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Abstract

Obesity is gaining acceptance as a serious primary health burden that impairs the quality of life because of its
associated complications, including diabetes, cardiovascular diseases, cancer, asthma, sleep disorders, hepatic
dysfunction, renal dysfunction, and infertility. It is a complex metabolic disorder with a multifactorial origin.
Growing evidence suggests that oxidative stress plays a role as the critical factor linking obesity with its
associated complications. Obesity per se can induce systemic oxidative stress through various biochemical
mechanisms, such as superoxide generation from NADPH oxidases, oxidative phosphorylation, glyceraldehyde
auto-oxidation, protein kinase C activation, and polyol and hexosamine pathways. Other factors that also con-
tribute to oxidative stress in obesity include hyperleptinemia, low antioxidant defense, chronic inflammation, and
postprandial reactive oxygen species generation. In addition, recent studies suggest that adipose tissue plays a
critical role in regulating the pathophysiological mechanisms of obesity and its related co-morbidities. To es-
tablish an adequate platform for the prevention of obesity and its associated health risks, understanding the
factors that contribute to the cause of obesity is necessary. The most current list of obesity determinants includes
genetic factors, dietary intake, physical activity, environmental and socioeconomic factors, eating disorders,
and societal influences. On the basis of the currently identified predominant determinants of obesity, a broad range
of strategies have been recommended to reduce the prevalence of obesity, such as regular physical activity,
ad libitum food intake limiting to certain micronutrients, increased dietary intake of fruits and vegetables, and
meal replacements. This review aims to highlight recent findings regarding the role of oxidative stress in the
pathogenesis of obesity and its associated risk factors, the role of dysfunctional adipose tissue in development of
these risk factors, and potential strategies to regulate body weight loss/gain for better health benefits.

Introduction

Obesity, the primary health burden of the 21st cen-
tury, is a chronic disease that affects the quality of

individual life physiologically, economically, and psycho-
logically, irrespective of cultural, financial, or ethnic back-
ground.1 An excess amount of body fat not only reduces the
quality of life but also increases both healthcare-associated
costs and the risk of death.2 Obesity is associated with the
development of a large number of health disorders, includ-
ing diabetes, cardiovascular complications, cancer, asthma,
sleep disorders, hepatic dysfunction, renal dysfunction, and
infertility.3,4

The World Health Organization (WHO) defines over-
weight as a body mass index (BMI) of 25.0 to 29.9 kg/m2 and
obesity as a BMI of ‡30 kg/m2.5 However, as a defining

parameter, BMI has certain limitations as it does not distin-
guish the difference between lean mass and fat nor does it
identify fat distribution. Recent studies have shown that
obesity-associated risk factors depend not on excess body
weight per se, but rather on the regional distribution of the
excess body fat.6 In light of this, it is now well recognized
that abdominal fat is a significant risk factor for obesity-
associated diseases; in fact, visceral fat accumulation stimu-
lates pro-oxidant and proinflammatory states.7

Epidemiological, clinical, and animal studies have re-
ported the role of oxidative stress in the pathogenesis of
obesity and its associated risk factors.8 Oxidative stress
could trigger obesity by stimulating the deposition of white
adipose tissue (WAT) and altering food intake; both cell
culture and animal studies have demonstrated that oxidative
stress can cause an increase in preadipocyte proliferation,
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adipocyte differentiation, and the size of mature adipo-
cytes.9–11 Reactive oxygen species (ROS) have been found
to be involved in the control of body weight by exerting
different effects on hypothalamic neurons, which control
satiety and hunger behavior.12 Obesity per se can also in-
duce systemic oxidative stress through multiple biochemical
mechanisms, such as superoxide generation from NADPH
oxidases (NOX), oxidative phosphorylation, glyceraldehyde
auto-oxidation, protein kinase C (PKC) activation, and
polyol and hexosamine pathways.8,13 Other factors that also
contribute oxidative stress to obesity include hyperleptine-
mia,14 tissue dysfunction,13 low antioxidant defense,15

chronic inflammation,7 and postprandial ROS generation.16

A broad range of strategies are recommended to reduce the
increasing prevalence of obesity, including regular physical
activity, ad libitum food intake, meal replacements, micro-
nutrient supplementation, and dietary intake of fruits and
vegetables. It is well documented that weight reduction de-
creases oxidation markers, increases antioxidant defenses, and
reduces obesity-associated pathological risk factors.17 Dietary
consumption of foods rich in monounsaturated fatty acids, o-3
polyunsaturated fatty acids, antioxidants, micronutrients,
phytochemicals, and probiotics has been found to be helpful in
maintaining body weight and reducing the incidence of met-
abolic diseases.18,19 Data from observational and human in-
terventional studies suggest that consumption of multiple
nutrients rather than a single dietary component is beneficial in
reducing obesity and its associated pathologies.20,21

This review gives information about the recent findings
regarding the role of oxidative stress in the pathogenesis
of obesity and its associated risk factors, the role of dys-
functional adipose tissue in the development of obesity-
associated risk factors, the etiology of obesity, and potential
strategies that could regulate body weight loss/gain for
better health benefits.

Oxidative Stress, Obesity, and Its Associated
Heath Risks

Oxidative stress plays an important role in the development
of co-morbidities in obesity. Over the last few years, evidence
of obesity-induced oxidative stress in humans has been re-
ported in the literature.22 The possible contributors to oxi-
dative stress in obesity include hyperglycemia,23 elevated
tissue lipid levels,24 vitamin and mineral deficiencies,25,26

chronic inflammation,7 hyperleptinemia,27 increased muscle
activity to carry excessive weight,28 endothelial dysfunc-
tion,29 impaired mitochondrial function,30 and type of diet.31

Malondialdehyde (MDA), F-2 isoprostanes (F2-IsoP), 8-iso
Prostaglandin F2a (8-isoPGF2a), and protein carbonylation
are well-known plasma, serum, or urine oxidative stress
biomarkers. A significant positive correlation has been
observed between BMI and oxidative stress biomarkers.22

Activities of the antioxidant enzymes, Cu-Zn superoxide
dismutase (SOD) and glutathione peroxidase (GPx), were
found to be lower in the erythrocytes of obese subjects
compared to those of nonobese controls.32,33 Ferric reducing
antioxidant power (FRAP) and total antioxidant status (TAS)
have been used as comprehensive measures of radical
quenching capacity by antioxidants in plasma. Several studies
have reported lower plasma levels of FRAP and TAS in obese
subjects compared to those seen in nonobese controls.22,34,35

Obesity-induced oxidative stress causes the development of

various pathological events, including insulin resistance and
diabetes, cardiovascular complications, sleep disorders,
asthma, oncological problems, reproduction, rheumatological
problems, and liver failure.3,4 In this study, we will discuss in
detail about the role of various contributing factors in de-
veloping oxidative stress in obesity. In addition, we will also
discuss the role of oxidative stress underlying the develop-
ment of different health risks associated with obesity (Fig. 1).

Conditions generating oxidative stress in obesity

Hyperglycemia and oxidative stress in obesity. Obesity is
directly associated with insulin resistance and hyperglyce-
mia. Intracellular glucose overload increases the glycolytic
pathway and the tricarboxylic acid cycle, leading to the
overproduction of NADH and FADH2; the resulting in-
crease in proton gradient across the mitochondrial inner
membrane causes electron leakage at complex III, leading
to superoxide production. The free radical thus inhibits
glyceraldehyde-3-phosphate dehydrogenase and thereby re-
directs upstream metabolites into four alternative path-
ways36: (1) glucose is shifted to the polyol pathway; (2)
fructose-6-phosphate is shifted to the hexosamine pathway;
(3) triose phosphates produce methylglyoxal, the main
precursor of advanced glycation end products (AGE); and
(4) dihydroxyacetone phosphate is converted to diacylgly-
col, which activates the PKC pathway. Activation of these
alternative pathways induces oxidative/nitrosative stress
either by enhancing free radical production or by impair-
ing antioxidant defenses. Activation of the polyol pathway
causes NADPH depletion and increases the conversion of
glucose to sorbitol, which activates several stress genes
and causes oxidative stress, as evidenced in several animal
studies.37 Formation of glucosamine-6-phosphate in the
hexosamine pathway inhibits thioredoxin activity and induces
oxidative and endoplasmic reticulum (ER) stress; AGE and
PKC stimulate the production of ROS/RNS by activating
NOX and NF-kB.38,39 Activation of NOX enzymes increases
the production of superoxide radicals (O2

�-) by catalyzing the

FIG. 1. Conditions generating oxidative stress in the
pathogenesis of obesity and the role of oxidative stress in the
development of obesity associated health risks.
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reduction of oxygen using NADPH as an internal electron
donor.40 Glucose auto-oxidation also produces reactive oxi-
dants similar to hydroxyl and superoxide radicals.23 AGE
binds to specific cell surface receptors causing the modifi-
cation of postreceptor signaling and promotes further gener-
ation of ROS.41 Activation of NF-kB drives transcription of
adhesion molecules (E-selectin, intercellular adhesion
molecule-1, and endothelin-1), proinflammatory cytokines
[tumor necrosis factor-a (TNF-a) and interleukin (IL)-6],
iNOS, and microRNAs involved in adipogenesis, inflamma-
tion, and oxidative stress.42

Elevated lipid levels and oxidative stress in obesity. Obesity
is associated with an increase in plasma free fatty acids (FFA)
as well as excessive fat storage in WAT. Elevated plasma FFA
promote the generation of O2

�- in the mitochondrial electron
transport chain by inhibiting the translocation of adenine nu-
cleotides.43 FFA stimulate the production of reactive inter-
mediates through PKC-dependent activation of NOX in
cultured vascular cells.44 Conjugated fatty acids are susceptible
to oxidation, stimulate the formation of radicals, and enhance
the accumulation of oxidative by-products.9 The susceptibility
of lipids to oxidative modification is shown by the higher
concentrations of 4-hydroxynonenal (4-HNE) per unit of in-
tramuscular triglycerides in obese patients.45 Higher concen-
trations of lipid molecules in the obese may also present an
enlarged target for oxidative modification by ROS.46 In a study
with several animal models of obesity, Furukawa et al. found
that accumulation of excessive fat in WAT caused an increase
in lipid peroxidation in the WAT itself.9 In the animal studies,
it was observed that obesity increased the NOX activity and
decreased the mRNA expression and the activities of antioxi-
dant enzymes such as SOD, catalase (CAT), and GPx in
WAT.9 Dietary intake of specific lipids also induces systematic
oxidative stress. Consumption of conjugated linolenic acid
increased the urinary concentration of 8-epi PGF2a in middle-
aged men with abdominal obesity.47

Vitamin and mineral deficiencies and oxidative stress in

obesity. Adequate intracellular antioxidant defenses are
necessary to maintain the antioxidant–pro-oxidant balance
in tissues. Deficiencies in vitamins and minerals can also
contribute to the development of an impaired antioxidant
defense in the pathogenesis of obesity.25,26 Plasma levels
of a-tocopherol or b-carotene expressed per unit of plasma
low-density lipoprotein (LDL) are well-known biomarkers
for estimating the antioxidant protection within circulating
lipids. An increase in BMI has been found to be related to
low levels of carotenoids, vitamin C, and vitamin E.48–50

The Coronary Artery Risk Development in Young Adults
(CARDIA) study reported an inverse relationship between
BMI and the concentration of total serum carotenoids
(a-carotene, b-carotene, a-cryptoxanthin, and zeaxanthin/lu-
tein).51 In the National Health and Exanimation survey, obese
children showed levels of serum b-carotene lower than those
seen in normal control subjects.25 For instance, in one study,
it was observed that obese girls had lower plasma levels of a-
tocopherol/LDL and b-carotene/LDL than those seen in
nonobese girls.52 Aasheim and Bohmer reported that most
obese patients have profound reductions in vitamin levels,
especially vitamins A, B6, C, D, and E.53 The multicenter
prospective population study in Europe (EPIC) showed that
the plasma vitamin C level was inversely related to central fat
distribution.54 Obese adults (BMI >50) also had lower plasma
levels of vitamin E/triglycerides compared to nonobese adults

(BMI <30).55 Lower selenium and zinc levels have been
observed in obese children, especially in children with central
obesity.25,56 In addition, morbidly obese patients also show
magnesium, selenium, iron, and zinc deficiencies.57 These
results suggest that in the obese population, inadequate con-
centrations of vitamins and minerals cause the observed im-
paired antioxidant defense.

Chronic low-grade inflammation and oxidative stress in

obesity. Obesity is described as a state of chronic low-grade
inflammation, which is another important source of oxidative
stress in obesity.58 Elevated levels of plasma and uriary F2-
IsoPs, a biomarker of oxidative stress, have been found in a
number of inflammatory diseases, such as Crohn’s disease59

and rheumatic diseases.60 TNF-a, IL-6, and IL-1 are the most
well-known mediators of the early inflammatory response.
Other cytokines that are frequently seen in inflammation in-
clude IL-8, IFN-g, IL-18, and IL-1ra (IL-1 receptor antago-
nist).61 Both TNF-a and IL-6 increase the activities of NOX
and the production of superoxide anion.62,63

Hyperleptinemia and oxidative stress in obesity. Plasma
leptin concentrations are associated with the amount of
adipose tissue.64 Obesity is associated with elevated plasma
leptin levels.65 Leptin plays an important role in obesity-
induced oxidative stress.66 The hormone leptin activates
NOX and induces the production of reactive intermediates
such as H2O2 and hydroxyl radical.67 In a rodent model,
leptin injection caused higher levels of plasma and urinary
lipid hydroperoxide, MDA, isoprostane, and protein car-
bonyl content compared to levels seen in nontreated con-
trols.68 In addition, leptin also stimulates the proliferation of
monocytes and macrophages and thus promotes the pro-
duction of proinflammatory cytokines.68,69 Exposure of
monocyte-derived macrophages to leptin induces the PKC
activity and macrophage lipoprotein lipase activity.70 Leptin
also reduces the activity of the cellular antioxidant
paranoxase-1 (PON-1); this reduction is related to increased
levels of plasma and urinary 8-isoPGF2a and plasma levels
of MDA and hydroperoxides.68

Increased muscle activity and oxidative stress in obesity. In
obesity, increased muscle activity can generate excessive free
radicals through the activation of metabolic pathways, in-
cluding increased electron transport chain activity and con-
version of hypoxanthine to urate.71 In addition, rapid electron
transfer during increased respiration may cause some elec-
trons to leak from the electron transport chain.72 For this
reason, among obese individuals, the rate of cellular respi-
ration and oxygen consumption may be exacerbated in
muscle tissue during physical activities.34 It has been ob-
served that, during the same amount of load-bearing walking
activity, obese persons have a 38% higher oxygen con-
sumption than do nonobese individuals and these values were
found to be correlated with postexercise lipid hydroperoxide
values.34 Obese individuals are also mechanically less effi-
cient during exercise and this insufficiency contributes to the
increased energy expenditure for a given exercise load.22 An
increase in mitochondrial respiration for energy production is
associated with higher levels of lipid hydroperoxide in obese
people.73 During exercise, increased concentrations of hy-
poxanthine have been reported in obese people; the conver-
sion of hypoxanthine to urate is associated with the formation
of superoxide anion.71

Endothelial dysfunction and oxidative stress in obesity. The
vascular endothelium is an important site for several enzymatic
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sources of oxidant generation, including NOX, xanthine oxi-
dase, and NO synthase.74 Activation of NOX is a major player
in the production of endothelial O2

�-.75 Xanthine oxidase also
reacts with O2 to form O2

�- and H2O2.76 Production of exces-
sive O2

�- leads to rapid reaction with NO to form ONOO
�
and

thus reduces NO bioavailability and causes nitrosylation of
proteins.29 The enzyme NO synthase also stimulates the for-
mation of excessive O2

�- and ONOO
�
by catalyzing the electron

transport from NADPH to another heme group.77 The activities
of these oxidant producing enzymes can be modified by other
cytokines and hormones such as those present in the renin–
angiotensin system. It has been observed that in angiotensin II-
induced hypertension, the production of endothelial O2

�- is
significantly elevated as a consequence of increased NADPH-
oxidase activity.78 Obesity is associated with higher concen-
trations of the hormones in the renin–angiotensin system.79

Increased concentrations of angiotensin II may promote oxi-
dative stress in vasculature through several mechanisms, in-
cluding activation of NOX, formation of O2

�-, and production
of H2O2.

80,81 Elevated intraluminal pressure from the hyper-
tension associated with obesity may also stimulate the forma-
tion of O2

�- and ONOO
�
.82

Impaired mitochondrial function and oxidative stress in obesi-

ty. Mitochondrial dysfunction has been implicated in the
pathogenesis of a variety of diseases, including obesity and its
associated risk factors.83 During the adipocyte differentiation
process, mitochondrial biogenesis and activity increase rap-
idly, suggesting a critical role for mitochondria in this organ-
elle.84 Mitochondria play a central role in ATP production,
energy expenditure, and disposal of ROS.83 The process of
oxidative phosphorylation in mitochondria is very efficient;
however, a small excess of electrons cause a reduction of
oxygen resulting in the formation of potentially toxic-free
radicals.7 In addition to this, under certain conditions, protons
can be reintroduced into the mitochondrial matrix through
different uncoupling proteins, leading to an alteration in
the regulation of free radical production in mitochondria.30

Excessive energy substrate causes mitochondrial dysfunction,
which has been linked to the dysregulated secretion of adi-
pokines,85 defects in fatty acid oxidation,86 increased pro-
duction of ROS,86 and alteration of glucose homeostasis.87

Role of diet type in inducing oxidative stress in obesity. Diet
is another possible contributing factor in the generation of
ROS during the pathogenesis of obesity and its associated
risk factors. Consumption of a high-fat diet may alter oxy-
gen metabolism. It has been observed that consumption of a
diet high in fat and carbohydrates induces significant oxi-
dative stress and inflammation in persons with obesity.16

Lower dietary intake of protective phytochemicals rich in
antioxidants (b-carotene, vitamin E and C, etc.) may cause
an inadequate antioxidant defense.88 Dietary intake of an-
tioxidant phytochemicals is inversely associated with degree
of adiposity,89 BMI, and lipid peroxidation.88 Serum levels
of dietary antioxidants and levels of trace minerals (zinc,
selenium, etc.), which are cofactors for antioxidant en-
zymes, were found to be lower in obese people compared to
those seen in nonobese individuals.49,89,90

Role of oxidative stress in obesity-associated
health risks

Obesity, oxidative stress, and type 2 diabetes. In vivo
studies. Both obesity and diabetes are major public health

problems throughout the world and are associated with
significant, potentially life-threatening co-morbidities. Re-
sults from metabolic and epidemiological studies provide
strong evidence that the increasing prevalence of obesity is
closely associated with the increase in type 2 diabetes.91,92

Some experts call this dual epidemic diabesity.93 However,
while it has been observed that not all subjects with type 2
diabetes are obese and that, conversely, many obese subjects
do not have diabetes, most subjects with type 2 diabetes are
overweight or obese. According to the guidelines of the
American Diabetes Association, the diagnosis criteria of
diabetes mellitus include the following: (1) A1C ‡6.5% or
fasting plasma glucose after an 8-hr fast ‡126 mg/dL, or 2-hr
postload glucose ‡200 mg/dL during an OGTT, or symp-
toms of diabetes mellitus and a random plasma glucose
concentration ‡200 mg/dL. Several studies in the literature
reported a linear association between BMI and type 2 dia-
betes94,95 and it has been observed that the risk of type 2
diabetes increases as BMI increases above 23.96 Very re-
cently, in a systematic review of 18 weight-related diseases,
the investigators found that diabetes is at the top of the risk
list: men with BMI ‡30 had a 7-fold and women with BMI
‡30 had a 12-fold higher risk of developing type 2 diabetes
compared with men and women in the normal weight ranges
(BMI £25).97 In addition to total body fat, distribution of fat
and the relative proportions of lipids in various insulin-
sensitive tissues (liver, skeletal muscle, and adipose) also
play an important role in this pathophysiology.98 Abdominal
obesity is one the most important, and most dangerous,
forms of obesity. Accumulation of intra-abdominal or vis-
ceral fat is major feature of metabolic syndrome and is as-
sociated with a higher incidence of diabetes and
cardiovascular disease (CVD) risk factors.99,100 Waist cir-
cumference (WC) as a measure of abdominal obesity has
been considered as a better predictor of the risk of devel-
oping type 2 diabetes.101 Insulin resistance coupled with
pancreatic b-cell dysfunction is a critical factor for the de-
velopment of type 2 diabetes.

Mechanistic studies—Oxidative stress and b-cell dys-
function. Glucotoxicity and lipotoxicity have been recog-
nized as the major contributors to b-cell dysfunction in the
pathogenesis of type 2 diabetes.102 Pancreatic b-cells have a
relatively low expression of many antioxidant enzymes,
including catalase and GPx, which makes them susceptible
to ROS-induced damage.103 In addition, overexpression
of catalase or GPx can reverse these effects and protect
b-cells.104,105 Hou et al. demonstrated that chronic exposure
to high glucose and/or circulating FFA increases ROS pro-
duction and decreases insulin content and glucose-
stimulated insulin secretion of b-cells.106 ROS has been
shown to reduce insulin gene expression and insulin secre-
tion, probably through post-translational repression of two
key transcriptional factors, musculoaponeurotic fibrosar-
coma protein A (MafA) and pancreatic duodenal
homeobox-1 (PDX-1), which bind to the promoter region of
the insulin gene.107,108 Superoxide-induced activation of
uncoupling protein 2 (UCP2) lowers ATP levels and nega-
tively regulates glucose-stimulated insulin secretion.109–111

UCP2 knockout mice do not experience hyperglycemia- and
obesity-induced loss of glucose responsiveness.111

Mechanistic studies—Oxidative stress and insulin resis-
tance. The insulin signaling cascade is initiated by the
binding of insulin with its receptor (IR), which undergoes
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receptor autophosphorylation and enhanced tyrosine kinase
activity. Subsequent phosphorylation of insulin receptor
substrate (IRS) on tyrosine residues stimulates the down-
stream signaling cascade of glucose metabolism112 (Fig. 2).
In contrast, serine/threonine phosphorylation of the IR and IRS
provides a negative regulatory mechanism by opposing their
tyrosine phosphorylation.113 Elevated ROS production has
been shown to activate the stress-sensitive serine/threonine
kinase, c-jun-N-terminal kinase ( JNK), which in turn causes
phosphorylation of IRS at serine residues and thus attenuates
insulin signaling.114 Although the precise mechanism by
which ROS activates JNK remains uncertain, it has been
shown that H2O2 can inhibit thioredoxin by modification of its
cysteine residues and cause full activation of apoptosis signal-
regulating kinase 1 (ASK1), which in turn activates
JNK.115,116 H2O2 has also been shown to activate JNK through
inhibition of mitogen-activated protein kinase (MAPK)
phosphatase by oxidation of the cysteine.106 Intake of a high-
fat diet has been shown to increase mitochondrial ROS pro-
duction and direct the cellular redox environment to a more
oxidized state in skeletal muscle of rodents or humans.9,117,118

Reduction in mitochondrial ROS production by antioxidant
treatment or overexpression of catalase or MnSOD has been
found to prevent high-fat diet-induced insulin resistance in
mice.117 These findings suggest that elevated mitochondrial
ROS production by excessive metabolic flux promotes insulin
resistance. Transgenic mice [overexpressing peroxisome
proliferator-activated receptor-alpha (PPARa)] engineered to
increase fatty acid b-oxidation develop severe insulin resis-
tance and glucose intolerance despite being protected from

diet-induced obesity.119 However, genetically engineered
mice (AIF, apoptosis inducing factor knockout) with reduced
mitochondrial oxidative phosphorylation are protected from
obesity and diabetes.120 These observations suggest that re-
duction in mitochondrial oxidative phosphorylation prevents
insulin resistance. In addition to post-translational modifica-
tion of the insulin signaling pathway, oxidative stress also
influences glucose metabolism through the regulation of
transcriptional factors. The FoxO family of Forkhead tran-
scription factor regulates gluconeogenesis, adipocyte differ-
entiation, and b-cell proliferation.121–123 FoxO1 is a negative
regulator of insulin sensitivity. Oxidative stress can activate
FoxO through the formation of the cysteine thiol disulfide-
dependent complex with p300/CBP acetyl transferase and
subsequent acetylation of FoxO.124 FoxO also regulates vari-
ous biological functions, such as cell cycle arrest, antioxidant
response, DNA repair, and apoptosis.125 Deletion of FoxO1 in
diabetic mice reverses the diabetic phenotype.123

Obesity, oxidative stress, and CVD. In vivo studies: Obesity
is a major contributor to the development of fatal and nonfatal
CVD such as coronary artery disease, stroke, peripheral artery
disease, cardiomyopathy, and congestive heart failure.126,127

Excessive body weight is directly associated with a number of
cardiovascular risk factors, including hypertension, dyslipi-
demia, and hemostatic and rheological factors.128 Numerous
studies in the literature have reported a clear association be-
tween the risk of coronary heart disease (CHD) and a modest
increase in BMI.129,130 In a 16-year follow-up study among
middle-aged US women (35 to 55 years), it was demonstrated
that a small increase in BMI (>23 but <25) was associated with

FIG. 2. Insulin stimulated signaling cascade of glucose metabolism. Binding of insulin with its receptor (IR) undergoes receptor
autophosphorylation and enhances its kinase activity. Subsequent binding of IRS (insulin receptor substrate) with the p85
regulatory subunit of PI3K (phosphoinositide 3-kinase) upregulates the synthesis of PtdIns(3,4,5)P3 utilizing PtdIns(4,5)P2 as a
substrate. The phosphatase, PTEN (phosphatase and tensin homolog deleted on chromosome 10) dephosphorylates
PtdIns(3,4,5)P3 at the 3¢-position. Formation of PtdIns(3,4,5)P3 activates downstream effector protein molecules, Akt (serine/
threonine protein kinase) and PKCz/l (protein kinase C zeta/lambda). This causes the translocation of GLUT (glucose transporter)
from intracellular site to the plasma membrane followed by glucose uptake and utilization by the cells leading to normoglycemia,
control of vascular inflammation, and prevention of CVD (cardiovascular diseases) and the complications of diabetes.
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a 50% increase in risk for nonfatal or fatal CHD.130 Among the
male US population, those aged 40–65 years with a BMI >23
but <29 had a 72% increased risk of CHD after adjusting for
other coronary risk factors.129

Mechanistic studies. Oxidative stress plays an important
role in the development of CVD risk factors among the
obese population. Low levels of circulating high-density
lipoprotein (HDL), increased clearance of HDL particles,
higher levels of postprandial triglycerides, and elevated levels
of LDL induce ROS generation in the endothelium.131 Ele-
vated ROS can directly cause damage to lipids, proteins, or
DNA molecules and thereby modulate intracellular signaling
cascades, such as MAPK and redox-sensitive transcription
factors.131 ROS-mediated changes in lipid expression, for-
mation of oxidized lipid products, such as oxidized LDL (Ox-
LDL) particles, and activation of macrophages induce the
formation of atherosclerotic lesions. Paraoxonase-1 (PON-1)
is a HDL-attached extracellular esterase that contributes
to the antiatherogenic, antioxidant, and anti-inflammatory
properties of HDL.132 A decrease in PON-1 is a risk factor
for CVD and has recently been found to be associated
with obesity.133 Activation of the NOX system and renin–
angiotensin system and stimulation of proinflammatory
cytokine release also induce ROS production and the pro-
gression of vascular disease. Elevated ROS in the blood
stream causes migration of monocytes/macrophages and ap-
optosis of endothelial cells, which promotes vascular in-
flammation and injury. Endothelium NO causes vascular
relaxation, and a decrease in endothelium NO release reduces
vasodilation, which can favor the development of hyperten-
sion.134 Various studies have reported the role for oxidative
stress in the development of hypertension.134 Elevated ROS
as well as lower NO levels and high levels of F2-isoprostanes
induce vasoconstriction and platelet hyperactivity.135

Ox-LDL induces adipocyte proliferation either directly or
indirectly by increasing the accumulation of fatty acids in
adipocytes,136 by inducing the expression of lipoprotein
lipase,136 or by increasing the infiltration of monocytes/
macrophages.137 Ox-LDL-induced alteration in adipokine
secretion can also induce CVD complications.138 Higher Ox-
LDL in obese subjects may be due to lower serum activity of
antioxidant enzymes139 or reduced PON-1 levels.132

Obesity, oxidative stress, and carcinogenesis. In vivo stud-
ies. Recently, it has been observed that obesity is a major risk
factor for cancer.140 A number of prospective epidemiologi-
cal studies have demonstrated a direct association between
being overweight and developing cancer, although obesity
alone does not cause an increase in cancer risk in all tissues
by the same extent.140–142 The International Agency for Re-
search into Cancer (IARC)143 and the World Cancer Research
Fund (WRCF) reports144 concluded that common cancers in
obese people are endometrial, esophageal, adenocarcinoma,
colorectal, postmenopausal breast, pancreas, prostate, and
renal. There are also some less common malignancies asso-
ciated with obesity, such as thyroid cancer,145 leukemia, non-
Hodgkin’s lymphoma, and multiple myeloma.146

Mechanistic studies. Oxidative stress is one of the leading
causes of DNA damage with the formation of modified bases
and mutations of tumor suppressor genes, which is considered
to be the most critical factor in carcinogenesis.147 Obesity-
induced inflammation is thought to be a critical link between
obesity and cancer. Inflammation-induced increased produc-
tion of free radicals and subsequent development of oxidative

stress create a microenvironment favorable to tumor develop-
ment in obese persons.148 Adiponectin functions as a negative
regulator of obesity-related carcinogenesis, and hypoadipo-
nectinemia is a known risk factor for tumorigenesis.149

Obesity, oxidative stress, and asthma. In vivo studies: Both
obesity and asthma have a considerable impact on public
health.150–153 Various cross-sectional studies in different
countries show an increased prevalence of asthma among
obese adults compared to its occurrence in the normal-
weight population, suggesting that obesity could increase
the risk of asthma.150 The relationship between obesity and
asthma has been observed consistently regardless of the
ethnic origin of the studies’ population.150,154–157 In a pro-
spective study with the highest number of subjects and with
the longest follow-up (135,000 Norwegians, follow-up for
21 years), the incidence of asthma increased 10% and 7%
per unit increase in BMI in men and women, respectively.158

Mechanistic studies. Oxidative stress plays an impor-
tant role in the pathogenesis of asthma.159,160 Children with
asthma have higher plasma levels of MDA and 8-isoprostanes
compared to those of healthy controls.161 Asthmatic sub-
jects with more obstructed airways have a higher degree of
oxidative stress.162 Obesity-mediated oxidative stress may
affect the lung function of asthmatic subjects by airway
inflammation and thus reduce the effectiveness of inhaled
corticosteroids.163 There are several pathways by which
obesity may increase airway oxidative stress, such as adi-
pokine imbalance, obstructive sleep apnea (OSA), and re-
duced antioxidant defense.163

Obesity, oxidative stress, and sleep disorders. In vivo
studies. Insomnia, OSA, and sleep-related movement dis-
orders are the three most prevalent types of sleep disorders,
as characterized by the International Classification of Sleep
Disorders.164 All of these sleep disorders cause a decrease in
sleep duration and quality and this has been associated with
an increase in body weight and adiposity.165,166 People with
obesity are significantly more likely to report insomnia
or difficulty sleeping.167 Significant sleep apnea is present
among *40% of obese individuals; *70% of OSA patients
are obese.168 Several cross-sectional studies have reported
an association between an increase in body weight and the
risk of OSA.169 Similarly, weight loss in OSA patients has
been found to significantly decrease apnea frequency.170,171

Mechanistic studies. Oxidative stress in OSA patients has
been found to be associated with central obesity rather than
intermittent hypoxia or respiratory disturbances.172 Among
obese OSA patients, expression of NF-kB is higher than that
observed in obese OSA-free subjects, suggesting that ele-
vated levels of proinflammatory cytokines upregulate NF-
kB in neutrophils and monocytes of sleep apnea patients,
which upregulates ROS production and causes oxidative
stress in this pathophysiology.173

Obesity, oxidative stress, and liver dysfunction. In vivo
studies. Obesity is associated with an increased risk of hepatic
dysfunction, known as nonalcoholic fatty liver disease
(NAFLD), which is characterized by an increase in in-
trahepatic lipid accumulation due to increased inflow of FFA
and/or de novo lipogenesis.174,175 A serious consequence of
NAFLD is nonalcoholic steatohepatitis (NASH), which can
progress to liver fibrosis, cirrhosis, and eventually hepatocel-
lular carcinoma. The prevalence of NAFLD increases with the
increase in BMI.176 Among nonobese subjects, the rates of
occurrence of steatosis and steatohepatitis were *15% and
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3%, respectively; however, in subjects with BMI between 30
and 39.9, the prevalence rates were 65% and 20%, respec-
tively, and in extremely obese subjects with BMI ‡40, the rates
were 85% and 40%, respectively.175 Racial/ethnic background
and genetic variation in specific genes can influence the rela-
tionship between BMI and NAFLD.177–179 NAFLD has be-
come an important public health issue because it is
associated with a high risk of developing type 2 diabetes,
cardiovascular complications, and dyslipidemia.180 An in-
crease in intrahepatic triglyceride content is associated with
alterations in glucose, fatty acids, and lipoprotein metabo-
lism, leading to hepatic insulin resistance in association
with serious cardiovascular dysfunction.

Mechanistic studies. Oxidative stress has been implicated
in the pathogenesis of NAFLD/NASH.181 Mitochondrial,
peroxisomal, microsomal, and ER oxidative stress plays an
important role in the pathogenesis of NAFLD.182 Elevated
fatty acid catabolism in hepatocytes causes excessive elec-
tron flux in the mitochondrial electron transport chain,
which impairs the oxidative capacity of the mitochondria
and stimulates the peroxisomal and microsomal pathways of
fat oxidation. The consequent overproduction of ROS and
reactive aldehyde derivatives causes oxidative stress and
cell death by reducing cellular ATP, NAD, and glutathione
levels and causing DNA, lipid, and protein damage.183 ER
stress-induced cell death is mediated through calcium per-
turbations, ROS production, and activation of JNK-
dependent signaling cascade. Hyperglycemia is also an
important contributor to hepatic lipid accumulation; apart
from the stimulation of increased ROS production and the
consequent development of oxidative stress, it also causes
activation of carbohydrate responsive element-binding pro-
tein (ChREBP), which stimulates the transcription of L-type
pyruvate kinase (L-PK) and various lipogenic genes.184

Obesity, oxidative stress, and renal dysfunction. In vivo
studies: Although obesity has long been recognized as an inde-
pendent risk factor for CVD and diabetes mellitus, recent studies
in the literature have reported that obesity is also an important risk
factor for chronic kidney diseases (CKD).185–187 In 1974, Wei-
singer et al. first reported an association between massive obesity
and nephrotic syndrome.188 Subsequent studies in the literature
demonstrated that obesity could induce renal dysfunction,
namely, obesity-related glomerulopathy (ORG).189–191 In the
Framingham Offspring cohort study, a single-unit increase in
BMI was found to be associated with a 20% increase in kidney
disease over a period of 20 years of follow up.192 In a large-scale
clinicopathologic study, Kambham et al. found a progressive
increase in ORG from 0.2% in the years between 1986 and 1990
to 2% in the years between 1996 and 2000.191 Kambham et al.
suggest that this 10-fold increase in incidence of ORG over 15
years is a newly emerging epidemic.191

Mechanistic studies. Oxidative stress has been increas-
ingly linked to a higher incidence of CKD.193 A significant
imbalance between pro-oxidants and antioxidants has been
observed among patients with renal dysfunction.194 Serum
TAS is inversely associated with the glomerular filtration
rate (GFR).195 Impaired lymphocytic function has been
described in chronic renal failure.196 Tepel et al. demon-
strated that elevated ROS production may cause impaired
lymphocytic function in patients with renal dysfunction.194

Obesity, oxidative stress, and infertility. In vivo studies:
Elevated body weight can influence various aspects of re-
production in both men and women, from sexual activity to

conception.197 The relationship between obesity and repro-
ductive disturbances in women was recognized a long time
ago.198 More recently, in the Nurses’ Health Study, a classic
U-shaped relationship was observed between obesity and
infertility, primarily anovulatory infertility; women with
BMIs between 20 and 24 showed the lowest infertility, but
infertility increased with both lower and higher BMIs.199

Several other cross-sectional and prospective studies have
reported similar findings.200,201 Furthermore, weight loss in
obese women improves fertility and increases the likelihood
of ovulation and conception.202,203 A study by Hammoud
et al. showed an increased incidence of low sperm count
(from 5.3% to 15.6%) and poor sperm motility (from 4.5%
to 13.3%) in obese men compared to those in normal weight
men.204 Chavarro et al. also found major differences in re-
productive hormone levels with increases in body weight.205

The effect of obesity on the development of sexual dys-
function has also been observed among obese men and
women compared with normal weight individuals.206–209

Mechanistic studies. Oxidative stress also plays a signif-
icant role in infertility. Elevated steroid production in the
growing follicle causes an increase in P450, resulting in
ROS formation. Oxidative stress in the follicular fluid en-
vironment of ovaries is detrimental in several ways, causing
poor development of both oocytes and embryos, and ad-
versely affecting the overall outcome of pregnancy.210–213

Oxidative stress is associated with several female repro-
ductive diseases, such as endometriosis, polycystic ovary
syndrome (PCOS), and preeclampsia.214 In addition to the
effects of obesity on female fertility, its effect on male in-
fertility is also gaining attention worldwide.215 Various
studies reported a decrease in sperm count and concentra-
tion, sperm motility, DNA fragmentation, and normal sperm
morphology among obese men.215 Recent evidence suggests
that ROS-mediated damage to sperm is a significant con-
tributing factor to male infertility.216–218 ROS causes male
infertility through two principal mechanisms: first, ROS
damage the sperm membrane, which in turn reduces the
sperm’s motility and ability to fuse with the oocyte, and
second, ROS can directly damage sperm DNA, compro-
mising the paternal genomic contribution to the embryo.219

Obesity and Dysfunctional Adipose Tissue

In the human body there are two types of adipose tissue,
brown adipose tissue (BAT) and WAT, which differ struc-
turally and functionally.220 BAT, mainly found in small and
discrete regions of newborn humans, is responsible for the
production of heat by a process called thermogenesis.220

However, more recently, a significant amount of BAT has
also been found in adults.221 WAT, in contrast, is the pre-
dominant form of adipose tissue found in adults and is re-
sponsible for fat storage in the body.220 In addition to energy
storage, it is now well established that WAT also functions
as an endocrine organ that secretes various bioactive sub-
stances, commonly known as adipokines, involved in
glucose metabolism (e.g., adiponectin, resistin), lipid me-
tabolism [e.g., cholesteryl ester transfer protein (CETP)],
inflammation [e.g., TNF-a; IL-6, IL-8, C-reactive protein
(CRP), monocyte chemoattractive protein (MCP-1)], coag-
ulation [plasminogen activator inhibitor-1 (PAI-1)], blood
pressure regulation (e.g., angiotensinogen, angiotensin II),
and feeding behavior (leptin).222–224 Obesity is mainly
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characterized by an increase in body fat or WAT and is
associated with marked changes in the secretory function of
WAT.225 In humans, it has been observed that the tissue
expression, as well as the circulating concentration of many
adipokines, increases with an increase in adiposity, as is the
case for leptin, TNF-a, IL-6, IL-8, CRP, MCP-1, PAI-1,
heptoglobin, and angiotensinogen.226 An exception is adi-
ponectin, the concentration of which is inversely related to
body weight.226 Similar findings have also been observed in
animal studies.65 The deposition of excess fat in the WAT
perturbs its normal endocrine function, causing dysregulated
expression of secreted factors, which has been linked to the
pathogenesis of various obesity-related diseases.226–228

Herein we discuss the role of dysfunctional adipose tissue in
the development of obesity-associated health risks (Fig. 3).

Role of dysfunctional adipose tissue in obesity-
associated health risks

Adipokines and type 2 diabetes. During the progression
from normal weight to obesity, changes in the circulating
levels of adipocyte-derived factors play an important role in
the pathogenesis of b-cell dysfunction and insulin resis-
tance.229–231 It has been observed that some adipokines have
beneficial effects, whereas others have detrimental proper-
ties; however, the overall contribution of the changed con-
centrations of adipokines is highly dependent on the balance
between these effects and the interactions between the adi-
pokines, which act on the b-cell and insulin-sensitive organs
such as the liver and muscle tissues by means of a number of
intersecting intracellular signaling cascades.229–231

Effects of adipokines on the b-cell function: The biological
effects of adipokines such as leptin, adiponectin, TNF-a, and IL-
6 on b-cell function, including insulin synthesis and secretion,
cell survival, and cell death, have been well documented in the
literature.230,231 Leptin inhibits the secretion of insulin from
human and murine islets, as well as the pancreatic b-cell lines,
through the activation of KATP channels,232–234 reduction in the
cellular concentration of cAMP,235 alteration in the PLC-PKC
pathway,236 and activation of the PI3K pathway.230,236 Leptin
also reduces insulin mRNA expression by inhibiting the action of
the insulin promoter and suppresses b-cell apoptosis through
reduction of triglyceride accumulation,237,238 inhibiting NO
production,230,239 and activating the antiapoptosis transcrip-
tional factor, Bcl-2.240

The protective effects provided to b-cells by adiponectin
have been reported in the literature. A defect in insulin se-

cretion has been observed in adiponectin knockout mice.241

Globular domain adiponectin (gAd) is the functional adi-
ponectin protein. The gAd transgenetic ob/ob mice (a cross
between the gAd transgenetic mice and leptin-deficient ob/ob
mice) exhibit higher plasma insulin levels, along with in-
creased insulin sensitivity, compared to those seen in ob/ob
litter-mates, indicating that adiponectin protects b-cells.242,243

A direct effect of adiponectin has also been observed when
gAd strongly inhibited palmitic acid- and cytokine-induced
suppression of glucose, stimulated insulin secretion, and at-
tenuated apoptosis of INS-1 cells.244 Adiponectin also in-
hibits the accumulation of lipids through the activation of
AMP protein kinase (AMPK) pathways in both rodent pan-
creatic b-cells and MIN6 cells.245

Data derived from various cell culture studies showed
that TNF-a decreased glucose-induced insulin secretion from
b-cells.246,247 TNF-a increases expression of Ca2+-
independent adhesion molecules, which perturbs the segre-
gation between b-cells and non-b-cells; this alteration in
the islet architecture may influence insulin secretion.248 Acti-
vation of caspases and reduction in Bcl-2 expression have also
been reported to play an important role in TNF-a-mediated
apoptosis in b-cells.249–252 A line of studies in the literature
demonstrated the beneficial effect of IL-6 on insulin secretion
from pancreatic islets.253–255 Involvement of the PLC-IP3-
dependent pathway plays an important role in IL-6-induced
insulin secretion from pancreatic b-cells.253 Moreover, IL-6
also increased the insulin secretion and the expression of
preproinsulin mRNA through the Ca2+-dependent pathway.254

Role of adipokines on insulin resistance. The adipokine
leptin enhances the action of insulin on both the inhibition of
hepatic glucose production and on glucose uptake,256 which
may perhaps explain the role of insulin in relation to insulin
sensitivity.257 It has been observed that plasma leptin con-
centrations are independently associated with insulin sensi-
tivity.258 The effect of leptin on insulin sensitivity in the liver
and skeletal muscle is mediated through phosphorylation and
activation of AMPK and inhibition of the activity of acetyl-
CoA carboxylase.259,260 Leptin-induced stimulation of the
PI3K signaling pathway appears to be important for the reg-
ulation of glucose metabolism.261 Leptin has also been shown
to be effective in regulating feeding behavior through the
central nervous system.262 Leptin-deficient mice (ob/ob) show
abnormally increased feeding, obesity, and insulin resistance,
and the administration of leptin to these ob/ob mice reverses
these changes.263 However, high levels of leptin have been
observed among obese individuals without any anorexic re-
sponses, indicating the occurrence of leptin resistance.263

Plasma adiponectin is another positive regulator of insulin
sensitivity.264 A significant negative correlation has been
observed between age- and sex-adjusted HOMA IR levels
and plasma adiponectin levels in a cross-sectional study of
2356 individuals (1998–2001).265 It was observed that high-
molecular-weight adiponectin may have a more insulin-
sensitizing effect compared to its monomeric form.266 Like
leptin, adiponectin also enhances insulin sensitivity through
the activation of AMPK.267 Adiponectin also affects hepatic
glucose production by regulating the mRNA expression of
two essential gluconeogenesis enzymes: phosphoenolpyr-
uvate carboxykinase (PEPCK) and glucose-6-phosphatase
(G6PD).267 Obesity-associated downregulation of adipo-
nectin levels is a mechanism that might explain how obesity
can cause insulin resistance and diabetes.267

FIG. 3. Role of dysfunctional adipose tissue in the de-
velopment of obesity associated health risks.
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TNF-a, the most widely studied cytokine, plays an important
role in the modulation of insulin resistance. Deletion of TNF-a
or the TNF-a-receptor resulted in significantly improved insulin
sensitivity in both diet-induced obese mice and leptin-deficient
ob/ob mice, suggesting a role for TNF-a in obesity-associated
insulin resistance.268 In the Framingham Offspring Study, it
was observed that age- and sex-adjusted HOMA IR levels were
positively associated with fasting plasma TNF-a levels.265 In
humans, adipose tissue TNF-a expression is associated with
BMI, percentage of body fat, and hyperinsulinemia; a decrease
in body weight reduces TNF-a levels.269

IL-6 is emerging as one of the potential mediators linking
obesity-derived chronic inflammation with insulin resis-
tance. Chronic exposure to IL-6 induces hepatic insulin re-
sistance270,271 and reduces glucose uptake in adipocytes.272

Circulating IL-6 levels are elevated in obese and insulin-
resistant subjects.273,274 It can be speculated that a persistent
increase in levels of IL-6, such as those that occur in a state
of inflammation such as obesity and type 2 diabetes, may
trigger insulin resistance. It has been observed that IL-6 can
modulate insulin resistance through several distinct path-
ways, including JNK1-mediated serine phosphorylation of
IRS1, IkB-mediated activation of NF-kB, and induction of
suppressor of cytokine signaling-3 (SOCS-3).275

Adipokines and cardiovascular dysfunction. Abnormal pro-
duction of the adipose tissue-derived factors, adipokines, has
been implicated in the pathogenesis and progression of ath-
erosclerosis, endothelial cell dysfunction, and altered ex-
pression of proangiogenic/proatherogenic factors such as
vascular endothelial growth factor (VEGF) and matrix me-
talloproteinases (MMPs), leading to structural and functional
changes in the endothelium.276,277 In obese humans, elevated
angiotensinogen is associated with the development of hy-
pertension.278 A decrease in body weight reduces the ex-
pression of WAT angiotensinogen expression and is thought
to contribute to the concomitant fall in blood pressure.279

Various epidemiological studies demonstrate that reduced
adiponectin levels correlate with increased risk of CVD in
obese individuals.280,281 Many experimental studies dem-
onstrate that adiponectin ameliorates the progression of
macrovascular disease and this is consistent with its corre-
lation with improved vascular outcomes in epidemiological
studies.281,282 The mechanisms of adiponectin signaling
vary among its cellular sites of action. In endothelial cells,
adiponectin protects cells from high glucose or TNF-a-
induced inflammation through the activation of AMP-
activated protein kinase and cyclic AMP-dependent protein
kinase signaling cascades.281,283,284 In the myocardium,
adiponectin-mediated protection from ischemia–reperfusion
injury is linked to COX2-mediated suppression of TNF-a
signaling, inhibition of apoptosis by the activation of AMPK
signaling pathways.281 Ox-LDL-induced alteration in adi-
pokine secretion can also induce CVD complications.138

Numerous studies demonstrate the association between
circulating levels of leptin and CVD.285,286 Although many
paradoxical effects have been reported, for the most part, el-
evated circulating leptin levels have been observed in the
majority of obese individuals,287,288 while a lack of leptin (as
observed in the genetic animal model of leptin deficiency) has
been associated with hypertension, atherosclerosis, stroke, and
myocardial infraction.285,286 Recently, it has been documented
that circulating leptin levels significantly correlate with heart
failure among obese individuals without pre-existing CHD.289

The effects of leptin on the cardiovascular system are not
straight forward enough to definitively summarize, and it is
important to consider other parameters such as aging, degree
of hyperleptinemia, and the coexistence of other factors, which
may also have an impact on cardiovascular function.

A degree of cross talk has been observed between resistin
and other cytokines: a linear relationship with leptin and a
reciprocal relationship with adiponectin. Elevated plasma
levels of resistin correlate with proatherogenic inflammatory
markers,290 increased cardiovascular risk, endothelial dys-
function (through promotion of adhesion molecules, endo-
thelial migration, and proliferation), unstable angina, and
poor prognosis with regard to coronary artery disease.291,292

Resistin induces the proliferation of human aortic smooth
muscle cells through the PI3K/AKT and MAPK (p42/44)
signaling pathways.293 Resistin also enhances the migration
and proliferation of endothelial cells through the activation
of p38 and p44/42 MAPKs.294 Moreover, in isolated coro-
nary artery rings, resistin can induce endothelial dysfunc-
tion.295 Resistin has been shown to increase transcriptional
events, leading to increased expression of several proin-
flammatory cytokines, including IL-1, IL-6, IL-12, and
TNF-a in an NF-kB-mediated pathway.296,297

Adipokines and cancer. Various epidemiological studies
demonstrate as association between obesity and a range of
various cancer types, although the mechanisms by which obe-
sity induces or promotes tumorigenesis vary from one cancer
site to another.298 These include insulin resistance and chronic
hyperinsulinemia, a low-grade chronic inflammation, and in-
creased bioavailability of steroid hormones.298 Elevated leptin
levels have been implicated in the pathogenesis of certain hu-
man cancers, including esophageal and hepatocellular carci-
nomas.299 Leptin-induced stimulation of insulin-like growth
factor-1 (IGF-1) and other growth hormone secretagogues may
increase cellular proliferation and/or dedifferentiation,300 and
enhance angiogenesis, all of which may promote neoplasia.301

Leptin also acts as a promoting factor for hepatocellular
carcinoma,302 as well as inhibiting apoptosis in esophageal
cancer.303 Adiponectin, in contrast, reduces the expression of
adhesion molecules and provides some protection against
carcinogenesis by inhibiting cancer cell growth and tumor-
associated angiogenesis.304,305 Lower levels of circulating adi-
ponectin have been observed in patients with various types of
cancers and may contribute to their severity.304,305 Hyper-
insulinemia, a pathological event common to obesity, has been
associated directly with colon cancer in obese humans.306 The
inflammatory adipokines associated with obesity also contrib-
ute to the development of pancreatic adenocarcinoma.298

Adipokines and respiratory disorders. Obesity is associated
with both sleep disorders and asthma, an association that
might be partially explained by the physical impairment
caused by the presence of fat on both the chest wall and
diaphragm.307 However, abdominal obesity is also associated
with an increased prevalence of asthma.308 It has been re-
ported that both asthma and obesity were independently and
synergistically associated with systemic inflammation.309

Adipokines and asthma. Many of the proinflammatory
cytokines, whose levels are elevated in the plasma of obese
subjects, also play an important role in the pathogenesis of
asthma.310 For instance, TNF-a can increase airway inflam-
mation311 and enhance airway contractility,312 both TNF-a
and IL-6 can modulate T-helper 2 cell immunity,153,313 and
leptin may facilitate airway hyper-responsiveness.314
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Adipokines and sleep disorders. In normal subjects, se-
cretion of adipokines such as TNF-a and IL-6 in a circadian
rhythm is involved in the regulation of physiological sleep
patterns.315–318 Increased secretion of IL-6 is associated
with excessive daytime sleepiness and fatigue,319 while a
decrease in overall secretion of IL-6 is associated with a
good night’s sleep and a sense of well-being the next day.315

Both TNF-a and IL-6 are elevated in sleep apnea indepen-
dently of obesity.320 In a recent study it was observed that
sleep disorder breathing is associated with elevated levels of
CRP, independent of age, BMI, WC, or body fat percentage,
suggesting an association between low-grade inflammation
and sleep disorders.321

Adipokines and liver dysfunction. Animals lacking leptin
due to leptin gene mutation or leptin receptor gene mutation
are obese, insulin resistant, and have hepatic steatosis.322,323

Leptin injections reduce their fatty livers and metabolic ab-
normalities324 through the activation of hepatic stellate cells
and the modulation of Kupffer cell function. In obese NAFLD
patients, plasma leptin levels are elevated and directly corre-
lated with the severity of hepatic steatosis,325 suggesting that
there exists a state of leptin resistance in obesity.326

Various studies have suggested a link between lower cir-
culating levels of adiponectin and increased liver fat content
and the degree of hepatic insulin resistance.327 Administra-
tion of adiponectin decreased hepatic insulin resistance in a
mouse model of obesity and diabetes through the activation
of the AMPK signaling pathway.327 Local production of IL-6
and TNF-a by Kupffer cells has been proposed to play an
important role in the pathogenesis of NAFLD.328 Both IL-6
and TNF-a are potent inhibitors of adiponectin expression
and high levels of these cytokines in obesity and NAFLD
explain this relationship.329 IL-6 causes hepatic insulin re-
sistance by the inhibition of IRS phosphorylation mediated by
activating the SOCS-3 protein.271,330

Adipokines and renal dysfunction. Altered levels of adipo-
kines, including leptin, adiponectin, resistin, and visfatin, are
associated with obesity-related renal dysfunction because
they increase the risk of developing albuminuria by alteration
of the GFR and modulation of renal tubule function.331

Alteration in circulating leptin concentrations plays an
important role in the development of renal dysfunction.
Elevated levels of leptin cause hypertrophy in glomerular
mesangial cells through the activation of the PI3K and ERK1/
2 pathways332; glomerular mesangial hypertrophy increases
the amount of filtered protein and albumin.333,334 In addition,
elevated leptin increases the accumulation of collagen and the
secretion of TGF-b1 from glomerular endothelial cells. An
increase in TGF-b1 is associated with thickening of the
basement membrane, leading to the development of glomer-
ulosclerosis.335 Elevated leptin also increases the expression
of matrix metalloproteinase-2 (MMP-2) in renal mesangial
cells.336 Patients with end-stage renal disorders have an es-
timated 4- to 7.5-fold higher plasma leptin concentrations
compared to that of healthy control subjects, suggesting a link
between elevated leptin levels and the development of CKD
in the absence of obesity.337,338

Hypoadiponectinemia has been associated with the de-
velopment of renal dysfunction and CKD.339,340 It has been
reported that adiponectin is an independent predictor of
CKD.339,340 Hypoadiponectinemia causes an increase in
tubular inflammation by decreasing tubular AMPK activa-
tion and causing an accumulation of MCP-1.341 Mice with

hypoadiponectinemia treated with adiponectin exhibit po-
docyte fusion leading to an improvement in glomerular
podocyte foot processes through activation of AMPK.340

The circulating resistin level is also linked to the album-
to-creatinine ratio and the GFR.342,343 Plasma resistin levels
are elevated in uremia, primarily because of reduced renal
clearance and inflammation.344 An increased resistin level is
associated with a decrease in GFR, which may be due to
the activation of macrophages and enhanced inflammatory
responses.342,343 Visfatin, a new adipokine, is significantly
associated with inflammation/endothelial dysfunction in
CKD.345 Elevated visfatin levels have been observed in dia-
betic patients with CKD.346 Visfatin has been shown to in-
crease the secretion of the inflammatory cytokines such as
TNF-a, IL-6, and IL-1b.345 Exposure to elevated levels of
visfatin in glomerular mesangial cells increased the mRNA
expression of both renin and angiotensinogen; changes in
renin and angiotensinogen levels are linked with alteration in
GFR leading to renal dysfunction.347

Adipokines and infertility. Recent studies in the literature
have reported that alterations in adipokine levels, or in their
mechanism of action, are associated with fertility impairment
and pregnancy diseases.348,349 An increase in serum leptin
levels has been observed among infertile obese men and
women.350 Excess levels of leptin have a deleterious effect on
sperm production and the formation of androgens by Leydig
cells.351 Increased serum leptin concentrations have been
observed in women with PCOS compared to those of weight-
matched control subjects,352 but these observations are de-
pendent on ethnicity, heterogeneity of the PCOS group, or the
different sampling methods used to get fat biopsies in the
various studies.349 Adiponectin, in contrast, is described as a
beneficial adipokine in reproduction.353 Women diagnosed
with PCOS also have reduced adiponectin levels, independent
of obesity.354,355 Genomic studies support the observation that
hypoadiponectinemia is a causative agent for PCOS.354,355

Various experimental studies demonstrate that adiponectin
can directly induce ovarian gene expression.356,357

Potential Strategies to Reduce the
Pathogenesis of Obesity

A broad range of strategies are recommended to reduce the
prevalence of obesity. Physical activity remains the most
common therapy for the treatment of obesity and its associ-
ated health risks. There are several ways by which increased
physical activity could be beneficial in reducing and pre-
venting obesity.358 Physical activity increases total energy
expenditure and decreases total body fat, including fat around
the waist, which can help people to reach and maintain a state
of energy balance, as long as they are not taking in more food
to compensate for the lost calories. Oh et al. reported that
exercise training reduced the serum levels of inflammation
and oxidative stress markers, ferritin and thiobarbituric acid
reactive substances, and significantly increased the adipo-
nectin levels among a total of 108 subjects who completed a
12-week exercise training program.359

Ad libitum food intake limiting to certain micronutrients
is another important strategy for the regulation of obesity
because of its relation to energy balance.360 Ad libitum low-
fat diets, high-protein diets, and low-carbohydrate diets are
the proposed tools for facilitating weight loss.361,362 Con-
trolled food intake with variety in the composition of
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macronutrients reduces a patient’s feelings of being re-
stricted to a particular diet, which might improve the weight
loss program. A few long-term trials have demonstrated that
maintenance of weight loss with ad libitum dietary programs
achieved significant results compared to conventional
energy-restricted diets.363,364 The CARMEN trial also ob-
served greater loss of weight and fat mass by the long-term
intake of ad libitum low-fat, high-carbohydrate diets.365,366

Beside ad libitum food intake, a healthy dietary pattern is
also necessary to regulate obesity and its associated health
risks. However, adoption of healthy dietary habits is very
difficult in an obesogenic environment, in which palatable,
inexpensive, high-fat, and energy-dense foods are easily
available. Dietary intake of macronutrients is gaining at-
tention as an important factor in the regulation of obesity
and its associated risk factors. A number of nutritional in-
tervention studies using diets supplemented or enriched with
different micronutrients have shown a variety of results re-
garding weight loss and weight management. Dietary sup-
plementation with calcium has been shown to play an
important role in the regulation of energy metabolism and
obesity risk.367,368 Supplementation with high calcium in-
hibited lipogenesis, stimulated lipolysis, lipid oxidation, and
thermogenesis and thus prevented diet-induced obesity in
mice.369 One meta-analysis concluded that dietary calcium
has the potential to increase fecal fat excretion, which is
relevant for its potential contribution to weight loss.370 Po-
tassium and magnesium are two other well-known dietary
micronutrients that could favor a decrease in blood pres-
sure371 and are the main components of the DASH diet,
which is more effective for weight loss and metabolic vari-
ables.372,373 Chromium, an essential trace element, is present
in a wide variety of foods, including eggs, cereal, nuts, and
vegetables.374 A few clinical studies have reported the
weight-lowering effect of chromium supplementation.375,376

Dietary consumption of more fruits and vegetables is also
associated with a decrease in the prevalence of obesity.377

The role of an increased consumption of fruits and vegetables
in the prevention of overweight and obesity is linked to
several features: high water content, relatively low-energy
density, and high dietary fiber content.378 Water has the
greatest impact on energy density because it increases the
weight of food without increasing calories and thus decreases
energy density.379 Consumption of whole apples (2.9% fiber)
was associated with a higher satiety rating compared with the
consumption of apple puree or fiber-free apple juice.380 Si-
milarly, whole oranges (2.5% fiber) versus orange juice (fiber
free) and whole grapes (1.3% fiber) versus grape juice (fiber
free) also confirmed that whole fruits provide more satiety
than juice.381 Dietary fibers, specially viscous dietary fibers,
have also been shown to increase postprandial satiety and to
decrease subsequent hunger in short-term studies.382 In a
review summarizing the effects of high- versus low-fiber diet
interventions, it has been observed that participants on the
high-fiber diets lost significantly more weight than those on
the low-fiber diets.382 Studies investigating the influence of
vegetables on feeling full reported that adding at least 200 g
of vegetables (carrot and spinach) to meals with equal calo-
ries enhanced the feeling of being full, suggesting a correla-
tion between the dietary water and fiber content and the total
weight of the meal.383–385 These analyses support the im-
portance of high water and fiber-rich foods, such as fruits and
vegetables, in weight regulation.

Meal-replacement strategy may be one important path-
way to combat against the prevalence of obesity.386–388

Weight loss programs based on meal replacement for one or
two meals per day with a product of defined nutrient and
calorie content have shown to improve compliance with an
energy-restricted diet as well as weight management in
overweight and obese individuals.387,388 Smeets et al.
showed that a high-protein replacement meal was more
satiating and had a higher thermogenic effect compared to a
low-protein replacement meal.389

Certain pharmacological treatments have also been re-
commended in the management of obesity. Antiobesity
medications are categorized according to their mode of ac-
tion, such as inhibitors of fat absorption, inhibitors of the
endocannabinoid system, or modifiers of the central nervous
system.390,391 Orlistat is a pancreatic lipase inhibitor that
binds to lipase in gut lumen and prevents the hydrolysis and
absorption of *30% of the dietary fat contained in a meal.392

Sibutramine, a selective inhibitor of neurotransmitter (sero-
tonin and norepinephrine) reuptake, acts centrally to reduce
food intake.392 Phentermine is a sympathomimetic amine that
promotes the release of catecholamine.393 Common adverse
effects of these drugs include several gastrointestinal adverse
effects, diarrhea, insomnia, anxiety, and other effects on the
central nervous system.393 Due to the numerous adverse side
effects and the related safety issues, many antiobesity medi-
cations, including drugs in the field of pharmacotherapy, have
been withdrawn even after licensing.394

BAT is emerging as an important antiobesity tissue in
humans.395,396 An experimental rodent study demonstrated
the beneficial role of brown fat against diet-induced obesi-
ty.397 Transgenic mice with decreased brown fat develop
glucose intolerance and insulin resistance398 and are suscep-
tible to diet-induced obesity, diabetes, and hyperlipidemia,399

suggesting a protective role of brown fat against energy-dense
diet-induced obesity in rodents. b3-Adrenergic receptors (b3-
AR) are found predominantly in BAT and treatment with b3-
AR selective agonists caused a significant increase in energy
expenditure and a decrease in obesity in rodents.400 The oc-
currence of BAT in adult humans varies from 2% to
100%.401,402 Possible BAT-oriented therapeutic treatments to
combat obesity, aimed at increasing energy expenditure,
might work in one of two ways: first, by stimulating the
activity of already existing BAT and, second, by upregulating
the occurrence of brown adipocytes by inducing the specific
gene expression program of brown fat cells through specific
molecular switches.396 Wijers et al. reported a link between
BAT activity and diet-induced thermogenesis in humans.403

Recent data suggest the role of thyroid hormone in the reg-
ulation of BAT thermogenic activity through modulation of
hypothalamic fat metabolism.404

Conclusion

Obesity is the one of the most prevalent metabolic dis-
orders of the 21st century. The rising epidemic of obesity is
a serious healthcare catastrophe due to its strong association
with several major downstream health consequences such as
diabetes, cardiovascular complications, cancer, asthma,
sleep disorders, hepatic dysfunction, renal dysfunction, and
infertility. Oxidative stress has been suggested as a critical
factor linking obesity with its associated complications.
There are various biochemical mechanisms by which
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obesity can induce systemic oxidative stress, such as acti-
vation of NOX, oxidative phosphorylation, glyceraldehyde
auto-oxidation, PKC activation, polyol and hexosamine
pathways, hyperleptinemia, low antioxidant defense, chronic
inflammation, and postprandial ROS generation. The deposition
of excess fat in the WAT inhibits its normal endocrine function,
leading to the dysregulated expression of secreted factors, ele-
vated plasma lipid levels, increased formation of reactive in-
termediates, impaired mitochondrial function, inadequate
cellular antioxidant defense, and development of oxidative
stress. This has been linked to the pathogenesis of a variety of
obesity-related diseases. The development of obesity is char-
acterized by the interplay of nature and nurture. Moreover,
current epidemiological studies indicate that a major cause of
the global obesity problem lies in alterations in dietary and
physical activity patterns, while genetic and metabolic studies
reveal that there are individuals who are more susceptible to
weight gain than others. On the basis of the currently identi-
fied predominant determinants of obesity, various effective
strategies are recommended to regulate or manage the
prevalence of obesity, including regular physical activity, ad
libitum food intake limiting to certain micronutrients, in-
creased dietary intake of fruits and vegetables, and activation
of brown fat. Furthermore, while some pharmacological
therapeutics have also been found to help regulate obesity,
most of the commonly used pharmacotherapies are associ-
ated with serious adverse health effects. At present, modifi-
cation of life style, increased physical activity and adoption
of a healthy diet, including more fruits, vegetables, and
balanced micronutrients, have been suggested as beneficial
strategies to overcome or regulate the prevalence of obesity
and its associated risk factors.
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