrophages in adipose tissue were 
shown to be mainly M1
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H o W  d o e s  i n f l a M M a t i o n  C a U s e 
i n s U l i n  r e s i s t a n C e ?

Insulin resistance is a state in which the sensitivity 
of target cells to insulin, especially with regard to its 
metabolic actions, is reduced. Inflammatory cytokines, 
with TNF-a and IL-6 as most extensively studied 
examples, can directly induce insulin resistance and 
the level of insulin signal transduction, by using a 
physiological negative feedback mechanism of normal 
insulin signalling.57 Binding of insulin to its functional 
receptor induces autophosphorylation of tyrosine residues 
on the intracellular part of the receptor. In the so-called 
metabolic pathway of insulin signalling, the insulin 
receptor substrate (IRS), docks the insulin receptor and 
is trans-phosphorylated in its tyrosine residues via the 
kinase activity of the phosphorylated insulin receptor. 
Subsequently, more members of the insulin signal 
transduction pathway, including phosphatidylinositol-
3-kinase (PI3K) and Akt/protein kinase B (PKB), are 
recruited and activated in order to induce downstream 
effects.58 Insulin signal transduction via PI3 kinase mainly 
affects metabolic pathways such as GLUT-4 translocation 
and inhibition of hormone-sensitive lipase. The other main 
pathway of insulin signal transduction involves signal 
transduction via the renin-angiotensin system/ mitogen-
activated protein (Ras/MAP) kinase pathway and primarily 
stimulates mitogenic rather than metabolic processes.58 
Several processes interrupt signalling via the 
insulin receptor in order to maintain a physiological 
insulin response. Firstly, protein phosphatases can 
dephosphorylate the insulin receptor and the IRS proteins; 
secondly, there may be ligand-induced downregulation 
of the insulin receptor; and thirdly, insulin receptor 
signalling induces pathways that inhibit signalling via 
the insulin receptor. The physiological negative feedback 
mechanism is induced when insulin activates mTOR 
and PKCζ. These intracellular serine (ser)/threonine 
(thr) kinases can then either directly, or indirectly (e.g. 
via IkappaB kinase beta (IKKb)), phosphorylate ser/thr 
residues in IRS. Ser/thr phosphorylation of IRS, which 
occurs at multiple residues in the IRS protein, hampers 
its tyrosine phosphorylation via insulin receptor and thus 
interrupts, or at least reduces, insulin signal transduction 
via the IRS proteins.59 In addition, ser/thr phosphorylation 
can induce dissociation of IRS proteins from the insulin 
receptor,60,61 induce degradation of IRS proteins,62,63 remove 
IRS proteins from complexes that keep them in close 
proximity to the insulin receptor,64,65 and turn IRS proteins 
into inhibitors of insulin receptor kinases.66

There are various other intracellular and extracellular 
substances that can also induce ser/thr phosphorylation of 
the IRS proteins and thereby hamper insulin signalling, 
but with pathophysiological consequences.57 These include, 

for example, the proinflammatory cytokines TNF-a,67-69 
IL-670 and IL-1a,71 and saturated NEFA,72 which are all 
involved in obesity-associated low-grade inflammation. 
These factors employ various intracellular ser/thr kinases 
such as Jun NH

2
-terminal kinase (JNK), protein kinase 

C (PKC), IKKb and mTOR,57,72 which can be activated via 
multiple mechanisms. IKK-b is particularly interesting 
in this respect since it is a central effector protein in the 
inflammatory responses that are activated upon stimulation 
of the intracellular protein transcription factor NF-kB. 
Notably, the factors described here mainly affect signal 
transduction via IRS, and it has indeed been shown that 
it was the PI3 kinase pathway that was impaired in obesity 
and in T2D, while insulin signalling via MAP kinase 
was largely unaffected.73 Moreover, (saturated) fatty acids, 
TNF-a and IL-6 have all been demonstrated to induce 
insulin resistance in healthy humans,74,75 suggesting that 
the above-described induction of insulin resistance is 
indeed relevant in humans, even though a large body of 
information was obtained in cell and animal studies. 
Obese, hypertrophic and/or insulin resistant adipocytes 
were shown to have an increased release of fatty acids. 
Specifically, the saturated fatty acids that are released can, 
in a paracrine fashion, activate the TLR-4/NF-kB pathways 
on macrophages in adipose tissue, which then release 
TNF-a, which in turn binds to TNF receptors on the 
adipocytes, further stimulating fatty acid release and thus 
inducing a vicious cycle of worsening inflammation and 
insulin resistance.76,77 JNK is activated upon exposure not 
only to cytokines and NEFA, but also to internal cues such 
as ER stress.49 Given the relevance of NAFLD in insulin 
resistance and T2D, it is also of interest that experimental 
activation of JNK in the liver appeared to be sufficient to 
induce systemic insulin resistance.78 The proinflammatory 
effects of fatty acids appeared to be mainly restricted 
to the saturated fatty acids while unsaturated and in 
particularly w-3 fatty acids, in contrast, appeared to exert 
anti-inflammatory effects.79,80 

inflammation – insulin signalling | Key points:
• In obesity and T2DM it is insulin signalling via 

IRS and PI3 kinase – i.e. the metabolic pathway – 
that is primarily affected 

• Inflammatory cytokines, e.g. TNF-a and IL-6, 
as well as saturated fatty acids can all hamper 
insulin signalling via the IRS and PI3 kinase 
pathway via activation of intracellular ser/thr 
kinases 

• IKK-b and JNK are important intracellular 
mediators in metabolic insulin resistance
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H o W  d o e s  i n f l a M M a t i o n  C a U s e 
b - C e l l  d y s f U n C t i o n ? 

The healthy b-cell has a large capacity to maintain 
normoglycaemia via an increase in b-cell mass and 
subsequent hyperinsulinaemia.81 However, once the 
demand for insulin exceeds its production, hyperglycaemia 
will develop (figure 1). b-cell failure can result on the one 
hand from an intrinsic insulin secretion defect in existing 
b-cells and on the other hand from reduced b-cells mass.82 
b-cell failure may be partly due to genetic and partly to 
acquired factors. It is probable that genetic disposition 
may render some individuals more sensitive to those 
acquired factors than others. Prolonged exposure of 
pancreatic b-cells to high levels of glucose and lipids, also 
known as glucotoxicity and lipotoxicity, may contribute to 
oxidative stress – potentially via effects on mitochondrial 
function – and to high rates of b-cell apoptosis in T2D.83-86 
Moreover, impaired insulin signalling may add to b-cell 
dysfunction.87,88 In addition, inflammatory cytokines 
may also contribute to b-cell dysfunction and, as such, to 
enhanced development of T2D.89

Hyperglycaemia can induce the production of IL-1b 
by b-cells,82,90 and this proinflammatory cytokine was 
shown to be involved in b-cell deterioration in both 
T1D and T2D.91,92 IL-1b may, via induction of specific 
signal transduction pathways that include Fas (CD95), 
initially induce b-cell proliferation, but with prolonged 
hyperglycaemia switch to increased b-cell apoptosis.93 
Notably, leptin, which circulates in considerably increased 
concentrations in obesity, was shown to increase the release 
of IL-1b by b-cells.94 In addition to its effects on b-cells, 
IL-1b may also induce insulin resistance via direct effects 
in insulin signalling. For example, IL-1b can down-regulate 
IRS mRNA expression in adipocytes.95 The relevance of 
IL-1b in human T2D, and in particular b-cell function, was 
recently shown in a placebo-controlled proof-of-concept 
study with an IL-1 receptor antagonist.96,97 Clearly, the 
effects of IL-1b are not the only way through which b-cell 
mass and function are affected in the development of T2D, 
but the IL-1b pathway is a relevant representative of the 
many (inflammatory) pathways that are involved in the 
generation of b-cell failure in response to obesity-associated 
low-grade inflammation and the concomitant increased 
insulin demand. 
Pancreatic lipotoxicity partly results from dyslipidaemia 
(high small dense LDL cholesterol, low HDL cholesterol, 
high NEFA) and partly from accumulation of fat 
(triglycerides) in the pancreas as an ectopic fat depot. 
Increased concentrations of NEFA, particularly saturated 
fatty acids, were shown to be harmful for b-cells, in among 
other ways via the induction of IL-1b,98 and induced an 
inflammatory response in pancreatic islets.99 NEFA also 
induced the local production of other IL-1-dependent 

proinflammatory cytokines such as IL-6 and IL-8.99 It 
was also recently shown that insulin gene transcription 
was decreased when JNK was activated by palmitic acid in 
pancreatic b-cells.100 In addition, reduction of pancreatic 
triglyceride content was shown to improve insulin 
secretion capacity.101 
The effects of lipotoxicity may be enhanced in case of 
hyperglycaemia.102 Thus, both glucotoxicity and lipotoxicity 
induce local production of cytokines and inflammation in 
pancreatic islets, but it remains to be established to what 
extent circulating cytokines can also directly affect b-cell 
survival at their systemic concentrations, although they do 
appear to affect the secretory function of b-cells, in vitro.103 
Other mechanisms that were proposed to explain b-cell 
failure in obesity-associated T2D include ER stress, 
oxidative stress and amyloid deposition. Most of these 
mechanisms have also been implicated in inflammation, 
either because they induce a (local) inflammatory 
response or because they result from inflammation.104 
The detrimental effects of inflammation on b-cell function 
may be particularly relevant in situations of a sustained 
inflammatory response, as is probably the case in obesity 
and associated glucose and lipid overload.104 Increased 
numbers of macrophages have been shown in pancreatic 
islets of T2D patients,99,105 most likely in response to 
increased islet expression of IL-1b and chemokines.99,106 

inflammation and b-cell failure | Key points:
• Glucotoxicity and lipotoxicity may both 

contribute to b-cell failure, in among other ways 
via induction of local production of cytokines, 
e.g. IL-1b, and hence of inflammation in the 
pancreatic islets

• ER stress, oxidative stress and amyloid deposition 
may also induce inflammation and b-cell failure 
in obesity-associated T2D

H o W  d o e s  i n f l a M M a t i o n  C a U s e 
M a C r o V a s C U l a r  d i s e a s e  i n  t 2 d ? 

CVD comprises the major long-term complication of 
diabetes. Various aspects of (obesity-associated) 
inf lammation and macrovascular disease have 
been extensively reviewed elsewhere.16,107-109 In 
short, atherosclerosis, the main process underlying 
macrovascular disease, starts with activation of the 
endothelial cells that line the intima. Endothelial cell 
activation, which may be induced by e.g. lipids (including 
NEFA and cholesterol) or inflammatory cytokines,16,107-109 
can lead to expression of leucocyte adhesion molecules 
and binding of leucocytes, which migrate through 
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the endothelium to the intima where they can attract 
monocytes which ultimately transform into lipid-laden 
foam cells. These processes may be enhanced in T2D. 
Further progression of the atheroma and generation 
of rupture-prone atherosclerotic plaques involves a 
complex interplay of immune cells and inflammatory 
mediators. Inflammatory pathways are also involved 
in thrombosis, the late complication of atherosclerosis 
which is responsible for most of the complications of 
macrovascular disease.107 Macrovascular disease is thus 
perceived to be a major consequence of obesity-induced 
inflammation and T2D.

H o W  d o e s  i n f l a M M a t i o n  C a U s e 
M i C r o V a s C U l a r  d y s f U n C t i o n ?

Microvascular dysfunction may not only be a resultant, 
but also a cause of T2D and hypertension. We recently 
showed that microvascular dysfunction was associated 
with a higher incidence of T2D110 and other studies showed 
that diet-induced insulin resistance in the microvas-
culature develops before the development of skeletal 
muscle insulin resistance.111,112 How can microvascular 
dysfunction affect the development of insulin resistance, 
T2D, and hypertension?
Obese insulin-resistant humans and rats are characterised 
by impaired capillary recruitment, which has been 
shown to be necessary for normal insulin-mediated 
glucose uptake by skeletal muscle.113 Such microvascular 
dysfunction may result from increased systemic 
concentrations of NEFA and inflammatory cytokines, and 
decreased concentrations of adiponectin, which can induce 
endothelial insulin resistance, reduce local NO production, 
lower insulin-mediated glucose uptake in muscle by as 
much as 40% and, as such, contribute to whole body 
insulin resistance. Microvascular dysfunction may be 
further aggravated in the expanding adipose tissue since 
adipose tissue produces all factors of the RAS necessary to 
produce angiotensin II, and RAS activity is enhanced in 
obesity.113,114 Perivascular fat around resistance arterioles of 
muscle may directly affect the function of these vessels and 
indeed it appeared that in lean mice perivascular fat had a 
beneficial effect to stimulate insulin-induced vasodilation 
due to local adiponectin production, which was hampered 
in obese mice.115 Moreover, this impairment in obese mice 
was ameliorated by inhibition of JNK.115 
Microvascular dysfunction may also contribute to 
the vicious cycle of adipose tissue dysfunction and 
inflammation. Functional capillaries in the expanding 
adipose tissue are necessary to provide optimal blood flow 
and delivery of nutrients and oxygen to adipocytes. Thus, 
insufficient adipose tissue angiogenesis and capillarisation 
may lead to hypoxia and induction of an inflammatory 

response.116 A relative reduction in the density of the 
capillary network combined with microvascular 
dysfunction may therefore aggravate the hypoxic and 
inflammatory processes in adipose tissue depots and thus 
lead to deterioration of insulin resistance and metabolic 
homeostasis.117 
Microvascular dysfunction may additionally contribute 
to the development of T2D via effects on b-cell function. 
For example, transient periods of (mild) hyperglycaemia 
that coincide with insulin resistance as well as low-grade 
inflammation – possibly in combination with increased 
NEFA and dysregulation of adipokines – may lead to 
reduced islet perfusion and (mild) islet ischaemia,118 
and control the recruitment of inflammatory cells to the 
islets.119 
Interestingly, microvascular dysfunction is also thought to 
contribute to the development of hypertension (reviewed 
elsewhere120), and may thus provide an explanation, at least 
in part, for the typical co-occurrence of insulin resistance 
and hypertension in obesity. 

inflammation – vascular disease | Key points:
• Endothelial dysfunction: a shared factor 

underlying both micro- and macrovascular 
dysfunction

• Macrovascular disease is a major consequence of 
obesity-induced inflammation and T2D

• Microvascular dysfunction may be both cause and 
consequence of obesity-induced inflammation 
and T2D

• Microvascular endothelial insulin resistance may 
lead to reduced capillary recruitment in muscle 
and, as such, contribute to whole body insulin 
resistance 

• Microvascular dysfunction may also contribute to 
adipose tissue hypoxia and dysfunction

i n i t i a t i o n  o f  i n f l a M M a t i o n  i n 
o b e s i t y :  r e C e n t  i n s i G H t s 

Although the concept of low-grade inflammation as an 
important causal factor in obesity-associated insulin 
resistance is currently well accepted, less is known about 
the processes that induce the inflammatory response in 
adipose tissue. Several processes have been proposed, 
including the above-described adipocyte hypertrophy, 
apoptosis and macrophage infiltration, which most likely 
act simultaneously. Recently, inflammasomes have been 
proposed as central regulators of early adipose tissue 
inflammation. Inflammasomes, of which NOD-like 
receptor family pyrin domain containing 3 (NLRP3) is 
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the best characterised member, are pattern-recognition 
receptors (PRRs) that assemble into high-molecular-
weight platforms that control maturation and secretion 
of proinflammatory interleukins such as IL-1b.121 NLRP3 
releases bioactive caspase-1 which can cleave procytokines 
into their mature active forms.122 The expression of 
inflammasome NLRP3 components is increased in 
obesity, while whole-body knockout of components of this 
complex resulted in protection from obesity (due to higher 
energy expenditure), and from inflammation and insulin 
resistance in mice.56 Several endogenous stress signals, 
including glucose, palmitate, cholesterol crystals, islet 
amyloid peptides and reactive oxygen species, have been 
suggested as potential in vivo inflammasome inducers, 
but their relevance in the aetiology of human obesity and 
insulin resistance remains to be elucidated. 
A growing body of evidence suggests that cellular 
components of not only the innate but also the adaptive 
immune system contribute to adipose tissue dysfunction. 
The stromal vascular fraction of adipose tissue consists 
of various types of immune cells, in addition to the 
macrophage populations discussed earlier. For example, 
the role of proinflammatory T-cells in obesity-induced T2D 
has gained significant interest in recent years. Human 
adipocytes and preadipocytes appear to possess the full 
machinery to prime inflammation and attract T-cells 
independently of macrophages.123 Moreover, subcutaneous 
adipose tissue of T2D patients has increased presence 
of not only macrophages, but also of proinflammatory 
T-cells,124 infiltration of which preceded the infiltration 
of macrophages in mice fed a high fat-diet.124,125 T-cells 
derived from adipose tissue of obese mice produced more 
interferon-gamma (IFN)-g than those from control mice,126 
and hampered preadipocyte-to-adipocyte differentiation.127 
T-cells that are infiltrated in adipose tissue may not only 
attract macrophages, but also skew their differentiation 
towards the M1 phenotype. In contrast, induction of 
T-regulatory cells was beneficial and reduced adipose 
tissue inflammation and insulin resistance.128,129 Notably, 
the anti-inflammatory master switch in adipocyte 
differentiation, PPAR-g, was recently identified as major 
driver of visceral adipose-tissue-resident regulatory 
T-cells.130

Another emerging factor that may underlie, at least 
part of, the inflammatory response that is seen in 
insulin resistance and T2D is the gut microbiome. 
Obese humans and rodents were shown to have higher 
concentrations of gut-derived endotoxins than non-obese, 
and these can potentially trigger TLRs in e.g. adipose 
tissue or on pancreatic b-cells, thus contributing to both 
insulin resistance and b-cell failure.131,132 Experimental 
endotoxaemia can induce adipose tissue inflammation 
and insulin resistance in lean human subjects.133 Moreover, 
portal endotoxaemia may contribute to inflammation 

in hepatic steatosis and be a relevant risk factor for 
nonalcoholic steatohepatitis (NASH).134

initiation of obesity-induced inflammation – novel 
insight | Key points:
• Inflammasomes, of which NLRP3 is the best 

characterised member, were recently proposed 
as central regulators of early adipose tissue 
inflammation

• Pro-inflammatory T-cells may comprise an early 
inflammatory cellular infiltrate and contribute 
to cytokine release and attraction of additional 
inflammatory cells

• Composition of the gut microbiome may 
contribute to, among other things, endotoxaemia 
which may induce adipose tissue inflammation

Below we will discuss in more detail two additional 
emerging early activators of adipose tissue inflammation 
in obesity: the complement system and advanced glycation 
end products (AGEs). We will also discuss their potential 
roles in the development of diabetes.

t H e  C o M P l e M e n t  s y s t e M  i n 
i n f l a M M a t i o n  a n d  t 2 d 

The complement system is a complex protein network 
that was initially identified as part of the innate immune 
system. Historically, the liver was regarded the major source 
of complement, but in recent years, various non-hepatic 
sources of complement, including adipose tissue and 
endothelial cells, have been identified. Complement can 
be activated via several pathways – the classical, the lectin 
and the alternative – which all converge on complement 
C3, the central component of the complement system. The 
alternative pathway also functions as an ‘amplification 
loop’ and thereby enhances complement activation once 
it is initiated by activation of any of the three pathways. 
All three pathways result in the activation of the terminal 
complement pathway (figure 2). The complement system 
is increasingly recognised as an essential regulator of cell 
and tissue homeostasis, in addition to its well-known role 
in immunity.135,136 Higher systemic C3 concentrations have 
been associated with several diabetes risk factors, including 
obesity, insulin resistance and NAFLD,137,138 and were shown 
to be independently associated with incidence of T2D, at 
least in men.139 
Various lines of evidence suggest a biologically relevant, 
functional role for complement activation in adipose 
tissue homeostasis and insulin resistance. First, 
adipose tissue expresses a large variety of complement 
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components and regulators, with contributions from both 
the stromal vascular and the adipocyte fractions.140-145 It 
has been known for over two decades that the alternative 
complement pathway is activated in adipocytes,146 and more 
recently expression of proximal components of the classical 
pathway has been shown to be altered in subcutaneous 
adipose cells of insulin resistant individuals.147 There may 
also be local effects of complement activation in specific 
ectopic fat depots. As an example, it was recently reported 
that the induction of complement C3 from perivascular fat 
may adversely affect adventitial fibroblast function148 and 
complement activation was shown in human NALFD.149 
In addition, C1q, which is an early component of the 
classical complement pathway, can suppress macrophage 
inflammation in vitro,150 while, on the other hand, the 
anaphylatoxins (C3a and C5a) that are generated during 
complement activation can efficiently attract inflammatory 
cells to the site of complement activation151 and, as such, 
also induce inflammation and insulin resistance in adipose 
tissue and the liver. C3a-receptor knock-out mice are 
protected from high-fat-diet-induced insulin resistance and 
have less macrophage infiltration in adipose tissue152 and, 
very recently, similar data were obtained in C5a-receptor 
knock-out mice.153 In particular the observations on C3a 
and C5a and their receptors suggest that complement 
activation in obesity, and in particular in hypertrophic, 
metabolically stressed adipocytes, may contribute to 
recruitment of immune cells from the circulation to the 
adipose tissue. This may enhance the cellular immune 
response in adipose tissue and thereby contribute to 
adipose tissue dysfunction. 
In addition to the proposed effects of complement activation 
on adipose tissue (dys)function, there may also be a role 
for complement activation in the progression of b-cell 
dysfunction in T2D, as absence of complement C3 in mice 
prevents diabetes development in response in mice treated 
with low-dose streptozotocin,154,155 which causes b-cell 
deterioration in a way similar to what is observed in T2D.82

There is also a substantial body of data, including from 
our own research group,156 that implicates complement 
activation in the development of macrovascular and 
microvascular disease156-158 ( f igure 2) as reviewed 
elsewhere.135,137,159 In short, complement system activation 
leads to endothelial dysfunction, especially when 
protection of the endothelial cells is compromised due to 
decreased expression of complement inhibitors.160 Since 
the microvasculature comprises approximately 98% of 
the total vascular surface area,161 complement activation 
will inevitably affect microvascular function. With respect 
to atherosclerosis, complement activation by the classical 
and perhaps also the lectin pathway may aid in removal 
of apoptotic cell and cell debris and hence have protective 
effects in the atherosclerotic plaque, while complement 
activation beyond C3, which is associated with the release 

of anaphylatoxins and assembly of the (soluble) terminal 
complex, may be proatherogenic.159 Moreover, complement 
activation may be instrumental in the development of 
atherothrombosis since proteases of the coagulation and 
fibrinolysis systems may activate the complement system, 
and vice versa.162

Complement – inflammation – t2d | Key points:
• Many complement components are produced 

by human adipose tissue (by both adipocytes 
and stromal vascular cells), and are increased 
in obesity, insulin resistance and low-grade 
inflammation

• Complement activation in adipose tissue, liver or 
pancreatic islets may contribute to inflammation 
and attraction of immune cells

• Complement activation may lead to endothelial 
dysfunction, and has been implicated in macro- 
and microvascular disease

advanced glycation, inflammation and t2d 
AGEs form a heterogeneous family of unavoidable 
by-products that are formed by reactive metabolic 
intermediates derived from glucose and lipid oxidation.163 
In addition to the overwhelming amount of data, 
including ours,164-167 demonstrating a role of AGEs in the 
development of vascular disease in diabetes (reviewed 
elsewhere168,169, AGEs are implicated in the development 
of obesity and diabetes170 and have been found to be 
associated with insulin resistance.171 In obesity, the 
combined effects of enhanced food consumption, low 
energy expenditure, hyperglycaemia, hyperlipidaemia and 
increased oxidative stress may augment the formation of 
specific AGEs such as N[Carboxymethyl)lysine (CML). 
Peroxidation of lipids may also lead to the formation of 
the reactive dicarbonyl compound methylglyoxal (MGO), 
which is believed to be the most potent glycation product. 
Accelerated endogenous formation of both CML and MGO 
in obesity has been described in a few studies. We recently 
demonstrated the accumulation of a major AGE, CML, in 
adipose tissue and fatty liver and provided evidence that 
this is a core mechanism leading to the dysregulation 
of cytokines production.172,173 CML is a major ligand for 
the receptor for AGE (RAGE) and we demonstrated that 
RAGE-/- obesedb/db mice have reduced inflammation and 
improved insulin sensitivity, indicating a role for the 
CML-RAGE axis in inducing insulin resistance.173 
In addition to the effects in insulin resistance, AGEs 
have also been shown to induce b-cell dysfunction and 
apoptosis, at least partly via the AGE-RAGE axis174-177 and 
via effect of MGO.178,179
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advanced glycosylation end products – inflammation 
– t2d | Key points:
• Obesity is characterised by increased formation 

of advanced glycation end products 
• AGEs in obesity may have important biological 

effects on the dysregulation of adipokine 
secretion and the induction of insulin resistance

• AGEs have been shown to induce b-cell 
dysfunction

C o n C l U d i n G  r e M a r K s

Taken together, the larger picture on how obesity, 
inflammation and T2D are interrelated is becoming 
increasingly clear. We have provided an overview of the 
different fat depots and their potential contribution to 
obesity-associated inflammation, on how inflammatory 

cytokines can affect insulin signalling at the molecular 
level and on how similar molecular events may also affect 
b-cell function. We have additionally discussed novel 
insights into the processes that may initiate the obesity-
associated inflammatory response, including complement 
activation and advanced glycation end products. However, 
the details on exactly where and how inflammation is 
induced, the temporal order of the events that contribute to 
insulin resistance and the development of b-cell function, 
and the role of vascular dysfunction therein remain to 
be further elucidated. More detailed knowledge of these 
events will help to pin-point optimal targets for prevention 
of, and intervention in, T2D. 
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