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Abstract

In the United States, 36.5% of women between the ages of 20 and 39 years are obese. This obesity results in not only metabolic 
disorders including type II diabetes and cardiovascular disease, but also impaired female fertility. Systemic and tissue-specific chronic 
inflammation and oxidative stress are common characteristics of obesity. This is also true in the ovary. Several studies have 
demonstrated that pro-inflammatory cytokines and reactive oxygen species alter estrous cyclicity, steroidogenesis and ovulation. 
Inflammation and oxidative stress also impair meiotic and cytoplasmic maturation of the oocyte which reduces its developmental 
competence for fertilization and pre-implantation embryo development. Interestingly, there is recent evidence that obesity- and/or 
polycystic ovary syndrome (PCOS)-dependent changes to the gut microbiome contributes to ovarian inflammation, steroidogenesis 
and the expression of mRNAs in the oocyte. However, several gaps remain necessitating future studies to identify inflammation, 
oxidative stress and gut microbiome mechanisms that reduce ovarian function and oocyte quality.
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Introduction

Obesity has progressed from a significant health risk 
to an epidemic in the United States. Obesity is defined 
as body mass index (BMI) greater than 30 kg/m2 and in 
the US, 39.6 percent of adults (>20) were classified as 
obese in 2015–2016 (Hales et al. 2017). Reproductive 
age women (20–39  years) have similar obesity rates 
(36.5%) compared to the general population. However, 
there is ethnic obesity disparity such that 55% of African 
American and 51% of Hispanic reproductive age women 
are classified as obese (Hales et  al. 2017). Obesity is 
characterized by increased lipid storage in adipose tissue 
and other metabolic organs, which leads to cellular lipid 
toxicity, inflammation and oxidative stress. The result 
is development of metabolic dysfunctions like type II 
diabetes, cardiovascular disease and ultimately, reduced 
quality and quantity of life. Importantly, the percentages 
of obese and overweight adults are expected to rise to 
50% by 2030 (Wang et al. 2011, Finkelstein et al. 2012).

Obesity in women not only affects her metabolism 
but also her reproductive health. Specifically, obese 
women are at increased risk for ovulatory subfertility 
and anovulatory infertility compared to age-matched 
lean women (Pandey & Bhattacharya 2010, Kumbak 
et  al. 2012, Penzias 2012). While anovulation can be 
overcome with ovarian stimulation, obese women have 
decreased responsiveness to gonadotropins, decreased 
oocyte retrieval, decreased oocyte quality, reduced 
rates of pre-implantation embryo development and 

increased risk for miscarriage compared to their lean 
counterparts (Kumbak et al. 2012, Klenov & Jungheim 
2014, Broughton & Moley 2017). Current research 
aims to define obesity-dependent mechanisms that 
cause these phenotypes in order to prevent or reverse 
female infertility.

Obesity causes chronic inflammation, oxidative 
stress and changes to the gut microbiome

Acute inflammation, which is triggered by tissue damage 
as a result of an invading pathogen or trauma, activates 
the release of chemokines by resident innate immune 
cells. These chemokines attract additional innate immune 
cells from the systemic circulation (Sokol & Luster 
2015). At the same time, resident and infiltrating innate 
immune cells produce pro-inflammatory cytokines. The 
cytokines initiate signaling pathways at the cellular level 
to stimulate expression of chemokines and cytokines 
as well as genes that regulate cell death, senescence 
and survival (Sapochnik et  al. 2017, Varfolomeev & 
Vucic 2018). The end result is phagocytosis of damaged 
tissue and subsequent secretion of anti-inflammatory 
cytokines that regulate wound repair and resolution of 
the inflammatory response. Chronic inflammation is 
defined as unregulated and persistent chemokine and 
cytokine synthesis and secretion. This can be caused by 
unresolved inflammation after tissue damage (Landskron 
et al. 2014). Alternatively, environmental pressures (e.g. 
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allergens), abnormal metabolism (e.g. microbiome 
changes) or persistent necrotic cell death within a tissue 
(e.g. obese adipocyte) can induce de novo inflammatory 
responses (Garn et al. 2016, Kuroda & Sakaue 2017).

In the context of obesity, increased circulating 
triglycerides are stored in adipocytes resulting in 
adipocyte hypertrophy (Ouchi et  al. 2011, Engin 
2017). The end result is hypoxia-induced necrosis 
of adipocytes and infiltration of adipose tissue with 
circulating macrophages and T helper cells due to 
release of monocyte chemoattractant 1 (MCP-1/CCL2) 
and nicotinamide phosphoribosyltransferase (NAMPT) 
(Ouchi et  al. 2011). The macrophages subsequently 
secrete pro-inflammatory cytokines including tumor 
necrosis factor alpha (TNF-α) and pro-inflammatory 
interleukins (ILs; e.g. IL-6). These cytokines activate the 
NFκB signal transduction pathway to produce more pro-
inflammatory cytokines (Fig. 1). Adipocytes also produce 
factors (adipokines, e.g. leptin and lipocalin) which upon 
secretion promote additional release of TNFα and IL-6 
(Ouchi et  al. 2011). Importantly, when cytokines and 
adipokines are released into the circulation they induce 
inflammatory responses in other tissues including the 
ovary (Ouchi et al. 2011, Nteeba et al. 2013, Wang & 
Huang 2015, Xie et al. 2016).

Chronic inflammation also induces oxidative stress 
due to increased production of reactive oxygen species 
(ROS) that overwhelm the cell’s antioxidant system 

(Biswas 2016, Hussain et  al. 2016). The main ROS 
species are superoxide (O2

−) and hydrogen peroxide 
(H2O2) and they are produced by multiple organelles 
in the cell including mitochondria, endoplasmic 
reticulum and peroxisomes (Brown & Borutaite 2012, 
Nordgren & Fransen 2014, Chong et al. 2017, Mailloux 
2018). Inflammation-dependent increases in NFκB-p65 
phosphorylation promotes expression of the redox family 
of NADPH oxidases (NOX) which produce O2

− (Bedard 
& Krause 2007, Lu et al. 2010). The O2

− is subsequently 
converted to H2O2 by superoxide dismutase (SOD) 
(Fig. 1). The H2O2 can freely move from the organelle 
to the cytoplasm of the cell and when in the cytoplasm 
activates NFκB-p65 through phosphorylation (Oliveira-
Marques et al. 2009, Ren et al. 2015), thereby increasing 
the expression pro-inflammatory cytokines including 
TNFα and IL-6 (Fig. 1). Based on this interdependence of 
inflammation and oxidative stress, it is not surprising that 
obesity is also a state of chronic oxidative stress, which 
together contribute to the development of metabolic and 
neural non-communicative disease (Piya et  al. 2013, 
Ertunc & Hotamisligil 2016, Rimessi et al. 2016).

Over the last decade, investigators have established 
that symbiotic relationships between different 
anatomical sites (e.g. skin, colon, and vagina) and 
colonized microbes (microbiome), which are essential 
for human health (Cho & Blaser 2012, Belizário & 
Napolitano 2015). In the gut, there is a symbiotic 
relationship between its microbiome, the intestinal 
epithelia and immune system and inflammatory 
responses (Fig.  2). However, environmental pressures 
including diet and antibiotic use cause shifts in the 
diversity and relative abundance of the colonizing 
bacteria due to microenvironmental-driven changes 
in bacterial growth, stasis or death (Camp et al. 2009, 

Figure 1 Schema showing relationships between increased gut 
permeability, inflammation and oxidative stress. H2O2 (hydrogen 
peroxide), IL-6 (interleukin-6), LPS (lipopolysaccharide), NFκB 
phosphor-p65 (phosphorylated p65 subunit of the nuclear factor 
kappa light-chain enhancer of activated B cell), NOX (NADPH 
oxidases), O2

− (superoxide), SOD (superoxide dismutase), TLR-4 
(toll-like receptor-4), TNFα (tumor necrosis factor alpha).

Figure 2 Schema showing symbiotic relationships between gut 
microbiome, immune system, and the intestinal epithelium. Obesity 
causes changes in the gut microbiota resulting in increased epithelial 
permeability, LPS leak and activation of TLR signaling in the gut, and 
increased caloric extraction and satiety due to increased production 
of SCFAs. GPR41 (G-protein receptor 41), IL-6 (interleukin 6), LPS 
(lipopolysaccharide), PYY (peptide tyrosine tyrosine), SCFA (short-
chain fatty acid), TLR4 (toll-like receptor 4), TNFα (tumor necrosis 
factor alpha).
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Korem et al. 2015). In the context of obesity, the ratio of 
Firmicutes and Bacteroidetes, two phyla of bacteria that 
predominate in the gut, is increased (Ley et  al. 2005, 
Turnbaugh et  al. 2006, 2008, Riva et  al. 2017). This 
change has been correlated to a state of gut dysbiosis 
which is characterized by tight junction protein loss and 
increased epithelial permeability (Kim et al. 2012, Saad 
et al. 2016).

One consequence of microbiota-induced gut dysbiosis 
is increased translocation of lipopolysaccharides (LPS) 
into the circulation resulting in low-level endotoxemia 
and induction of systemic inflammation (Fig.  2) (Cani 
et al. 2007, König et al. 2016, Bidne et al. 2018). Binding 
of LPS to the toll-like receptor 4 (TLR-4) in the intestinal 
epithelial also produces cytokines including TNFα and 
IL-6 which also contributes to systemic inflammation 
and metabolic alterations (Ding et al. 2010, Kim et al. 
2012, Cox & Blaser 2013, Everard et  al. 2014). In 
addition to LPS, obesity-dependent gut dysbiosis results 
in increased dietary caloric extraction due to increased 
production and absorption of short-chain fatty acids 
(SCFAs) (Turnbaugh et al. 2006, Cox & Blaser 2013, Saad 
et al. 2016). Importantly, SCFAs also regulate intestinal 
epithelial tight junctions, epithelial permeability and 
gut dysbiosis. Circulating SCFAs increase lipid storage 
in adipose tissue and cholesterol synthesis in the liver. 
However, they also increase the production of the satiety 
hormone PYY and have anti-inflammatory function (Cox 
& Blaser 2013, Saad et al. 2016). Therefore, it is unclear 
how gut microbiota changes in SCFAs contributes 
to obesity. Together, these data have established the 
now well-accepted paradigm that obesity is a chronic 
condition characterized by low-grade inflammation, 
oxidative stress and increased gut permeability (Fig. 1).

Physiological cytokine and chemokine signaling in 
the ovary

Cytokines and chemokines play essential roles in 
follicular growth and ovulation during a normal 
estrous cycle. They arise from resident and infiltrating 
leukocytes that are localized in and recruited to the 
ovary, respectively. Specifically, Wu et  al. localized 
activated T-lymphocytes, macrophages and monocytes 
and neutrophils in the theca layer during the follicular 
phase (Wu et  al. 2006). After the ovulatory LH surge, 
dendritic cells are detected in the theca cells, while the 
numbers of neutrophils and macrophages in the theca 
cell layer are significantly increased indicating a role 
of these leukocytes during ovulation (Brännström et al. 
1995, Cohen-Fredarow et al. 2014, Akison et al. 2018). 
Likewise, T-lymphocytes, granulocytes, monocytes, 
macrophages and dendritic cells are found in follicular 
fluid-derived cells of the pre-ovulatory follicle (Storeng 
et al. 2007).

The leukocytes described above as well as granulosa 
and theca cells secrete chemokines that recruit 
additional leukocytes to the ovary. Furthermore, a 
myriad of cytokines is produced which regulate somatic 
cell function during follicular growth and ovulation. For 
example, granulocyte-macrophage-colony stimulating 
factor (GM-CSF), monocyte chemoattractant protein 
1 (MCP-1) and IL-8 proteins induce migration of 
macrophages into the ovary (Połeć et  al. 2011, Field 
et  al. 2014). Likewise, chemokine ligand 20 (CCL20) 
produced by the theca and granulosa cells stimulate 
an influx of macrophages (Al-Alem et al. 2015). Finally, 
RANTES (regulated upon activation of normal T-cell 
expressed and secreted) mediates influx of T-cells, 
eosinophils and mast cells into the ovary (Field et  al. 
2014). Cytokines regulate important functions in the 
ovary. For example, IL-6, interferon alpha (IFNα) and 
IFNβ regulate cumulus expansion after the LH surge (Fan 
et al. 2009, Dam et al. 2015).

In addition to acting as chemokines, GM-CSF and 
IL-8, acting as cytokines, also regulate the ovarian cell 
functions. During follicular growth, GM-CSF increases 
preantral follicle progression and decreases granulosa 
cell proliferation and synthesis of 17β-estradiol (E2) 
and progesterone (P4) (Gilchrist et  al. 2000, Wang 
et al. 2005, Zhang et al. 2008). Interleukin-8 stimulates 
follicular progression from preantral to pre-ovulatory 
stage (Goto et al. 1997). However, it inhibits E2 synthesis 
by granulosa cells and increases P4 synthesis by theca 
and granulosa cells (Shimizu et al. 2012, 2013). These 
studies suggest initiation of luteinization by GM-CSF 
and IL-8 during the ovulatory process. Additional studies 
demonstrate that IL-1 induces ovulation (Brännström & 
Enskog 2002).

Pathological cytokine and chemokine signaling in 
the ovary

It should be noted that the abnormalities in ovarian 
function have been correlated with increased infiltration 
of the ovary by macrophages (Skaznik-Wikiel et al. 2016), 
increased expression and signaling of pro-inflammatory 
cytokines (Nteeba et  al. 2014, Xie et  al. 2016), and 
increased incidence of ovarian fibrosis (de Araújo et al. 
2018). Obesity-dependent subfertility and infertility 
is also associated with pathological inflammation and 
oxidative stress (Agarwal et al. 2005a,b). Recent studies 
show increased localization of innate immune cells, 
evidence of inflammatory signaling and oxidative stress 
in ovaries from obesity animal models as well as obese 
women. For example, TNFα, IL-6 and IL-8 expression 
and activity of their associated inflammatory signaling 
pathways (e.g. NFκB) are increased in ovaries from 
obese women and mice (Nteeba et  al. 2013, Ruebel 
et  al. 2016, Xie et  al. 2016). Interestingly, female  
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TNFα-knockout mice (Tnfa−/−) show increased frequency 
of estrous cycles, increased granulosa cell proliferation 
and reduced oocyte apoptosis resulting in increased 
number of pups born over a 12-month breeding period 
(Cui et al. 2011). Finally, there is evidence of obesity-
dependent oxidative stress in the ovary (Igosheva et al. 
2010). Sources of cytokines include ovarian somatic 
cells and leukocytes within the ovary (Nteeba et  al. 
2014, Ruebel et al. 2016, 2017, Xie et al. 2016). There 
are also pro-inflammatory cytokines (IL-1, IL-6, TNFα) 
and oxidative stress factors (H2O2, oxLDL) in follicular 
fluid which in some cases are correlated to circulating 
cytokines (Bausenwein et al. 2010, Buyuk et al. 2017, 
Gonzalez et  al. 2018). Interestingly, IL-6 and TNFα 
are positively correlated with lipid concentrations in 
follicular fluid of obese women. Therefore, obesity-
dependent systemic inflammation and lipotoxicity may 
be transmitted to the ovary via follicular fluid, although 
additional studies are required to verify this occurrence. 
While physiological expression of cytokines is required 
for optimal ovarian functions, these data suggest that 
increased or aberrant expression of pro-inflammatory 
cytokines above a threshold level or at inappropriate time 
points during the estrous cycle impairs ovarian function.

Metabolic and ovarian phenotypes of PCOS

Polycystic ovary syndrome (PCOS) is an androgen 
excess disorder that impacts 7–10% of reproductive 
age women. Women with PCOS are at increased risk 
for development of obesity and type 2 diabetes (Rodgers 
et  al. 2019) resulting in phenotypes that overlap with 
obese women without PCOS. For example, in a rat 
model of PCOS, tumor necrosis factor alpha (TNFα) and 
MDA, which is a metabolite of lipid peroxidation, are 
increased indicating chronic ovarian inflammation and 
oxidative stress (Furat Rencber et al. 2018). Interestingly, 
the level of cytokines and MDA are also higher in obese 
PCOS compared to obese non-PCOS women, although 
both have higher TNFα and MDA levels than lean PCOS 
and lean controls (Alshammari et  al. 2017, Artimani 
et al. 2018). These data suggest that PCOS exacerbates 
obesity-dependent ovarian inflammation and oxidative 
stress (Ressler et al. 2015). Distinct metabolic differences 
between obesity and PCOS include hyperandrogenemia, 
that is, obese women without PCOS have circulating 
total testosterone concentrations similar to lean control 
women (Keskin Kurt et al. 2014, Alshammari et al. 2017, 
Usta et al. 2018). Other hormones increased in obese 
PCOS patients compared to obese women include 
insulin/glucose, LH and E2 (Keskin Kurt et al. 2014, Usta 
et al. 2018). While triglyceride concentrations are similar 
between PCOS and non-PCOS obese women, there are 
distinct differences in the types of phosphatidylcholine 
and lyso-phosphatidylcholine species between obese 
PCOS and obese non-PCOS women (Li et  al. 2017). 
Based on these data, it is clear that obese women with 

PCOS have similar inflammatory and oxidative stress 
phenotypes to obese women. It should also be noted 
that there are PCOS women who have a normal BMI 
(Alshammari et al. 2017, Li et al. 2017, Usta et al. 2018). 
Therefore, there are obese women without PCOS and 
lean women with PCOS.

Obesity disrupts ovarian function

Several studies using rodent models or human samples 
demonstrate that obesity negatively impacts ovarian 
function. For example, estrous cyclicity is irregular 
in rodents fed a high-fat diet, with longer periods of 
diestrus and shortened estrus periods (Nteeba et  al. 
2014, Bazzano et  al. 2015, de Araújo et  al. 2018). 
Follicle growth and development is also altered by 
obesity. There is depletion of the primordial follicle pool 
and concomitant increases in progression of follicles to 
the antral stage (Nteeba et al. 2014, Wang et al. 2014, 
Shaznik-Wikiel et  al. 2016). There are also increased 
numbers of atretic follicles (Wang et al. 2014, Wu et al. 
2015, de Araújo et  al. 2018). These phenotypes have 
been replicated in an Ossabaw pig model of obesity. 
In this model, obese pigs have elongated estrous 
cycles and increased numbers of antral and atretic 
follicles compared to lean counterparts (Newell-Fugate 
et  al. 2015). Together, these data suggest that obesity-
dependent decreases in the number of primordial 
follicles and increases in the number of antral and atretic 
follicles may deplete the ovarian reserve and contribute 
to subfertility (Wang et al. 2014).

Granulosa cell apoptosis, which initiates follicular 
atresia, is increased in ovaries from obese mice and rats 
(Wu et al. 2015). In follicles that do not become atretic, 
it is reasonable to expect that the reduced number of 
granulosa cells per follicle also decreases E2 synthesis 
and secretion, which would directly impact both 
estrous cyclicity and follicle growth. Indeed, the mRNA 
abundance of Cyp19a1, which encodes the P450 
aromatase protein, is decreased in ovaries from obese 
female mice (Nteeba et al. 2014, de Araújo et al. 2018). 
Likewise, the ratio of E2 to P4 and mRNA abundance 
of the steroidogenic acute regulatory protein (Star) and 
P450 aromatase (Cyp19a1) are decreased in obese mice 
during estrus (Nteeba et al. 2014, Pohlmeier et al. 2014).

Oocyte quality is reduced due to obesity

Obesity-induced abnormalities in folliculogenesis and 
ovulation can be rescued by ovarian stimulation with 
exogenous gonadotropins in both mice and women 
(Pohlmeier et  al. 2014, Committee and Society 2015, 
Xie et  al. 2016). However, pregnancy rates remain 
low and miscarriage rates high indicating that oocyte 
quality is impaired (Kawwass et  al. 2016). Under 
normal conditions, when the oocyte reaches the end 
of the growth phase, it acquires the ability to resume 
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meiosis, which is stimulated by luteinizing hormone 
(LH) and results in an oocyte terminated at metaphase 
II (Schroeder et  al. 1990, Conti & Franciosi 2018). 
LH also stimulates maturation of the cytoplasmic 
contents of the oocyte including accumulation and 
re-distribution of mitochondria, accumulation of 
essential nutrients and selective storage and degradation 
of RNAs and proteins (Mao et al. 2014). Under optimal 
conditions, coordination of nuclear and cytoplasmic 
maturation produces a high-quality oocyte competent 
for fertilization, pre-implantation development and 
ultimately embryo/fetal viability.

Oocytes collected from diet-induced obese mice 
have poor quality based on reduced in vitro embryonic 
development (Colton et  al. 2002, 2003, Minge 
et  al. 2008, Pohlmeier et  al. 2014, Hou et  al. 2016). 
Furthermore, poor oocyte quality can have long-
lasting effects on fetal growth and neural development 
(Luzzo et al. 2012). Interestingly, the metabolic effects 
of obesity, due to consumption of a high-fat diet, are 
reversed when mice are returned to a control diet. 
However, meiotic and cytoplasmic measures of oocyte 
quality remain poor (Reynolds et al. 2015). Women who 
are obese and use artificial reproductive technology 
(e.g. in vitro fertilization) have reduced pregnancy rates 
compared to their lean counterparts (Kumbak et  al. 
2012, Moragianni et  al. 2012). However, these poor 
rates can be rescued by the use of donor oocytes from 
lean individuals (Bellver et al. 2007, Levens & Skarulis 
2008). Based on recent data described below, reduced 
pregnancy rates are attributed, in part, to reduced oocyte 
quality and abnormalities in pre-implantation embryo 
development. Like the somatic cells of the ovary, obesity 
induces oxidative stress in the oocyte which negatively  
impacts both meiotic and cytoplasmic maturation of the 
oocyte (Table 1).

Meiotic maturation

Successful meiotic maturation requires resumption of 
meiosis and the faithful segregation of chromosomes. 
Resumption of meiosis is characterized by germinal 
vesicle breakdown, progression from prophase I to 
metaphase II and extrusion of the first polar body. 
Abnormalities during the resumption or progression of 

meiosis result in aneuploidy. Streptozotocin treatment 
of mice, which destroys the insulin-secreting pancreatic 
β-islet cells (Lenzen 2008), causes meiotic abnormalities 
(Colton et  al. 2002, 2003, Wang et  al. 2009). For 
example, the percentage of oocytes that undergo 
germinal vesicle breakdown (GVBD) is reduced when 
they are collected from streptozotocin-induced diabetic 
mice (Colton et al. 2002, 2003, Ratchford et al. 2007). 
There are also abnormalities in both spindle structure 
and chromosome alignment (Wang et  al. 2009, Ou 
et al. 2012). It is important to note that both type 1 and 
type 2 diabetes results in hyperglycemia. Interestingly, 
when non-human primates received excess dietary 
sugar, meiotic resumption was impaired suggesting that 
hyperglycemia is an important contributor to meiotic 
resumption defects (Chaffin et al. 2014).

Disruption of meiosis, resulting in aneuploidy, has 
also been assessed using diet-induced obesity mouse 
and rat models (Hou et al. 2016, Wang et al. 2018). Like 
the streptozotocin-treated mice, high-fat diet-fed mice 
exhibit decreases in both GVBD, polar body extrusion, 
abnormal spindle structure and chromosome alignment 
(Luzzo et al. 2012, Zhang et al. 2015, Hou et al. 2016, 
Wang et  al. 2018). Recent studies show a causative 
effect between accumulation of ROS in the oocyte and 
meiotic maturation defects. Zhang et  al. showed that 
microinjection of mitochondria-localized deacetylase 
sirtuin 3 (Sirt 3) mRNA into oocytes of high-fat fed mice 
decreased ROS levels and rescued meiotic defects 
(Zhang et al. 2015). Likewise, knockdown of Sirt2 results 
in spindle defects and chromosome misalignment 
(Zhang et  al. 2014). Wang et  al. demonstrated 
that loss of TP53-induced glycolysis and apoptosis 
regulator (Tigar) expression increases ROS and spindle 
disorganization (Wang et al. 2018). Alternatively, when 
Tigar is overexpressed in oocytes from high-fat-fed 
mice, there is a reduction in ROS and reduced structural 
meiotic abnormalities. These data indicate that obesity-
dependent oxidative stress plays an important role in 
aneuploidy and ultimately embryo loss.

Interestingly, there is a significant number of first-
trimester pregnancy losses in obese individuals that 
have a normal karyotype (Landres et al. 2010). This is 
in striking contrast to pregnancy loss in individuals with 
advanced maternal age which are overwhelmingly due 

Table 1 Obesity effects on oocyte maturation.

Effects References

Mitosis
 Decreased GV breakdown and polar 

body extrusion
Colton et al. (2002, 2003), Ratchford et al. (2007), Chaffin et al. (2014), Hou et al. (2016), Wang et al. (2018)

 Spindle structure and chromosome 
alignment abnormalities

Wang et al. (2009), Luzzo et al. (2012), Ou et al. (2012), Zhang et al. (2015), Hou et al. (2016)

Cytoplasm
 Mitochondria Igosheva et al. (2010), Luzzo et al. (2012), Ou et al. (2012)
 Endoplasmic reticulum Wu et al. (2010, 2012, 2015), Yang et al. (2012), Sutton-McDowall et al. (2015), Guzel et al. (2017)
 mRNA abundance Wood et al. (2007), Pohlmeier et al. (2014), Hou et al. (2016), Xie et al. (2016), Ruebel et al. (2017)
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to aneuploidy (Nagaoka et  al. 2012). Together, these 
data suggest that obesity-dependent early pregnancy 
loss is also due to alternative oocyte abnormalities, in 
particular, cytoplasmic maturation of the oocyte.

Mitochondrial dysfunction

Mitochondria play an essential role in both oocyte 
maturation and pre-implantation embryo development. 
Indeed, mitochondrial dysfunction leads to abnormalities 
in meiotic resumption, fertilization and development of 
the embryo to the blastocyst stage (Van Blerkom 2011, 
Babayev & Seli 2015). Like somatic cells, mitochondria 
in the oocyte are the site of oxidative phosphorylation 
and production of ATP. Treatment of oocytes with an 
ionophore that inhibits oxidative phosphorylation, and 
presumably the production of ATP, results in spindle 
and chromosome alignment defects (Ge et  al. 2012) 
indicating that the mitochondria is an important energy 
source for meiotic maturation. It is important to note 
that efficient oxidative phosphorylation requires a high 
mitochondrial membrane potential, which increases as 
the oocyte grows and matures (Van Blerkom & Davis 
2007). In addition to metabolic functions, the numbers 
of mitochondria increase during oocyte growth to 
approximately 160,000 (Mahrous et al. 2012). However, 
the increase in maternally derived mitochondria are 
only essential for pre-implantation development but not 
oocyte maturation (Ge et al. 2012).

In the context of obesity, mitochondrial membrane 
potential is altered. Igosheva et  al. and Luzzo et  al. 
showed increases in membrane potential in MII oocytes 
and zygotes using a diet-induced model of obesity 
(Igosheva et al. 2010, Luzzo et al. 2012). Alternatively, 
Wu et al. showed decreased membrane potential in MII 
oocytes using a genetic model of obesity (Wu et al. 2015). 
Interestingly, Ou et  al. showed increased membrane 
potential in germinal vesicle stage oocytes and decreased 
membrane potential in MII oocytes in a hyperinsulinemia 
model (Ou et al. 2012). These studies suggest that the 
mode of obesity development differentially dictates the 
metabolic potential of oocyte mitochondria. Additional 
studies are required to discriminate how diet, satiety 
suppression and hyperglycemia regulate changes in 
the membrane potential of mitochondria. Despite 
these discrepancies, all the studies showed increased 
levels of ROS in oocytes. Furthermore, they all showed 
abnormalities in spindle structure and/or chromosome 
alignment consistent with ionophore inhibition of 
mitochondrial oxidative phosphorylation.

Endoplasmic reticulum stress

As indicated earlier, obesity-dependent oxidative stress 
is the result of increased production of O2

− and H2O2 
(Fig.  1). Increased ROS also induces endoplasmic 
reticulum (ER) stress. The consequence is activation of 

the unfolding protein response (UPR) which includes 
increased expression of ATF4, ATF6, GRP78 and PERK 
(Guzel et  al. 2017). Indeed, oocytes from obese mice 
or treatment of mouse oocytes with follicular fluid from 
obese women increases ATF6, ATF4 and GRP78 (Wu 
et al. 2010, 2015, Yang et al. 2012). This ER stress has 
been correlated with reduced ovulation, fertilization and/
or pre-implantation development, which is indicative of 
reduced oocyte quality (Wu et al. 2010, 2012, Sutton-
McDowall et al. 2015). To determine the causative effect 
of ER stress on the oocyte, cumulus-oocyte complexes 
(COCs) have been treated with thapsigargin, which 
induces ER stress. This treatment decreases cumulus 
cell expansion, which is a marker of oocyte quality, 
and results in poor pre-implantation development rates 
(Wu et  al. 2012). Treatment of COCs with palmitic 
acid similarly induces ER stress, decreases cumulus 
expansion and reduces pre-implantation development 
(Wu et  al. 2012, Sutton-McDowall et  al. 2015). It 
should be noted that thapsigargin treatment decreases 
mitochondrial membrane potential suggesting cross-
talk between ER- and mitochondrial-dependent ROS 
production (Wu et  al. 2012). Therefore, to definitively 
demonstrate that ER stress impairs oocyte quality, COCs 
treated with thapsigargin or palmitic acid or collected 
from obese mice were cultured in the presence of the 
ER stress inhibitor salubrinal (Wu et  al. 2012, Sutton-
McDowall et al. 2015). This treatment reverses the ER 
stress-induced phenotypes and suggest a direct role for 
ER stress-dependent decreases in oocyte quality.

Regulation of oocyte mRNAs

Under optimal conditions, approximately 0.5 ng of total 
RNA are synthesized in growing oocytes due to a high rate 
of transcription which correlates with diffuse chromatin 
distribution (Gandolfi & Gandolfi 2001). As the oocyte 
reaches its full-grown size, its chromatin compacts and 
surrounds the nucleolus (SN) at which time transcription 
rates dramatically decrease (Bouniol-Baly 1999). Post-
transcriptional regulation of mRNA storage, translation 
and degradation becomes the predominate mechanism 
to regulate transcript abundance after the ovulatory surge 
of LH (Li et  al. 2013, Svoboda et  al. 2015). Selective 
degradation of mRNAs, which are initiated by the LH 
surge, continues after fertilization and are essential for 
activation of transcription from the embryonic genome. 
Importantly, a group of mRNAs called maternal effect 
genes remain relatively stable until later in development 
(one- to two-cell stages) and are essential for pre-
implantation development (Alizadeh et  al. 2005, Su 
et al. 2007, Svoboda et al. 2015).

Microarray analysis and RNA sequencing of MII 
oocytes from obese women with or without PCOS 
demonstrated differences in gene expression profiles 
(Wood et al. 2007, Ruebel et al. 2017). Transcripts from 
these analyses fell into cytokine activity, transcription 
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of DNA, regulation of mRNA storage and degradation, 
cell cycle regulators and maternal effect gene networks. 
Using a candidate gene approach, maternal effect 
genes were also increased in ovulated oocytes from 
diet-induced and satiety-suppressed mouse models of 
obesity (Pohlmeier et  al. 2014). Similarly, the mRNA 
abundances of Dppa3, Pou5f1 and basonuclin 1 
(Bnc1), which are maternal effect genes, were increased 
in ovaries from diet-induced obese mice collected 
immediately after ovulation (Xie et  al. 2016). In this 
same model, the STAT3 transcription factor, which 
is activated by inflammatory signaling, binds to the 
promoter of Dppa3 suggesting that obesity-dependent 
inflammation regulates transcription of oocyte genes. 
Importantly, DPPA3 binds to di-methylated histone H3 
on lysine 9 (H3K9me2), protecting 5-methycytosine 
to 5-hydroxymethylcytosine (Nakamura et  al. 2007, 
2012, Nakatani et  al. 2015). Han et  al. showed that 
oocytes isolated from high-fat fed mice had decreased 
DPPA3 protein, which altered DNA methylation (Han 
et  al. 2018). Specifically, DNA methylation in the 
pronuclei of the zygote was altered. These data suggest 
that DPPA3 influences the epigenetic profile of the 
embryo that could have long-lasting effects on fetal 
development. In a preliminary experiment, Timme and 
Wood (unpublished data) showed that H2O2 induction 
of oxidative stress during oocyte maturation increases 
Pou5f1 mRNA abundance in not only MII oocytes 
but also two-cell embryos (Fig.  3). Loss of maternal 
effect gene expression terminates pre-implantation 
embryonic development (Hirasawa et  al. 2008). 
However, it is unclear how increases in maternal effect 
gene expression impacts embryo development and 
therefore represents an area that requires additional 
studies. Interestingly high-fat-fed mice have decreased 
H3K9-me2 in germinal vesicle stage oocytes which is 
correlated with oxidative stress (Hou et al. 2016). This 
suggests that gene expression during oocyte growth is 
altered and may have impacted the number of mRNAs 
in a MII-stage oocyte.

Potential role of the gut microbiome on 
female fertility

Interestingly, bariatric surgery of obese women 
normalizes ovulatory patterns, improves conception 
rates, reduces pregnancy complications and improves 
fetal health (Guelinckx et  al. 2009, Gosman et  al. 
2010). Bariatric surgery also improves metabolic 
function, which is attributed in part, to changes in the 
composition of the gut microbiome (Murphy et al. 2017, 
Shao et al. 2017). These data suggest that changes to the 
gut microbiome may impact fertility. Toward this end, 
studies in Drosophila melanogaster were performed and 
showed that loss of gut microbes suppressed oogenesis 
(Elgart et  al. 2016). Studies from China, Spain and 

Austria demonstrated association of PCOS with reduced 
diversity of the gut microbiome (Guo et  al. 2016, 
Lindheim et  al. 2017, Liu et  al. 2017, Insenser et  al. 
2018). Furthermore, reduced diversity was most severe 
in obese women with PCOS. Using a mouse model of 
obesity, Xie et al. showed positive correlations between 
increases in the bacterial family Lachnospiracae and 
increased ovarian Tnfa expression (Xie et  al. 2016). 
Importantly, Lachnospiracae was increased in high-fat-
fed C57BL/6J mice.

Figure 3 Oxidative stress increases the abundance of Pou5f1 in the 
MII oocyte and two-cell embryo. Oxidative stress was induced by 
H2O2 during in vitro maturation of the oocyte. Single molecule 
fluorescence in situ hybridization coupled with the Spot Finding and 
Tracking program determined the number of mRNAs in each  
oocyte and embryo. The copy number of mRNAs is indicated in the 
graph. Significance was determined using ANOVA. P < 0.001 are 
indicated by ***.
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As described earlier, one consequence of gut 
microbiome changes is increased gut permeability 
due to loss of tight junctions resulting in leak of LPS 
and endotoxemia (Cani et al. 2007, 2012, König et al. 
2016, Bidne et al. 2018). Interestingly, LPS is increased 
in the follicular fluid of cystic follicles (Shimizu et  al. 
2018). When bovine granulosa cells are treated in vitro 
with LPS, there is increased expression of IL-6, IL-8 and 
IL-1β, which is a result of increased activation of TLR4 
signal transduction (Sheldon & Bromfield 2011, Price 
et  al. 2013). These cytokines decrease expression of 
P450 aromatase (CYP19A1), which regulates synthesis 
and secretion of E2 by the bovine granulosa cells 
(Price et  al. 2013, Magata et  al. 2014, Shimizu et  al. 
2018). Furthermore, LPS disrupts meiotic resumption 
and spindle structure, mitochondrial membrane 
potential and decreases blastocysts rates and the ratio 
of trophectoderm and inner cell mass cell numbers 
(Sheldon & Bromfield 2011, Magata & Shimizu 2017).

Together, these studies suggest that changes in the 
gut microbiome, which increase LPS concentration, 
impact both ovarian steroidogenesis and oocyte quality. 
However, studies showing a causative effect of changes 
in the gut microbiome on obesity-dependent changes in 
the ovary are required.

Conclusions

In the last decade, the negative impact of obesity on 
ovarian function and oocyte quality has become evident. 
It is specifically tied to increases in inflammation and 
oxidative stress and potentially obesity-dependent 
changes in the gut microbiome (Fig.  4). However, 
future studies are required to delineate the mechanisms 
by which inflammation, oxidative stress and gut 
microbiome changes affect the ovary and oocyte. The 
impetus of these studies is to identify targets that can be 

used to therapeutically improve fertility in women who 
are obese or have metabolic dysfunction.
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