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Abstract: Heart rate variability (HRV) represents the activity and balance of the autonomic nervous
system and its capability to react to internal and external stimuli. As a measure of general body
homeostasis, HRV is linked to lifestyle factors and it is associated with morbidity and mortality. It
is easily accessible by heart rate monitoring and gains interest in the era of smart watches and self-
monitoring. In this review, we summarize effects of weight loss, training, and nutrition on HRV with a
special focus on obesity. Besides weight reduction, effects of physical activity and dietary intervention
can be monitored by parameters of HRV, including its time and frequency domain components. In
the future, monitoring of HRV should be included in any weight reduction program as it provides
an additional tool to analyze the effect of body weight on general health and homeostasis. HRV
parameters could, for example, be monitored easily by implementation of an electrocardiogram (ECG)
every two to four weeks during weight reduction period. Indices presumibly showing beneficial
changes could be a reduction in heart rate and the number of premature ventricular complexes as well
as an increase in standard deviation of normal-to-normal beat intervals (SDNN), just to name some.

Keywords: nutrition; diet; obesity; weight reduction; heart rate variability

1. Introduction

Obesity is defined as a pathologically increased body fat mass with a body mass index
(BMI) of ≥30 kg/m2, whereas overweight describes a pre-stage with a BMI ranging from
25–30 kg/m2 [1]. In the year 2000, the World Health Organization (WHO) described obesity
as a chronic disease resulting from complex interactions between genetic predisposition,
lifestyle, and environmental influences [2]. Worldwide obesity has nearly tripled since
1975. In 2016, 39% of all adults (more than 1.9 billion) were overweight and 13% (over
650 million) were obese. Most of the world’s population live in countries where being
overweight and obesity kill more people than being underweight [1].

The development of obesity is complex. Besides diverse influencing factors, a positive
energy balance caused by a high energy intake as well as low energy expenditure is the
main factor of weight gain [2]. Obesity is associated with several co-morbidities and with a
higher mortality rate [3]. It has been identified as a risk factor for several cardiovascular
and metabolic diseases, such as diabetes mellitus type 2, hypertension, dyslipidemia, and
acute myocardial infarction [4]. It has been shown that physiological variation in the time
interval between heartbeats, the so-called heart rate variability (HRV), is pathologically
decreased in individuals with cardiovascular diseases [5]. The probability of developing
obesity-related cardiovascular diseases as well as the risk of all-cause mortality can be
measured by parameters of HRV [6–8].
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A review of randomised trials in 2018 showed that caloric restriction can improve
autonomic regulation and cardiac vagal control as well as lower systolic and diastolic blood
pressure [9]. However, weight loss does not directly translate to an increase in HRV and
reduced cardiovascular risk. Sekaninova et al. described a dysregulation of autonomic
nervous system in anorectic patients leading to higher rate of cardiovascular complica-
tions [10,11]. A study of Zhang et al. in 2020 showed that patients after gastric bypass
surgery have a disposition to developing orthostatic intolerance. It can be assumed that not
only a sympathetic overactivity, but also a general imbalance of autonomic nervous system,
including lacking sympathetic activity with thereof resulting loss of vasoconstriction, can
arise from weight reduction [12]. Therefore, there is probably more to successful obesity
therapy than simply losing weight. A healthy lifestyle including dietary habits itself are
also associated with HRV and might be more important than only reduction of body mass.

2. Parameters of Heart Rate Variability
2.1. Heart Rate Variability and the Autonomic Nervous System

HRV is commonly used for the analysis of activity and balance of the autonomic
nervous system (ANS), and can be derived from non-invasive heart rate (HR) monitors [13].
The differences in lengths of beat-to-beat intervals are of special interest as they depict
the fluctuation of HR as an answer to several influencing aspects like physical activity or
emotional stress, neuroendocrinological processes, and others. These interval variations
are also a marker of the capability to regulate internal and external processes [14,15]. A
healthy heart is not a metronome. The oscillations of a healthy heart are complex and
constantly changing, which allow the cardiovascular system to rapidly adjust to sudden
physical and psychological challenges to homeostasis [16].

HR is being controlled by the tenth cranial nerve called vagus nerve in the medulla
oblongata, which is a part of our brain stem. Increasing vagal tone leads to a reduction
of the HR by inhibiting the sinus node, the heart’s pacemaker [17]. There is a close
alliance and communication between brain stem and central autonomic network, with
the prefrontal cortex playing a leading role [18]. Direct and indirect pathways involving
cingulate and insula cortices, amygdala, hypothalamus, and medulla oblongata link the
frontal cortex to autonomic motor circuits responsible for both the excitatory sympathetic
and inhibitory parasympathetic effects on the heart [19]. It is conceivable that HRV reflects
the overall capacity of the body to deal with on-going requirements for adaptations. Low
HRV is associated with a lower capacity for self-regulation of physiological, motional, and
cognitive responses and of less effective adaption to environmental stress and demands,
including exposure to food stimuli [20–22]. Therefore, HRV may act as a biomarker when
considering the influence of diet on health-related mechanisms [23].

2.2. Heart Rate Variability Domains

There are mainly two different groups of HRV parameters that are commonly used
to measure ANS activity: time domain and frequency domain. Time domain measures
are calculated by examining the intervals between heartbeats or normal-to-normal (NN)
segments measured in milliseconds. Mathematical processing of the N variables leads to a
large number of HRV variables including the standard deviation of NN intervals (SDNN)
and root mean square of successive differences between NN intervals (RMSSD).

Spectral analyses of fluctuations in HR result in frequency domain HRV variables.
These include power in a very low frequency range (VLF; ≤0.04 Hz), low frequency
range (LF; 0.04–0.15 Hz), high frequency range (HF; 0.15–0.40 Hz) measured in ms2 and
percentage of consecutive NN intervals more than 50 ms (pNN50) [13,24]. While power in
the VLF and LF range is associated with sympathetic nervous system (SNS) activity, the
parasympathetic nervous system (PNS) is represented by the HF range [25]. Mathematical
calculations of these frequency domain measures, such as the LF/HF ratio, are helpful
measurements of ANS activity, as higher LF/HF ratios are possibly reflecting high SNS
activity [26] (Table 1).
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Table 1. Parameters of Heart rate variability.

Method Variability
Measure

Measurement
Unit

Definition and
Explanation Indicator of . . .

Assignment as
Part of the
Autonomic

Nervous System

Recommendation
for Reporting

Time

Statistical SDNN ms Standard deviation of
NN intervals Total variability No clear

assignment

Statistical RMSSD ms

Root mean square of
successive differences
of all consecutive NN

intervals

Short-term
variability PSY

Statistical pNN50 ms

Percentage of mean
number of successive

normal sinus (NN)
consecutive
RR-Intervals

exceeding 50 ms

Total variability PSY

FFT and au-
toregressive

model
VLF ms2

Very low frequency
power: power

spectral density in the
frequency range from

0.003 to 0.04 Hz

No clear
assignment SY

FFT and au-
toregressive

model
LF ms2

Low frequency power:
power spectral
density in the

frequency range from
0.04 to 0.15 Hz

No clear
assignment SY > PSY ≥5 min

FFT and au-
toregressive

model
HF ms2

High frequency
power: power

spectral density in the
frequency range from

0.15 to 0.40 Hz

No clear
assignment PSY ≥5 min

FFT and au-
toregressive

model
LF/HF k. E.

Ratio of
sympatho-vagal

balance; measurement
of interaction between

SNS and PNS

No clear
assignment SY and PSY ≥5 min

HRV—Heart rate variability, FFT—Fast Fourier Transformation, SNS—sympathetic nervous system, PNS—parasympathetic nervous
system, SY—Sympathicus, PSY—Parasympathicus, NN—normal-to-normal beat interval, ms—milliseconds, min—minutes, Hz—hertz
unit, k.E.—keine Einheit.

3. Heart Rate Variability in Individuals with Obesity

Several studies have demonstrated an inverse association of weight gain and obesity
with alteration of HRV parameters [27–29]. There are various determinants which can
influence HRV in individuals with obesity including, e.g., co-morbidities, dietary habits,
physical activity, emotional stress, and genetic factors [5,30–32].

3.1. Glucose Levels and Insulin Resistance

Silva and colleagues showed a statistically significant correlation between high fasting
plasma glucose levels and reduced parasympathetic modulation, meaning reduced heart
rate recovery after cardiopulmonary exercise testing [33]. Similarly, Kiviniemi et al. showed
an association between glucose levels and reduced parasympathetic modulation [34].
In 2020, Oliveira et al. examined 64 middle-aged persons with obesity and found that
among the cardiovascular risk variables studied, insulin resistance and waist circumference
showed the greatest influence on cardiac autonomic modulation, as they were negatively
associated with HF power, a marker of PNS activity [35].

3.2. Body Fat

Vagal modulation was also inversely associated with body fat percentage, high body
mass, and waist circumference [34,36–38]. Individuals who were overweight had sympa-
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thovagal imbalance due to increased sympathetic activity associated with visceral fat [39].
RMSSD as well as LF power are negatively correlated with fat percentage and waist-to-hip
ratio [23].

3.3. Binge Eating Disorders

In 2019, Godfrey et al. investigated the correlation between HRV and emotion regula-
tion in individuals with BMI ≥ 30 kg/m2 with binge eating disorder, meaning eating large
amounts of food (overeating, OE) and those feeling unable to resist eating (loss of control
in eating, LOC). They found that there was a significantly negative association between
SDNN and LOC as well as resting LF/HF power and OE. There was a statistical trend for
a negative correlation of resting RMSSD with LOC. No significant association was found
between HRV during mental stressors (solving math problems) in individuals with LOC or
OE. The ANS activity associated with LOC and OE and HRV might be a feasible marker of
emotion regulation in people with binge eating disorder [13].

3.4. Exercise Training in Individuals with Obesity

Most studies, which investigated training-associated effects on HRV in individuals
with obesity, focused on weight and BMI, and did not consider other clinically relevant
measures [40–42]. Weight reduction via exercise training in persons with obesity has been
shown to improve HRV variables by modulation of vagal activity [29,43,44].

In individuals with severe obesity, moderate to vigorous physical activity (MPVA,
at least 150 min per week in bouts of at least 10 consecutive minutes) has been shown to
be one of the main factors that affect the alteration of autonomic function (beside insulin
resistance, central adiposity, and sedentary time) [35].

In the same line, the observational CARDIA study demonstrated that improved
cardiorespiratory fitness is a stronger and independent determinant of higher HRV than
weight loss [45].

4. Effects of Diet on Heart Rate Variability

It is speculated that HRV can be used to indicate the potential health benefits of food
items. Several aspects of diet have an effect on HRV.

4.1. Energy and Macronutrient Intake
4.1.1. Macronutrient Intake

Food composition has substantial influence on the cardiac autonomic nervous system.
In 2003, Tentolouris compared the impact of carbohydrate- and fat-rich meals in 15 obese
and lean women. Before food intake, obese women had higher sympathetic activity than
thin controls (higher values of low-to-high frequency ratio [LF/HF], 1.52 ± 0.31 versus
0.78 ± 0.13, p = 0.04; as well higher plasma norepinephrine levels, 405.6 ± 197.9 versus
240.5 ± 95.8 pg/mL, p < 0.0001). After the carbohydrate-rich meal, a greater increase in
LF/HF and in plasma norepinephrine levels was observed in lean compared to obese
women (1.21 ± 0.6 versus 0.32 ± 0.06, p = 0.04; and 102.9 ± 35.4 versus 38.7 ± 12.3 pg/mL,
p = 0.01, respectively), while no differences were observed after the fat-rich meal [46].

Oliveira et al., in 2021, showed an impaired cardiac autonomic function in subjects
with higher fasting blood glucose (defined as >90.5 mg/dL) at fasting as well as after a
carbohydrate load (p < 0.05). SDNN, LF, and LF/HF increased and HF decreased after
consumption of dextrose compared with fasting (p < 0.05) [47]. Autonomic modulation
following carbohydrate ingestion (CI) consisting of 600 kcal, carbohydrate 78%, protein
13%, and fat 8% and postural stress in standing position (PS) were investigated in a study
by Cao et al. (2016) in 14 healthy men and 21 age-matched postmenopausal women (age:
65.0 ± 2.1 vs. 64.1 ± 1.6 years), with intact insulin response. In response to CI and PS,
mean arterial pressure maintained stable, and heart rate increased in women and men in
the lying and standing positions. Following CI (60, 90, and 120 min postprandially) in PS,
systolic blood pressure variability increased by 40% in men (p = 0.02) with unchanged HRV
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parameters; in contrast, in women, HF power halved (p = 0.02) with unaltered systolic blood
pressure variability. In summary, CI induces sex-specific vascular sympathetic activation in
healthy older men and parasympathetic inhibition in healthy older women [48].

Over two days, Lima-Silva et al. examined the impact of a low-carbohydrate in-
take in those who had been exercising. Compared with a high-carbohydrate intake, the
low-carbohydrate diet increased LF and decreased HF power. There were, however, no
differences in HR or RR intervals [49].

4.1.2. Caloric Restriction and Energy Expenditure

Sjoberg et al., in 2011, showed an increase in HRV as indicated by low-frequency
power (LFP), SDNN, and RMSSD in overweight adults with type 2 diabetes after weight
loss (p ≤ 0.03) [50].

In 2010, the life-extending effect of caloric restriction (CR) had been investigated in
the CALERIE trial [51]. Participants were randomized in four different study arms: (I)
control group, (II) CR group with 25% decrease in energy intake, (III) calory restriction
and energy expenditure (CREX) group with 12.5% decrease in energy intake plus 12.5%
increase in energy expenditure (EX), or (IV) low caloric diet (LCD) group aiming for 15%
weight reduction followed by weight maintenance. After six month, HR and SNS index
decreased and PNS index increased in all intervention groups but reached significance
only in the CREX group. The results therefore suggest that weight loss improve SNS/PNS
balance, especially when CR is combined with exercise.

A study in 2003 investigated the influence of diet-induced weight loss on autonomic
activity during sleep. Seventeen severely overweight women (BMI > 40 kg/m2) underwent
a 3-month weight loss program and showed an average weight loss of 10 percent of the
starting weight. There was a significant reduction in mean heart rate after weight loss
compared with baseline (p < 0.001) and also a considerable increase in the parasympathetic
parameters of HRV, in particular HF, LF, and VLF power as well as SDNN, RMSSD, and
pNN50 [52].

Another study in 2012 found that after caloric restriction for an average of seven years,
HR was lower and several measures of HRV values were significantly higher. In fact, HRV
after some years of CR diet was comparable to the norms for those 20 years younger. The
overall impression is that weight gain adversely influences HRV, although this effect may
be reversible with weight loss and/or dietary restriction [53].

4.2. Fatty Acids

Certain components of HRV may be influenced by the type of dietary fat, at least
in the longer term. In 2013, Sauder and colleagues reported that in healthy adults with
elevated triglycerides, supplementation of high amount of omega-3 fatty acids (3.4 g/d
eicosapentaenoic acid and docosahexaenoic acid) resulted in a 9.9% increase of RMSSD
and 20.6% increase of total power, showing an improvement of autonomic function [54].

The health-promoting effects of omega-3 fatty acid intake have been frequently studied.
For example, Baumann et al. gave 20 obese children (mean body mass index percentile:
99.1; mean age: 11.0 years) a daily supplementation of 400 mg eicosapentaenoic acid (EPA)
and 120 mg docosahexaenoic acid (DHA) for at least three months and compared their
HRV response with the one of 94 normal-weight children. Time domain HRV parameters
as indicators of vagal function were significantly lower in obese subjects than in the control
group, but HR was higher (SDNN = −34.02%; RMSSD = −40.66%; pNN50 = −60.24%;
HR: = +13.37%). After omega-3 fatty acid supplementation, time domain HRV parameters
and HR of obese patients were similar to the values of healthy controls (SDNN interbeat
intervals: −21.73%; RMSSD: −19.56%; pNN50: −25.59%; HR: +3.94%) [55].
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There is a general impression that omega-3 intake results in greater parasympathetic
activity. Christensen and Schmidt concluded that in five different studies, dietary n-3
polyunsaturated fatty acids (PUFA) levels and n-3 PUFA supplementation are related to
improved HRV. The findings suggested that an increased parasympathetic regulation of
heart activity occurred [56].

Billman reviewed the evidence that the intake of omega-3 fatty acids influenced
cardiac rhythm. He concluded that supplementation with n3-PUFAs affects ion channels
and calcium-regulatory proteins. Immediately after metabolic processing, there is a direct
effect of the fatty acids on ion channels, while after a longer period, when the incorporation
of the fatty acids into the cell membrane has proceeded, cardiac electrical activity changes.
HR is reduced and HRV increases, reflecting alterations in the intrinsic pacemaker rather
than regulation by the activity of the ANS [57].

4.3. Micronutrients

Vitamins are found to be another influencing factor of HRV. Celik et al. examined
sixty adolescents with Vitamin B12 deficiency (Vitamin B12 ≤ 200 pg/mL, mean age
14.4 ± 1.72 years) and 40 healthy controls (mean age 13.4 ± 1.86 years). LF, HF (p < 0.001),
and RMSSD (p = 0.04) were significantly lower in the B12 deficient patients [58]. The
impact of a supplementation of 400 mg magnesium per day on sympathovagal function
was investigated in a randomized, placebo-controlled study with 100 participants over a
time span of 90 days in 2016. In the treatment group, pNN50, as a marker of vagus activity,
significantly increased and LF/HF ratio decreased while no positive changes appeared in
the control group [59].

A review by Lopresti in 2020 investigated cross-sectional and interventional studies
about the relation between HRV and vitamin B-12, C, D, and E and the minerals magnesium,
iron, zinc, and coenzyme Q10 as well as a combination in the form of a multivitamin-
mineral formula. Although this study does not allow a clear inference about the effects
of these micronutrients on HRV due to the sparse number, the heterogeneity, and the
relatively low power of available scientific studies on these correlations, it can be strongly
assumed that deficiencies in vitamin D and B-12 are associated with impaired HRV, and
zinc intake, especially during pregnancy, can have positive implications on HRV in infants
until the age of five years [60].

4.4. Sodium

Sodium intake is also linked to HRV. Buchholz et al., in 2003, showed by means of
17 salt-sensitive young men and 56 salt-resistent controls that stress-induced heart rate
increases more in the salt-sensitive than salt-resistant group (p = 0.01). Additionally, the
salt-sensitive men, in comparison to control, showed significantly reduced time domain-
based heart rate variability RMSSD at baseline (p = 0.01) and during an 8 min mental stress
test (p = 0.05). Salt-sensitivity was defined as a > 3 mmHg reduction of systolic blood
pressure after 14 days of low-salt diet containing daily intake of 20 mmol sodium, 20 mmol
chloride, 60 mmol potassium, and 20 mmol calcium in addition to a daily supplement of
22 tablets of Slow Sodium (10 mmol sodium chloride per tablet). Diastolic blood pressure
response was also higher in the salt-sensitive group (p = 0.05) [61].

4.5. General Antiarrhythmic Effects of Nutrition

There is a growing body of literature about the central role of dietary components in the
prevention of cardiac arrhythmias, especially fatal arrhythmias (ventricular arrhythmias),
but little evidence is available regarding the protective effects of dietary patterns and
lifestyle on premature ventricular complexes (PVCs) and HRV [62,63].
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Results from randomized controlled trials suggest that the sufficient supplementa-
tion of omega-3 PUFA may reduce the overall number of PVCs, also decreasing their
severity [64,65]. Moreover, omega-3 PUFAs have also been hypothesized to be linked to
HRV, supporting their protective role in subjects at high risk for arrhythmic events and
sudden cardiac death (SCD) [66]. In contrast with substances that may play a role in
preventing PVCs, some food contents may act as triggers. Some studies have suggested
that alcohol and caffeine consumption may be linked to cardiac performance. Evidence
indicates the existence of an association between different doses of alcohol consumption
with HRV and cardiac ectopic beats, while the role of caffeine is still disputed [67–69].
In a randomized, single-blind study in 2010, the effect of red wine, ethanol, or water on
HRV was observed in healthy subjects aged 24–57 years (each 50% women or men). One
alcoholic drink increased blood alcohol concentration to 36 ± 2 mg/dL (mean ± standard
deviation), and two drinks to 72 ± 4 mg/dL (red wine) and 80 ± 2 mg/dL (ethanol). Red
wine quadrupled plasma concentration of antioxidant polyphenol resveratrol (p < 0.001).
When compared with respective baselines, one alcoholic drink had no effect on HR or HRV,
whereas two glasses of red wine or ethanol increased HR (red wine, +5.4/min ± 1.2/min;
and ethanol, +5.7/min ± 1.2/min; p < 0.001) decreased total HRV by 28–33% (p < 0.05) and
high-frequency spectral power by 32–42% (parasympathetic HR response), and increased
LF power by 28–34% and the ratio of LF to HF by 98–119% (sympathetic HR response) (all,
p ≤ 0.01). All in all, alcohol shows dose-dependent effects on HRV, without significant
difference between red wine and ethanol. Drinking plain water resulted in a reduction of
HR [70]. In 1993, Aparichi et al. showed that tobacco consumption leads to a higher heart
rate and higher number of PVCs as well as supraventricular arrhythmias, an effect which
can be partly reversible after nicotine abstinence [71]. A questionable aspect in non-organic
food is the arrhythmic effect of plant protection products and nitrates from preserved
food. A study in 2015 showed an increase in first sympathetic tone, then prolongation, in a
parasympathetic period leading to a prolongation of spread of excitaion in the heart (QT),
possibly followed by torsade de pointes or even ventricular fibrillation and sudden cardiac
death after intoxication by organophosphorus insecticide chlorpyrifos, a widely used plant
protection substance known to be injurious to health [72].

A current study by Reginato et al. investigated differences in the presence or absence
of PVC and supraventricular premature complexes (SPVCs) in several dietary patterns and
found that, in the multivariable analysis, there was a statistically significantly lower number
of PVCs and SPVCs in those consuming a higher amount of fruits (p = 0.044) and grain-
based products (p = 0.001) compared with others. The intake of sugary foods worsened
arrhythmias (p-value 0.013). Regardless of the source (animal- or plant-based), protein
food consumption was significantly and inversely proportional to SPVCs (p-value < 0.001).
Similar results have been obtained from the analysis of the general frequency of food
consumption, while they did not differendiate between the sources of protein meaning
coming from fish, plant, or milk products. This study also showed a significant direct
association between waist circumference and PVCs and an inverse correlation between fruit
intake and PVCs. Higher consumption of sweets, sugars, and refined grain products led to
an increase of the number of PVCs [63]. From previous investigations, limited evidence
is available regarding the association between protein food and cardiac electrical activity,
since earlier studies have concentrated mainly on fish intake and cardiac rhythm, not on
another type of protein food. Results of such studies suggested a beneficial role of omega-3
PUFA in fish against cardiac arrhythmias, primarily pointing out the kind of fatty acids
being consumed [73,74] (Table 2).
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Table 2. Obesity and heart rate variability, assembling of studies.

References Sample Design Outcome

Godfrey 2019 28 persons with obesity
HRV and emotion regulation in

binge eating disordered with BMI
≥ 30 kg/m2

Statistically significant association between SDNN,
resting low and high frequency domain and

overeating, association between resting RMSSD and
binge eating -> HRV as a feasible marker of emotion

regulation

Chen 2019 2316 middle-aged persons
with obesity

BMI, HRV und graded exercise
test duration at randomization

and after 20 years

Higher waist circumference and higher measures of
adiposity as well as lower level of cardiorespiratory

fitness leading to lower RMSSD, higher waist
circumference meaning lower SDNN

Oliveira 2020 64 middle-aged persons
with obesity

Risk Factors influencing cardiac
autonomic function in persons

with obesity

Insulin resistance and waist circumference showed
the greatest influence on cardiac autonomic

modulation of obese as negatively associated with
high frequency power, representing the

parasympathetic activity

Jonge 2010 48 persons with over-weight Life extending effect of caloric
restriction (CR)

Randomization in 3 groups: control group, CR group
with 25% decrease in energy intake, calory restriction
and energy expeniture (CREX) group with 12.5% CR
plus 12.5% increase in energy expenditure (EX), or
low calory diet (LCD) group aiming 15% weight
reduction. After six months heart rate (HR) and

sympathetic nervous systeme (SNS) index decreased
and parasympathetic nervous systeme (PNS) index

increased in all intervention groups but reached
significance only in CREX. Heart rate and SNS index

increased and PNS index decreased after having
meal in all intervention groups. Conclusion: weight
loss improved SNS/PNS balance especially when CR

is combined with exercise

Chintala 2015 40 controls, 40 persons with
over-weight Correlation visceral fat and HRV

Overweight individuals had sympathovagal
imbalance due to increased sympathetic activity

associated with visceral fat

Poirier 2003 17 severe overweight women
(BMI > 40 kg/m2)

Effect of diet induced on HRV in
severe obese women

An average weight loss of 10 percent showed a
significant reduction in mean heart rate (HR) and

notable increase in several parasympathic
parameters (HF, LF, VLF power, SDNN, RMSSD and

pNN50) within three months

Stein 2012
22 adult caloric restriction

individuals, 20 controls eating
Western diets

Association between HRV and
caloric restriction (CR)

After 7 years of CR, lower HR and higher
HRV—comparable to the norm for those 20 years

younger—occured. Conclusion: weight gain
adversely influences HRV, although this effect may

be reversible with weight loss and/or dietary
restriction.

HRV—heart rate variability; BMI—body mass index; SDNN—standard deviation of NN intervals; RMSSD—root mean square of successive
differences between NN intervals; CR—caloric restriction; CREX—calory restriction and energy expeniture; EX—energy expenditure;
LCD—low calory diet; HR—heart rate; SNS—sympathetic nervous systeme; PNS—parasympathetic nervous systeme; kg—kilogram;
m2—square meters; pNN50—percentage of mean number of successive normal sinus (NN) consecutive RR-Intervals exceeding 50 ms.

4.6. General Nutrition Recommendation

Finally, we would like to name the current official recommendations of the German
food society (Deutsche Gesellschaft für Ernährung—DGE) and German adiposity society
(Deutsche Adipositas-Gesellschaft—DAG) for a healthy and complete nutrition and life
style: food should be varied and mainly plant-based, five portions of fruits and vegetables
should be consumed every day, whole-grain products should be preferred to simple
carbohydrates, protein intake should include a daily portion of milk products and a
fish meal once to twice a week. Consumption of meat is not generally recommended,
but if included in the dietary plan, it should not go beyond 300 to 600 g (g) per week.
Polyunsaturated fatty acids should be used instead of animal fats, intake of sugar should
be as low as possible, and the use of salt as a condiment as far as possible should be replaced
by herbs. The fluid intake should include around 1.5 L of plain water and preferably only a
little amount of sweetened or alcoholic drinks, meals should be taken in peace, and last but
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not least, regular exercise is considered health-promoting. The American Heart Association
(AHA) emphasizes the importance of a normal BMI ranging from 18.5 to 25 kg/m2 [75–79]
(Table 3).

Table 3. General nutrition recommendation of DGE, DAG and AHA for a healthy and complete
nutrition and life style.

No. General Nutrition Recommendation of DGE, DAG and AHA

1. Varied, mainly plant based food

2. 5 portions of fruit/vegetables per day

3. Predominantly whole grain products, fewer simple carbohydrates

4. Daily intake of milk products, fish meal once to twice per week, meat as little as
possible, maximum 300–600 g per week

5. Preferably polyunsaturated fatty acids instead of animal fats

6. Salt mainly replaced by herbs, Sugar as little as possible

7. 1.5 L of plain water per day

8. Gently cooking

9. Meals taken in in peace

10. Regular physical exercise

5. Conclusions

In summary, although there has been a limited number of systematic reviews, there is a
series of reports that relate various indices of HRV to different lifestyle factors. Additionally,
reduced physical activity and an imbalanced diet are clearly linked to a reduced PNS
modulation. As HRV is a measure of the body’s capability to react to internal and external
challenges in the sense of homeostasis, it is not surprising that any decrease in HRV might
lead to higher morbidity and mortality. Therefore, HRV is an easily accessible marker of a
healthy lifestyle. Especially, programs that tackle obesity should include this parameter, as
it reacts to many physiological parameters beyond weight loss and provides good feedback
for comprehensive therapy success in a short- and long-term range.
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