
Optimization and Engineering (2022) 23:855–876

https://doi.org/10.1007/s11081-021-09608-0

RESEARCH ART ICLE

Obey validity limits of data-driven models through
topological data analysis and one-class classification

Artur M. Schweidtmann1,5 · Jana M. Weber2 · Christian Wende1 ·

Linus Netze1 · Alexander Mitsos1,3,4

Received: 20 October 2020 / Revised: 19 February 2021 / Accepted: 20 February 2021 /

Published online: 12 May 2021

© The Author(s) 2021

Abstract

Data-driven models are becoming increasingly popular in engineering, on their own

or in combination with mechanistic models. Commonly, the trained models are sub-

sequently used in model-based optimization of design and/or operation of processes.

Thus, it is critical to ensure that data-driven models are not evaluated outside their

validity domain during process optimization. We propose a method to learn this valid-

ity domain and encode it as constraints in process optimization. We first perform a

topological data analysis using persistent homology identifying potential holes or sep-

arated clusters in the training data. In case clusters or holes are identified, we train

a one-class classifier, i.e., a one-class support vector machine, on the training data

domain and encode it as constraints in the subsequent process optimization. Other-

wise, we construct the convex hull of the data and encode it as constraints. We finally

perform deterministic global process optimization with the data-driven models sub-

ject to their respective validity constraints. To ensure computational tractability, we

develop a reduced-space formulation for trained one-class support vector machines

and show that our formulation outperforms common full-space formulations by a fac-

tor of over 3000, making it a viable tool for engineering applications. The method

is ready-to-use and available open-source as part of our MeLOn toolbox (https://git.

rwth-aachen.de/avt.svt/public/MeLOn).
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1 Introduction

Supervised machine-learning techniques have been re-emerging as a promising avenue

for data-driven modeling in various engineering disciplines (Venkatasubramanian

2019). In most applications, the overall goal is the optimal decision-making based

on available data and a priori knowledge. Thus, data-driven models and mechanistic

models are often combined to form hybrid models (Mogk et al. 2002; Kahrs and Mar-

quardt 2008; Von Stosch et al. 2014; Glassey and Von Stosch 2018). Subsequently,

hybrid models are frequently used in model-based optimization of design and/or oper-

ation of processes (McBride and Sundmacher 2019; Schweidtmann and Mitsos 2019).

A critical issue of data-driven models is their limited extrapolability. Unless strong

assumptions are posed on the learned function, data-driven models can only be valid in

regions where they have sufficiently dense coverage of training data points. We refer

to this as the validity domain (Leonard et al. 1992; Courrieu 1994). Consequently,

there is a need to avoid the evaluation of data-driven models outside their validity

domain during optimization. Note that we refer to the validity domain of individual

data-driven models throughout this work, but the concept can also be applied to hybrid

models (Kahrs and Marquardt 2007).

The vast majority of previous publications use box constraints (i.e., hyperrectan-

gles) to bound the inputs of data-driven models, i.e., each variable has independent

bounds. This approach is practical when the training data is obtained from simula-

tions based on regular grids or Latin hypercubes that are sufficiently dense. It is also

advantageous for local and global optimization. However, it requires a priori known

bounds and the possibility to obtain training data for any input combination. In prac-

tice, simulations can fail (Asprion 2020) and industrial process data usually does not

cover hyperrectangular spaces (Asprion et al. 2019). This leads to manual selection

of wrong bounds, which may cut off optimal solutions or overestimate the validity

domain.

As proposed by Courrieu (1994), a few previous works in process systems engi-

neering (PSE) constructed the convex hull of the training data points to describe the

validity domain and integrated it as a set of linear constraints in optimization prob-

lems (Kahrs and Marquardt 2007; Zhang et al. 2016; Asprion et al. 2019). By definition,

the convex hull is the smallest convex set that contains all data points. Commonly,

evaluations of data-driven models inside the convex hull of the training data are called

interpolation and outside extrapolation. However, roughly speaking, the convex hull

cannot distinguish between for potential holes in the training data set, gaps between

separated clusters of data, and nonconvex boundaries. Thus, staying within the convex

hull seems only a necessary condition for the validity of data-driven models and not

sufficient. Identifying if the convex hull is a suitable model for the data domain is very

challenging in high dimensions. Notably, Zhang et al. (2016) extended the convex hull

method to the union of multiple polytopes by introducing binary variables and addi-

tional constraints to the problem. However, this algorithm becomes impractical when

the number of data points or their dimension is very high. Besides convex hull formu-

lations, there exist also several publications that circumvent extrapolation problems

en passant in different ways. Inspired by earlier works by Leonard et al. (1992) and

Simutis et al. (1995), Teixeira et al. (2006) compute clusters using k-nearest neighbor
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Obey validity limits of data-driven models through… 857

algorithm and constrain the distance to the cluster centers. Likewise, Rall et al. (2019)

constrain the maximal allowed distance from the nearest training data point resulting

in a nonsmooth optimization problem. Mistry et al. (2018) penalize deviations from a

training data mean in a space that is parameterized using principal component analysis.

Kumar et al. (2019) train multiple data-driven models on a design problem and reject

designs where the variation between the models is large. Similarly, Pinto et al. (2019)

use bootstrap aggregation to estimate error bounds for hybrid mechanistic/data-driven

models. There exist further methods that quantify the variance or confidence inter-

val of predictions such as Bayesian methods and maximum likelihood estimations

(Papadopoulos et al. 2001). However, this leads to chance-constrained programming

problems (Charnes and Cooper 1959; Schweidtmann et al. 2020a). Likewise, there

are a few studies on the adaptive exploration of the design space (Teixeira et al. 2006;

Larson and Mattson 2012; Chen et al. 2018; Knudde et al. 2019) and related works

on constrained Bayesian optimization (Shahriari et al. 2016). Moreover, there exist

closely related contributions for the (adaptive) identification of process feasibility

and flexibility using data-driven approaches which generate a single feasibility func-

tion (Boukouvala and Ierapetritou 2012; Bhosekar and Ierapetritou 2018). However,

we focus on fixed training data sets in this study while the extension of our method to

adaptive sampling is a promising future research.

An alternative to box constrains and convex hull is to use a nonlinear classifier

that can also model complicated validity domains. A few previous studies in mechan-

ical engineering (Malak and Paredis 2010; Roach et al. 2011) used Support Vector

Domain Description (SVDD) (Tax and Duin 1999) to model the validity domain of

data-driven equipment models. Also, Quaglio et al. (2018) use binary support vector

classification to include reliability constraints into model-based design of experiment.

As only valid training data points are given in most engineering applications, we con-

sider one-class classification in this work. One-class classification is an unsupervised

machine learning technique. There exists a broad variety of one-class classifiers that

can be divided into density methods, boundary methods, and reconstruction meth-

ods (Tax 2001). Also, one-class classification is closely related to novelty, outlier, or

anomaly detection (Chandola et al. 2009; Pimentel et al. 2014; Khan and Madden

2009, 2014; Ding et al. 2014). The previous literature indicates that one-class support

vector machines (SVMs) (Schölkopf et al. 2000) are common and suitable for the

problem at hand. Compared to density models, less training data is required to con-

struct the boundary, since only the boundary is estimated and not a complete density

distribution (Tax 2001). In addition, the one-class SVM is tolerant to outliers in the

training set (Pimentel et al. 2014).

Optimization problems with one-class SVMs embedded are nonconvex. Thus,

deterministic global optimization is desirable to identify global solutions. However,

these models lead to large-scale optimization problems that are difficult to solve. In

our previous work, we showed that a reduced-space (RS) formulation and the use of

McCormick relaxations are advantageous for the optimization of two other important

classes of data-driven models, namely artificial neural networks (Schweidtmann and

Mitsos 2019) and Gaussian processes (Schweidtmann et al. 2020a). We propose a

similar idea here for one-class SVM.
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The global shape of data matters because it often provides important infor-

mation about the underlying phenomena represented by the data. Especially in

high-dimensional data, topological data analysis (TDA) can reveal and quantify objects

and features not directly visible to the human eye. In the context of this work, it

provides valuable information about the topology of the training data that can be

colloquially thought of as holes or separated clusters. TDA was initiated relatively

recently (Letscher et al. 2002; Zomorodian and Carlsson 2005). Its roots lie in applied

(algebraic) topology and computational geometry (Chazal and Michel 2017) and it

is commonly used to account for higher-order interactions in data, to comprehend

mesoscale structures, or to compare different data spaces (Patania et al. 2017). The

most common TDA method is persistent homology (Wasserman 2018). So far, there

are only a few applications of persistent homology in the fields of (bio-)chemical engi-

neering and material science (Hiraoka et al. 2016; Saadatfar et al. 2017; Xia 2018;

Xia et al. 2019; Smith et al. 2020).

We propose a three-step approach to model the validity domain of data-driven mod-

els for optimization. We first perform TDA using persistent homology. In case clusters

or holes are identified, we train a one-class SVM on the training data domain of the

data-driven models and encode it as constraints in the subsequent process optimization.

Otherwise, we construct the convex hull of the data and encode it as constraints. We

finally perform deterministic global process optimization with the data-driven mod-

els and their respective validity constraints. To ensure computational tractability, we

develop a RS formulation for trained one-class SVMs. Moreover, we employ convex

and concave envelopes of kernel functions to accelerate optimization. We demonstrate

the potential of our method on a set of illustrative mathematical case studies and an

engineering case study, i.e., the open-loop control of a sulfur recovery unit.

2 Methodology

As illustrated in Fig. 1, we propose a three step approach to obey validity limits of

data-driven models during optimization. In the first step, we conduct a TDA of the

training data. In the second step, we either construct the convex hull of the data or

we train a one-class classifier, i.e., a SVM. In the third step, we embed the trained

classifier or convex hull in the optimization problem and solve it to global optimality.

The described methods are available open-source. We use the Ripser.py toolbox that

is available open-source under MIT license in Python for performing the TDA (Tralie

et al. 2018). The training of the one-class SVM is performed by Scikit-learn (Pedregosa

et al. 2011) and the convex hulls are identified using SciPy (Virtanen et al. 2020).

We provide the one-class SVM within the “MeLOn - Machine Learning Models for

Optimization” toolbox under the Eclipse public license (Schweidtmann et al. 2020b).

The resulting optimization problems are solved using our open-source global solver

MAiNGO (Bongartz et al. 2018).
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Obey validity limits of data-driven models through… 859

Fig. 1 Overview of the proposed

three step methodology to obey

validity limits of data-driven

models in optimization

2.1 Topological data analysis using persistent homology

In persistent homology, we are interested in so-called topological invariants, i.e., prop-

erties that are invariant under homeomorphisms. The topological invariants of interest

are homology groups, i.e., Hk of dimension k, with βk = dim(Hk) being the Betti

numbers (Binchi et al. 2014; Chung et al. 2015). “Informally, β0 is the number of

connected components, β1 is the number of two-dimensional holes or “handles” and

β2 is the number of three-dimensional holes or “voids” etc.” (Binchi et al. 2014).

The topological invariants are computed by representing the original dataset, i.e., a

point cloud, as a simplicial complex through a simplicial filtration. We utilize the com-

mon Vietoris-Rips filtration, where a n-simplex in the simplicial complex is formed if

and only if the pairwise distance between all points in the n-simplex is at most ǫ. At

the bottom of Fig. 2, we show a series of simplicial complexes for an illustrative point

cloud.

Persistent homology studies topological invariants that persist over multiple length

scales (ǫ) in the data (Chambers and Letscher 2018; Otter et al. 2017; Xia 2018; Xia

et al. 2019). In other words, we examine the lifespan of topological invariants by

increasing ǫ incrementally and constructing simplicial complexes. At the bottom of

Fig. 2, we can observe that β0 = 10 connected components (H0) exist at ǫ1, β0 = 5

connected components exist at ǫ2, β0 = 1 connected component and β1 = 1 two-

dimensional hole (H1) exist at ǫ3, and β0 = 1 connected component exist at ǫ4.

The results of the persistent homology can be depicted in barcode diagrams or

persistent diagrams. We use the more common persistent diagrams in this work. The

coordinates of birth and death of the homology groups in the example are shown in the

persistent diagram in Fig. 3. The x-axis represents the ǫbirth while the y-axis the ǫdeath

distance of H0 and H1 homology groups. Features with long lifespan correspond to

points far from the diagonal (Wasserman 2018). The blue triangle at the bottom left
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Fig. 2 Illustration of a Vietoris–Rips filtration utilized for persistent homology. The upper part shows the

data set and circles around the data points with increasing diameter ǫ. The bottom image illustrates the

simplicial complexes formed during the filtration. The figure is based on Kimura and Imai (2017)

Fig. 3 Persistent homology plot

of the illustrative point cloud.

The x-axis shows the birth and

the y-axis the death of the

homology groups

corner of the plot corresponds to the merge of two very close data points at small ǫ. The

blue triangles with ǫdeath between 1 and 1.5 in Fig. 3 resemble the merge of connected

components between ǫ2 and ǫ3 in Fig. 2, describing the decrease in Betti number β0

from 5 to 1. The highest blue triangle illustrates that one connected component exists

until infinite. The red circle represents homology group H1 and demonstrates the birth

and death of the two-dimensional hole which is formed around ǫ3 and dies before ǫ4

in Fig. 2.

In this example, the persistent diagram shows that a hole exist providing useful

insight to guide the decision process for model selection. For example, the ǫdeath of

the H0 components provide information about the data density. In the example, the

maximal distance in the last H0 component is at most 1.5. This is significantly smaller

than the ǫdeath of the H1 hole. In other words, the life span of the hole is characteristic

for the dataset. Thus, persistent homology can provide valuable information about the

topology of the training data of data-driven models. In particular, it can identify holes

or separate data clusters. However, it cannot differentiate clearly between convex and

nonconvex boundaries (see also illustrative examples in Sect. 3).
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2.2 Learn validity domain using one-class support vector machines

We model the validity domain using the convex hull or one-class SVM approach. The

one-class SVMs are trained using the open-source python implementation in Scikit-

learn (Pedregosa et al. 2011) and the convex hulls are identified using the open-source

implementation in SciPy (Virtanen et al. 2020). The details of the one-class SVM are

described in the following.

SVMs are a popular method for binary classification (Cortes and Vapnik 1995)

and regression (Smola and Schölkopf 2004). One-class SVMs are a modification

of these classical SVMs (Schölkopf et al. 2000) (c.f. Tax (2001) on similarity to

SVDD). The goal is to learn a boundary of a given set of training points X =

{x̂
(1)

, . . . , x̂
(i)

, . . . , x̂
(N )} with x̂

(i) ∈ R
D . Similar to classical SVMs, the data is

mapped to high-dimensional feature space by φ : R
D �→ R

d with d >> D and later

solved in the dual formulation using the kernel trick (Schölkopf 2001). In the feature

space, a maximum-margin hyperplane is found that separates the data from the origin

by solving:

min
w∈Rd ,ξi ∈R,ρ∈R

1

2
w

T
w − ρ +

1

νN

N
∑

i=1

ξi , (1)

s.t w
T φ(x̂

(i)
) � ρ − ξi ∀i = {1, . . . , i, . . . N }, (2)

ξi � 0 ∀i = {1, . . . , i, . . . N }, (3)

where ν ∈ (0, 1) is a regularization hyperparameter, ξi ∈ R are slack variables, and

w and ρ are the parameters of the hyperplane in high-dimensional feature space.

Schölkopf et al. (2000) show that ν is an upper bound on the fraction of outliers and

a lower bound on the fraction of support vectors in the training set, which is known

as the ν-property. The decision function fDF-P(x) = w
T φ(x) − ρ is positive if a

candidate point x is classified to be within the training data domain and negative if

not. The dual of (1)-(3) is the quadratic program:

min
αi ∈[0, 1

νN
]

1

2

N
∑

i=1

N
∑

j=1

αiα j K (x̂
(i)

, x̂
( j)

), (4)

s.t

N
∑

i=1

αi = 1, (5)

whereαi are dual variables and K (·, ·) is a kernel function. Often, the radial basis kernel

function K (x, y) = exp(−γ ‖x− y‖2) with hyperparameter γ is used since it has been

shown that it is best able to model the most complex boundaries (Tax 2001). It holds

that αi = 0 for training samples inside the learned boundary and αi > 0 for samples

on or outside the boundaries. Samples for which αi > 0 are called support vectors. The

decision function in the dual variables is given by fDF-D(x) =
∑

i∈Isv
αi K (x̂

(i)
, x)−ρ,

where Isv denotes the indexes of the support vectors in the training data (i.e., the data

points with corresponding αi > 0). To obey validity limits of data-driven models in
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an optimization problem, the following inequality has to hold:

fDF-D(x) � 0. (6)

The parameter ν can be estimated from an outlier fraction by using the aforemen-

tioned ν-property. This makes this method more tolerant to outliers in the training

data (Pimentel et al. 2014). The hyperparameter γ controls the model complexity

when using the radial basis kernel. If a large γ is used, all samples are mapped to a

small region in the feature space and the one-class SVM cannot distinguish between

the samples well. In other words, the model lacks complexity. If γ is small, pairs of

samples become orthogonal in the feature space. This leads to overfitting and a high

number of support vectors. A common approach to identify an appropriate γ is to grad-

ually decrease γ until the number of support vectors does not decrease much (e.g.,

Dreiseitl et al. 2010). However, automatically selecting an appropriate γ is challenging

(e.g.,Evangelista et al. 2007; Xiao et al. 2014a, b).

2.3 Optimization with classifier as constraint

We consider a global optimization problem where a classifier is used to obey valid-

ity limits of a data-driven model. In most cases, the inputs of the classifier model

correspond to the degrees of freedom x of the optimization problem. The classifier

can determine if a given x is feasible or infeasible by evaluating its decision function

fDF-D(·). To obey validity limits, Inequality (6) has to hold. Although the decision

function is an explicit function, there exist different ways to formulate it in opti-

mization problems. These problem formulations are equivalent as they have the same

solution, but they can have a large impact on the computational performance of global

optimization.

In the full-space (FS) formulation, a set of nonlinear equations is provided as

equality constraints while the dependent (or intermediate) variables are optimiza-

tion variables. Note that there exist multiple valid FS formulations depending on the

equality constraints and optimization variables provided to the solver. One represen-

tative FS formulation for optimization with one-class SVMs embedded is shown in

the following:

min
x∈RD,zobj∈R,di ∈R,ki ∈R,zdd∈RZ

zobj, (7)

s.t zobj = fobj(x, zdd), (8)

hdd(x, zdd) = 0, (9)
∑

i∈Isv

αi ki � ρ, (10)

ki= exp (−γ · di ) ∀i ∈ Isv, (11)

di= ‖x̂
(i) − x‖2 ∀i ∈ Isv. (12)
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Herein, Eq. (7) minimizes the objective function value zobj that is given by Eq. (8).

Note that the objective depends on the variables of the data driven model zdd that

are given by the solution of Eq. (9). The decision function of the one-class SVM is

given by the inequality constraint (10) while its intermediate variables are given by the

solution of Eqs. (11),(12). This FS formulation has in total D +2 · |Isv|+dim(zdd)+1

optimization variables, 2 · |Isv|+dim(zdd)+1 equality constraints, and one inequality

constraint.

The equality constraints of the one-class SVM can be solved explicitly for the

intermediate variables. Thus, we can directly formulate a RS formulation of the opti-

mization problem (c.f. Bongartz and Mitsos 2017):

min
x∈RD

fRS(x), (13)

s.t fDF-D(x) � 0. (14)

Herein, fRS(·) is the RS formulation of the data-driven model and objective function.

Thus, Eq. (13) results from sequential substitutions of Eqs. (7)–(9). This is possible

as most data-driven models such as ANNs or GPs are explicit functions (c.f. Schwei-

dtmann and Mitsos 2019; Schweidtmann et al. 2020a) and as the objective function

is a function of the degrees of freedom and the predictions of the data-driven model.

Similarly, Eq. (14) results from the substitution of Eqs. (10)–(12). The RS formulation

has only D optimization variables and one inequality constraint.

The convex hull of a point cloud with a finite number of points can be formulated as

a set of linear inequality constraints XconvHull = {x ∈ R
D | Ax + b ≤ 0}. Assuming

that the convex hull has f facets, the matrix A ∈ R
f ×D and the vector b ∈ R

f (Kahrs

and Marquardt 2007). Thus, the FS and RS formulation of the convex hull are identical.

Note that the data-driven model can still be formulated in the RS and FS formulation

when using the linear convex hull constraints.

The RS formulation has three major advantages for global optimization: First, the

problem formulation has a direct influence on the variables to be branched on. In the

RS, the B&B solver branches only on the degrees of freedom x. In the FS, the B&B

solver branches on the degrees of freedom and also on the intermediate variables.

This is undesirable given the exponential worst-case runtime of global optimization

methods. Note that this issue can also be mitigated by selective branching (Epperly

and Pistikopoulos 1997). Second, the size of the subproblems that are solved during

optimization is affected by the problem formulation and the method for constructing

relaxations. Our previous work shows that a combination of McCormick relaxations

and RS formulation can reduce the time to solve an iteration of the B&B solver

significantly (Schweidtmann et al. 2020a; Bongartz 2020). Third, global optimization

solvers usually require bounds on all optimization variables. Often, meaningful bounds

are known for degrees of freedom but bounds on intermediate variables can be difficult

to determine. Note that this problem is mitigated by some state-of-the-art solvers

through automatic bound tightening techniques.

The vast majority of previous literature approaches formulate global optimiza-

tion in the FS because they frequently use modeling environments such as GAMS

that essentially require an equation-oriented modeling approach. Recently, Hart et al.
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(2017) developed the Python-based optimization tool Pyomo which allows model-

ing, implementation of own solvers, and provides access to multiple solvers. Pyomo

allows both FS and RS and recently Hüllen et al. (2019) demonstrated RS optimiza-

tion of ANNs in BARON through Pyomo. However, BARON relies on the auxiliary

variable method for relaxations which results in larger subproblems (Schweidtmann

et al. 2020a). Thus, a RS formulation in BARON does not take full advantage of the

RS formulation. In contrast, our open-source solver MAiNGO (Bongartz et al. 2018)

relies on McCormick relaxations in the space of the original variables utilizing the

library MC++ (Mitsos et al. 2009; Chachuat et al. 2015). Another open-source solver

that allows for McCormick relaxations is called EAGO has been released by Wilhelm

and Stuber (2020).

The optimization problems in this work are implemented in MeLOn (Schweidtmann

et al. 2020b) and solved by MAiNGO (Bongartz et al. 2018). For comparison, the

problems are additionally exported to GAMS and solved by the commercial solver

BARON (Tawarmalani and Sahinidis 2005). We provide the implementation of the

one-class SVM in the open-source modeling toolbox MeLOn (Schweidtmann et al.

2020b).

Tight convex and concave relaxations are highly desirable in global optimization.

Therefore, we use the tightest possible relaxations, i.e., the envelopes, of the radial

basis function kernel in our solver MAiNGO. Note that we derived these envelopes in

our previous work (Schweidtmann et al. 2020a) as the squared exponential covariance

function in Gaussian processes is equivalent to the radial basis function kernel in

SVMs.

3 Illustrative case studies

As high dimensional problems are difficult to visualize, we consider eight two-

dimensional data sets for illustration of the proposed method in a first step. Afterwards,

we consider an engineering case study in Sect. 4. As shown in Fig. 5, the illustrative

examples cover a variety of relevant scenarios. All data points are randomly generated

within pre-specified bounds and perturbed by noise. Thus, the data sets do not exhibit

sharp boundaries, rather they also include noisy outlier data points.

In the next step, we evaluate an adapted peaks function, fPeaks : R
2 �→ R, on all

data sets with fPeaks(x1, x2) = 3(1−x1)
2 ·exp (−x2

1 − (x2 + 1)2)−10( x1
5

−x3
1 −x5

2)·

exp (−x2
1 − x2

2 )− 1
3
·exp (−(x1 + 1)2 − x2

2 )−1.3x2. The peaks function is a standard

test function in Matlab. We adapted the function slightly by adding a linear term which

avoids a flat response outside the sampled domain. Then, we train individual ANNs

on the eight data sets using Keras (Chollet et al. 2015). All ANNs exhibit one input

layer with 2 neurons, two hidden layers with six and eight neurons, respectively, and

an output layer with one neuron. The hidden layers use tanh activation and the output

layers use linear activation. For training, the inputs are scaled onto [−1, 1] and the

outputs are scaled to zero mean and unit variance. We further use a batch size of 128

and an epoch limit of 4000. Note that we omit a hyperparameter study for the ANNs

because ANN training is not the focus of this work.
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Table 1 The values of the hyperparameter γ for the eight case studies. The hyperparameters are selected

based on the incremental approach described in Sect. 2.2

Oval Two circles Box Two ovals Banana Box2 Box w/hole Circle w/hole

0.31 0.28 0.25 0.35 0.25 0.25 0.23 0.25

All optimization problems are solved one core of an Intel Xeon CPU E5-2630 v3

(2.40GHz) with 192 GB RAM and Windows Server 2016 operating system. We use

a 0.001 relative and absolute optimality tolerance, a CPU time limit of 1000 s, and

default settings in BARON and MAiNGO.

3.1 Topological data analysis

The persistent diagrams of the eight input data sets are shown in Fig. 4. The Figs. 4d, e

show a H1 component with a large life span each. These correspond to the holes in the

respective data sets “box w/ hole” and “circle w/ hole”. Moreover, the corresponding

ǫdeath provide information about the diameter of the holes. Recall that H1 components

that are close to the diagonal have a short life span and are therefore not relevant for

this analysis.

The persistent diagrams also show the existence of disjunct clusters in the data sets

“two circles” and “two ovals”. In Figs. 4f, g, the H0 components with a high ǫdeath

indicate disjunct clusters and are a measure for the distance between them. Note that

the H0 components at the infinity line persist when ǫ goes to infinity and do not die.

They correspond to the H0 components that include all data points.

The persistent diagrams show no distinct differences between the “box”, “oval”,

“box2”, and “banana” case studies. This illustrates that the method cannot distinguish

between convex and nonconvex data sets in general. Therefore, the persistent diagrams

cannot ensure that the convex hull is sufficient to describe the validity domain. Rather,

it can only identify some cases where the convex hull is not sufficient.

3.2 Validity domainmodeling

In order to compare the one-class SVM and the convex hull, we model the input

data of the eight case studies with both methods. We employ the common radial basis

function kernel for the one-class SVM. We set the hyperparameter ν to a low value 0.03

because there are only a few outliers through noise in the data. The hyperparameter

γ is identified using the incremental approach described in Sect. 2.2. The selected γ

values are summarized in Table 1.

The learned boundaries for the case studies are depicted in Fig. 5. As expected,

the convex hull does not model holes and disjunct data clusters. Instead, the convex

hull overestimates the validity domain of the case studies. In contrast, the one-class

SVM is able to model holes and disjunct data clusters. Furthermore, the convex hull

includes all data points whereas the one-class SVM also allows for outliers in the data

and excludes regions with only small data density from the validity domain (e.g., see
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Fig. 4 Comparison of the persistent homology plots of the eight illustrative data sets
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Fig. 5 Comparison of the convex hull and the boundaries learned by the one-class SVMs

the “box” case study). Notably, the one-class SVM is more stringent in these cases

compared methods that rely on the distance to the closest training data points (Teixeira

et al. 2006; Rall et al. 2019).

3.3 Optimization results

We minimize the prediction of the eight trained ANNs subject to the convex hull or

the one-class SVM as constraints. Table 2 shows the optimal solution points, x
∗, and

objective function values, fANN(x∗), for the problem with convex hull and one-class

SVM as constraints.
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Table 2 The table compares the global optimal solutions with convex hull and one-class SVMs (SVMs) as

constraints. The optimal solution point is given by x∗ and the objective function value is given by f ∗
ANN.

Also, we provide the error of the data-driven model at the optimal solution Δ = | f ∗
ANN − fPeaks(x∗)|. The

reference solution point shows the optimal solution when considering the underlying function fPeaks as the

objective with the one-class SVM constraint

Case study Convex hull One-class SVM Reference

x∗ f ∗
ANN Δ x∗ f ∗

ANN Δ x∗

Banana (0.1, 2.0) −5.2 8.52 (0.3,−1.6) −4.3 0.11 (0.2, −1.6)

Two circles (−1.5, 1.5) −5.1 3.65 (1.0, 3.7) −4.8 0.01 (1.3, 3.7)

Box (0.2, −1.9) −5.4 2.14 (0.3,−1.5) −4.5 0.07 (0.2, −1.5)

Box w/ hole (0.2, 3.6) −6.4 1.65 (0.5, 3.2) −4.8 0.70 (0.2, −1.6)

Circle w/ hole (−1.5, 3.5) −5.0 0.41 (0.1, 3.6) −4.6 0.02 (0.2, 3.6)

Two ovals (−1.3, 0.4) −3.5 0.13 (−1.3, 0.4) −3.5 0.13 (−1.3, 0.4)

Oval (1.3, 3.5) −4.6 0.13 (0.2, −1.6) −4.3 0.14 (0.2, −1.6)

Box2 (0.1, −1.7) −4.2 0.05 (2.8, 2.9) −3.8 0.05 (2.9, 2.9)

The optimal objective function values of the convex hull approach are lower than the

ones with the one-class SVM for all case studies because the convex hull overestimates

the validity domain. This overestimation can lead to large errors at the optimal solution

points. For the “banana” case study, the optimal solution found by the convex hull

approach is outside the validity domain but at the boundary of the convex hull (see

Table 2). This leads to a wrongly estimated objective values by the ANN of −5.2 with

an absolute error of 8.52. In contrast, the one-class SVM models the validity domain

accurately and yields an optimal solution of −4.3 with an absolute error of 0.11. Also,

the solution point found by the ANN model with the one-class SVM constraint is

close to the reference solution where the learned peaks function is optimized subject

to the SVM constraint. Similarly, the one-class SVM leads to more reliable results in

the data sets “two circles”, “box w/ holes”, and “circle w/ holes”. Interestingly, the

convex hull approach also leads to a substantial prediction error in the “box” case

study while the one-class SVM models the validity domain accurately. This highlights

the risk of using the convex hull approach in the presence of noise. Note that methods

which rely on the distance to the closest training data points face similar issues.

In Table 3, we provide the CPU times for optimization with one-class SVMs embed-

ded. Using the FS formulation, BARON and MAiNGO perform similarly and solve

most problems in the a few hundred CPU seconds. The RS formulation outperforms

the FS formulation on all problem instances. In BARON, the speedup factor between

the RS and the FS formulation ranges from 5 to over 14. In comparison, the speedup

factor between the RS and FS in MAiNGO ranges between 583 to over 3226. This is

in agreement with our previous studies where the McCormick relaxations in the RS

lead to smaller subproblems compared to the auxiliary variable method (see Sect. 2.3).

In Table 4, we compare the computational performance for optimization with the

convex hull embedded. The CPU times with the convex hull are lower compared to

the ones with one-class SVMs. MAiNGO is substantially faster than BARON when

formulating the problem in the FS. On average, BARON requires about 83 s to solve
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Table 3 CPU times for optimization of the eight case studies with the one-class SVM as a constraint. The

table compares the FS and RS formulations for the BARON and MAiNGO solvers. Here, the data-driven

model (i.e., the ANN) and the one-class SVM are formulated in the RS and FS. The speed up factor (sp-f)

is given as the ratio between the FS and the RS solution times. Also, the number of support vectors (# Sup.

vec.) is shown as a measure for the problem complexity

Case study # Sup. vec. BARON MAiNGO

FS (s) RS (s) sp-f FS (s) RS (s) sp-f

Oval 48 158.2 35.0 5 197.2 0.20 986

Two circles 50 489.5 36.7 13 247.0 0.25 988

Box 52 346.6 25.8 13 139.9 0.24 583

Two ovals 58 341.3 38.6 9 433.2 0.22 1969

Banana 62 1000.0 70.6 > 14 416.7 0.19 2193

Box2 67 497.1 22.9 22 1000.0 0.31 > 3226

Box w/hole 81 1000.0 73.1 > 14 656.5 0.36 1823

Circle w/hole 103 1000.0 75.8 > 13 1000.0 0.75 > 1333

Table 4 CPU times for optimization of the eight case studies with the convex hull as a constraint. The table

compares the FS and RS formulations for the BARON and MAiNGO solvers. The speed up factor (sp-f) is

given as the ratio between the FS and the RS solution times. Also, the number of support vectors (# Sup.

vec.) is shown as a measure for the problem complexity

Case study # Sup. vec. BARON MAiNGO

FS (s) RS (s) sp-f FS (s) RS (s) sp-f

Oval 48 74.9 2.8 27 2.7 0.05 54

Two circles 50 46.4 3.5 13 2.4 0.09 27

Box 52 85.8 1.5 57 1.7 0.06 28

Two ovals 58 103.9 3.1 34 3.8 0.08 48

Banana 62 136.4 5.1 27 3.0 0.09 33

Box2 67 32.3 2.3 14 2.7 0.11 25

Box w/hole 81 51.3 3.5 15 2.4 0.08 30

Circle w/hole 103 130.2 4.1 32 3.1 0.11 28

the problem in the FS while MAiNGO requires only 3 s. The RS formulation again

outperforms the FS formulation for all problems. However, in this case, the speedup

factors are in the same order of magnitude for BARON and MAiNGO ranging between

13 and 54. It should be noted that the RS and the FS formulation of the convex hull

constrains are identical. Therefore, the difference is only due to the formulation of

the data-driven model in the objective function, i.e., the ANN (c.f. Schweidtmann and

Mitsos 2019).
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Fig. 6 Flowchart of the sulfur recovery unit process

4 Engineering application

We consider a sulfur recovery unit as a relevant engineering case study for our work

because a large data set of industry operating data is available online for this process.

The efficient recovery of sulfur in petroleum refineries from tail gas is important for

environmental reasons. The sulfur recovery unit process is illustrated in Fig. 6. The

process has two acid gases as inputs: the MAE gas stream is rich in hydrogen sulphide

(H2S) and comes from the gas washing plants. The SWS gas stream is rich in H2S and

ammonia and comes from a sour water stripping plant. In the sulfur recovery unit, the

acid gases are burnt via partial reaction with air in a two-chamber reaction furnace.

Then, the combustion product is further treated in two subsequent catalytic reactors

resulting in a tail gas stream that contains residuals of H2S and sulfur dioxide (SO2).

A detailed process description can be found in the literature (Fortuna et al. 2007).

A key issue of the sulfur recovery unit is the control of the secondary air flow to

ensure optimal conditions for the total removal of the sulfur compounds in the catalytic

converters. Previous works have investigated soft sensors for the tail gas concentrations

of hydrogen sulphide (H2S) and sulfur dioxide (SO2) using ANNs and implemented

those in industry for monitoring (Quek et al. 2000; Fortuna et al. 2003, 2007). In this

case study, we solve an open-loop control problem to find the optimal secondary air

flow rate. The objective is to minimize |cH2 S −2 ·cSO2 | such that the two reactants are

in stoichiometric proportion. Similar to the previous literature by Fortuna et al. (2003,

2007), we also train two ANNs to predict the concentrations:

cH2 S,k = f AN N ,H2 S

(

x1,k, x1,k−5, x1,k−7, x1,k−9, . . . x5,k, x5,k−5, x5,k−7, x5,k−9

)

,

cSO2,k = f AN N ,SO2

(

x1,k, x1,k−5, x1,k−7, x1,k−9, . . . x5,k, x5,k−5, x5,k−7, x5,k−9

)

,

where x1,k is the gas flow in the MEA zone, x2,k is the air flow in the MEA zone, x3,k

is the secondary air flow in the MEA zone, x4,k is the air flow in the SWS zone, x5,k is

the gas flow in the SWS zone at time step k. The SO2 ANN has one hidden layer with
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Fig. 7 Persistent diagram for of

the training data of the

engineering case study presented

in Sect. 4

eight neurons and the H2S ANN has two hidden layers with eight neurons each. The

data-driven models are trained on (scaled) industrial data collected at a plant located

in Priolo, Italy available at https://www.openml.org/d/23515. The data set includes a

time series with approximately 10,000 data samples and we use the first 90% of the

data for training. The control variable of the NMPC is the secondary air flow x3,k

while the other inputs are observable parameters. As the control is critical for process

safety, the validity limits of the data-driven model should be considered.

In order to analyze the topology of the 20-dimensional input training data set of

ANNs, we perform persistent homology. Due to the large number of data points, the

exact computation of the persistent diagram is expensive. We apply approximate sparse

filtration instead (Cavanna et al. 2015). The persistent diagram for this case study is

shown in Fig. 7. The diagram shows that there exist a number of holes in the data set

that persist over a long time span. Also, a separate cluster can be observed in the data.

This motivates the use of one-class SVM to obey validity limits of data-driven models.

As we have no physical model of the process available, the closed-loop performance

of the controller is not studied in this example. For illustration, we perform one step of

an open-loop controller for the secondary air flow x3,k . We select a random operating

point from the historic plant data (Table 5) and let the solver determine the optimal

control action. The problem is solved to global optimality within 0.33 CPU seconds

and identifies a control action x3,k = 0.266 that results in the desired stoichiometric

composition, i.e., |cH2 S − 2 · cSO2 | = 1.3 · 10−5. This engineering case study also

demonstrates the potential of the proposed method for NMPC. Note that determin-

istic global NMPC can become computationally expensive for long control horizons

and higher dimensional control vectors (Chachuat et al. 2006; Doncevic et al. 2020;

Kappatou et al. 2020).
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Table 5 Operating point of the

sulfur recovery unit that is

considered for the NMPC

optimization step

k k − 5 k − 7 k − 9

x1 0.627 0.6215 0.623 0.622

x2 0.770 0.769 0.754 0.769

x3 x3,k 0.174 0.192 0.198

x4 0.376 0.399 0.415 0.410

x5 0.513 0.512 0.511 0.504

5 Conclusion

Safety concerns and extrapolation issues often impede industrial applications of

machine learning models. We present a three-step approach to obey the validity limits

of data-driven models. First, we perform a data topology analysis using persistent

homology. Second, we model the validity domain of the data-driven model using

either the convex hull or a one-class SVM. Third, we perform deterministic global

optimization with the validity domain model as a constraint.

All used and developed methods are available open-source. Also, we currently

develop a Python interface for our solver MAiNGO. Thus, all methods can be applied

and further developed in academia and industry for free.

Our method has the potential to enhance safety, trust, and reliability of machine

learning approaches. Moreover, we demonstrate that persistent homology is a valuable

method for understanding the topology of data in high dimensional spaces. Besides

industry applications, promising future work also includes the application to opti-

mization problems occurring in molecular design where molecules are parameterized

through graph neural networks (Schweidtmann et al. 2020c) or autoencoders (Jin

et al. 2018). Also, time-dependent design space descriptions are desired in phar-

maceutics (von Stosch et al. 2020). The proposed method can also be extended by

considering and comparing other one-class classification methods. Finally, the exten-

sion of the presented method to adaptive space exploration would be promising future

work.
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