
Obfuscating Compute-and-Compare Programs under LWE

Daniel Wichs∗ Giorgos Zirdelis†

August 15, 2017

Abstract

We show how to obfuscate a large and expressive class of programs, which we call compute-and-
compare programs, under the learning-with-errors (LWE) assumption. Each such program CC[f, y] is
parametrized by an arbitrary polynomial-time computable function f along with a target value y and
we define CC[f, y](x) to output 1 if f(x) = y and 0 otherwise. In other words, the program performs
an arbitrary computation f and then compares its output against a target y. Our obfuscator satisfies
distributional virtual-black-box security, which guarantees that the obfuscated program does not reveal
any partial information about the function f or the target value y, as long as they are chosen from
some distribution where y has sufficient pseudo-entropy given f . We also extend our result to multi-bit
compute-and-compare programs MBCC[f, y, z](x) which output a message z if f(x) = y.

Compute-and-compare programs are powerful enough to capture many interesting obfuscation tasks
as special cases. This includes obfuscating conjunctions, and therefore we improve on the prior work
of Brakerski et al. (ITCS ’16) which constructed a conjunction obfuscator under a non-standard
“entropic” ring-LWE assumption, while here we obfuscate a significantly broader class of programs
under standard LWE. We show that our obfuscator has several interesting applications. For example,
we can take any encryption scheme and publish an obfuscated plaintext equality tester that allows
users to check whether a ciphertext decrypts to some target value y; as long as y has sufficient pseudo-
entropy this will not harm semantic security. We can also use our obfuscator to generically upgrade
attribute-based encryption to predicate encryption with one-sided attribute-hiding security, and to
upgrade witness encryption to indistinguishability obfuscation which is secure for all “null circuits”.
Furthermore, we show that our obfuscator gives new circular-security counter-examples for public-key
bit encryption and for unbounded length key cycles.

Our result uses the graph-induced multi-linear maps of Gentry, Gorbunov and Halevi (TCC ’15),
but only in a carefully restricted manner which is provably secure under LWE. Our technique is inspired
by ideas introduced in a recent work of Goyal, Koppula and Waters (EUROCRYPT ’17) in a seemingly
unrelated context.

1 Introduction

The goal of program obfuscation [Had00, BGI+01, GGH+13b] is to encode a program in a way that
preserves its functionality while hiding everything else about its code and its internal operation. Barak
et al. [BGI+01] proposed a strong security definition for obfuscation, called virtual black-box (VBB)
security, which (roughly) guarantees that the obfuscated program can be simulated given black-box
access to the program’s functionality. Unfortunately, they showed that general purpose VBB obfuscation
is unachievable. This leaves open two possibilities: (1) achieving weaker security notions of obfuscation
for general programs, and (2) achieving virtual black box obfuscation for restricted classes of programs.

Along the first direction, Barak et al. proposed a weaker security notion called indistinguishability
obfuscation (iO) which guarantees that the obfuscations of two functionally equivalent programs are
indistinguishable. In a breakthrough result, Garg, Gentry, Halevi, Raykova, Sahai andWaters [GGH+13b]

∗Northeastern University. E-mail: wichs@ccs.neu.edu.
†Northeastern University. E-mail: zirdelis.g@husky.neu.edu.

1

showed how to iO-obfuscate all polynomial-size circuits using multi-linear maps [GGH13a]. Since then,
there has been much follow-up work on various constructions and cryptanalysis of multi-linear maps,
constructions and cryptanalysis of iO using multi-linear maps, and various applications of iO. At this
point, we have heuristic candidate constructions of iO which we do not know how to attack, but we
lack a high degree of confidence in their security and don’t have a good understanding of the underlying
computational problems on which such schemes are based. It remains a major open problem to construct
iO under standard well-studied assumptions.

Along the second direction, several interesting but highly restricted classes of programs have been
shown to be virtual black-box obfuscatable. This includes constructions of (multi-bit) point function
obfuscators [Can97, Wee05, CD08, Zha16] in the random oracle model or under various (semi-)standard
assumptions, hyperplane obfuscators assuming strong DDH [CRV10], and very recently conjunction ob-
fuscators, first using multi-linear maps [BR13] and later a variant of Ring LWE called “entropic Ring
LWE” [BVWW16]. It remains an open problem to understand which classes of programs can we even
hope to VBB obfuscate to avoid the impossibility results of Barak et al.

In summary, prior to this work, we did not know how to achieve any meaningful definition of obfus-
cation for any expressive class of programs under any standard assumption.

1.1 Our Results

In this work, we show how to obfuscate a large and expressive class of programs which we call compute-and-
compare programs, achieving a strong notion of security called distributional virtual black box (D-VBB),
under the learning with errors (LWE) assumption. This is the first such result that allows us obfuscate
complex programs under a standard assumption.

A compute-and-compare program CC[f, y] is parameterized by a function f : {0, 1}ℓin → {0, 1}ℓout ,
represented as a circuit or a Turing Machine, along with a target value y ∈ {0, 1}ℓout and we define
CC[f, y](x) = 1 if f(x) = y and CC[f, y](x) = 0 otherwise. In other words, the program performs
an arbitrary computation f and then compares the output against a target y. The D-VBB definition
of security says that an obfuscation of CC[f, y] hides all partial information about the function f and
the target value y as long as they are chosen from some distribution where y has sufficient min-entropy
or (HILL) pseudo-entropy given f .1 We can relax this to only requiring that y is computationally
unpredictable given f , but in that case we also need an additional mild assumption that there exist
pseudo-random generators for unpredictable sources which holds e.g, in the random oracle model or
assuming the existence of extremely lossy functions (ELFs) [Zha16]. All our results hold in the presence
of auxiliary input, as long as y remains sufficiently unpredictable even given f and the auxiliary input.

We also extend our result to multi-bit compute-and-compare programs MBCC[f, y, z](x) which out-
put a message z if f(x) = y and otherwise output ⊥. In this case we ensure that the obfuscated program
does not reveal anything about f, y, z as long as they are chosen from some distribution where y has
sufficient pseudo-entropy (or is computationally unpredictable) even given f, z.

When the function f is represented as a Turing Machine with some fixed run-time t, our obfuscator
is succinct meaning that the run-time of our obfuscator and the size of the obfuscated program only
have a poly-logarithmic dependence on t. To get this we need to further rely on true (non-leveled) fully
homomorphic encryption (FHE) which requires a circular security assumption. Assuming only leveled
FHE, which we have under standard LWE, we get a weakly succinct scheme where the run-time of the
obfuscator depends polynomially on log t, d, where d is the depth of the circuit computing f .

Obfuscating Evasive Programs. We note that compute-and-compare programs CC[f, y] where y
has pseudo-entropy given f are an example of evasive programs, meaning that for any input x chosen
a-priori, with overwhelming probability the program outputs 0. When obfuscating evasive programs,

1The HILL pseudo-entropy must be at least λε, where λ is the security parameter and ε > 0 is an arbitrary constant.

2

D-VBB security ensures that one cannot find an input on which it evaluates to anything other than 0.
This may seem strange at first; what is the point of creating the obfuscated program and ensuring that
it functions correctly on all inputs if users cannot even find any input on which it does not output 0?
However, the point is that there may be some users with additional information about y (for whom it
does not have much pseudo-entropy) and who may therefore be able to find inputs on which the program
outputs 1. In other words, the correctness of obfuscation is meaningful for users for whom y does not
have much pseudo-entropy (but for such users we do not get any meaningful security), while security is
meaningful for users for whom y has sufficient pseudo-entropy (but for such users correctness is not very
meaningful since they will always get a 0 output). The work of [BBC+14] shows that one cannot have
(D-)VBB obfuscation for all evasive functions (with auxiliary input) and our work is the first to identify
a large sub-class of evasive functions for which it is possible. We show that this type of obfuscation is
already powerful and has several interesting applications.

1.2 Applications

Obfuscation for compute-and-compare programs is already sufficiently powerful and expressive to capture
many interesting obfuscation tasks and gives rise to new applications as well as a simple and modular
way to recover several prior results.

Conjunctions and Affine Testers. We can think of conjunctions as a restricted special case of
compute-and-compare programs CC[f, y] where the function f(x) simply outputs some subset of the
bits of x. Therefore our result improves on the work of [BVWW16] which constructed an obfuscator for
conjunctions under a non-standard entropic Ring-LWE assumption, whereas here we get a conjunction
obfuscator under standard LWE as a special case of our result. Moreover, our obfuscator also achieves a
stronger notion of security for a broader class of distributions than the previous constructions.

As another special case which generalizes conjunctions, we can obfuscate arbitrary affine testers which
are parameterized by a matrix A and a vector y and test whether an input x satisfies Ax

?
= y, where

security is guaranteed as long as y has sufficient pseudo-entropy given A.

Secure Sketches. We also show that our obfuscator allows us to convert any secure sketch [DORS08]
into a (computational) private secure sketch [DS05]. A secure sketch SS(y) of a string y allows us to
recover y given any string x which is close to y (e.g., in hamming distance) without revealing all the
entropy in y. However, the sketch may reveal various sensitive partial information about y. We show
how to convert any secure sketch into a private one, which does not reveal any partial information, by
obfuscating a program that has SS(y) inside it.

Plaintext Equality Tester. Using our obfuscator, we can take an arbitrary encryption scheme and
obfuscate a plaintext equality tester CC[Decsk, y] which has a hard-coded secret key sk and a target
plaintext value y and tests whether a given ciphertext ct decrypts to Decsk(ct) = y. Or, more generally,
we can evaluate an arbitrary polynomial-time function g on the plaintext and test if g(Decsk(ct)) = y
by obfuscating CC[g ◦ Decsk, y]. As long as the target y has sufficient pseudo-entropy, our obfuscated
plaintext equality tester can be simulated without knowing sk and therefore will not harm the semantic
security of the encryption scheme. The idea of obfuscating a plaintext-equality tester is implicitly behind
several of our other applications, and we envision that more applications should follow.

Attribute Based Encryption to One-Sided Predicate Encryption. We show that our obfuscator
allows us to generically upgrade attribute-based encryption (ABE) into predicate encryption (PE) with
one-sided attribute-hiding security, meaning that the attribute is hidden from any user who is not qualified
to decrypt. Although the recent work of Gorbunov, Vaikuntanathan and Wee [GVW15] constructed such

3

predicate encryption for all circuits under LWE by cleverly leveraging a prior construction of attribute-
based encryption [BGG+14] under LWE, it was a fairly intricate non-generic construction with a subtle
analysis, while our transformation is simple and generic. For example, it shows that any future advances
in attribute-based encryption (e.g., getting rid of the dependence on circuit depth in encryption efficiency
and ciphertext size) will directly translate to predicate encryption as well.

Witness Encryption to Null iO. A witness encryption scheme [GGSW13] allows us to use any NP
statement x as a public-key to encrypt a message m. Any user who knows the corresponding witness w for
x will be able to decrypt m, but if x is a false statement then m is computationally hidden. We show that
our obfuscator for compute-and-compare programs allows us to convert any witness encryption (WE)
into an obfuscation scheme that has correctness for all circuits and guarantees that we cannot distinguish
the obfuscations of any two null circuits C,C ′ such that C(x) = C ′(x) = 0 for all inputs x. We call this
notion null iO or niO. We previously knew that iO implies niO which in turn implies WE, but we did
not know anything about the reverse directions. Our result shows that under the LWE assumptions, WE
implies niO. It remains as a fascinating open problem whether niO implies full iO.

Circular Security Counter-Examples. Finally, we show that our obfuscator gives us new counter-
examples to various circular security problems.

Firstly, it gives us a simple construction of a public-key bit-encryption scheme which is semantically
secure but is not circular secure: given ciphertexts encrypting the secret key one bit at a time, we
can completely recover the secret key. This means that, under the LWE assumption, semantic security
does not generically imply circular security for all public-key bit-encryption schemes. Previously, we
only had such counter-examples under non-standard assumptions (multi-linear maps or obfuscation)
[Rot13, KRW15]. The very recent work of Goyal, Koppula and Waters [GKW17b] provided such a
counter-example for symmetric-key bit-encryption under LWE. Using our obfuscator, we get a simple
and modular counter-example for public-key bit-encryption under LWE.

Secondly, it gives us a simple construction of a public-key bit-encryption scheme which is semantically
secure but not circular secure for key cycles of any unbounded polynomial length ℓ. That is, we construct
a single scheme such that, given a cycle Encpk1(sk2),Encpk2(sk3), . . . ,Encpkℓ−1

(skℓ),Encpkℓ(sk1) of any
arbitrary polynomial length ℓ, we can completely recover all of the secret keys. Previously, we had
such results for bounded-length cycles under LWE [AP16, KW16] or unbounded-length cycles under iO
[GKW17a]. Using our obfuscator, we get a result for unbounded-length cycles under LWE. Furthermore,
our scheme does not require any common public parameters.

Thirdly, we consider a compiler proposed by Black, Rogaway, and Shrimpton [BRS03] which trans-
forms any semantically secure scheme into a circular secure (and even Key-Dependent Message secure)
one in the random-oracle model. We show that this compiler fails in the standard model: under the LWE
assumption, there exists a semantically secure scheme such that, when we apply the transformation of
[BRS03] and replace the random oracle with any hash function, the resulting scheme fails to be circular
secure.

1.3 Concurrent and Independent Work of [GKW17c]

The concurrent and independent work of Goyal, Koppula and Waters [GKW17c] achieves essentially
the same results as this work modulo small differences in presentation and focus. They define a notion
of “lockable obfuscation” which (in our language) is an obfuscation scheme for multi-bit compute and
compare programs MBCC[f, y, z] where y is uniformly random and independent of f, z. While we allow
for more general distributions, where y only has pseudo-entropy/unpredictability given f, z, this can
be achieved generically from lockable obfuscation using a pseudorandom generator that works with any
high pseudo-entropy seed. Indeed, the main constructions in both works are essentially identical. Both
works also present applications of this type of obfuscation to one-sided predicate encryption, null iO, and

4

circular security counter-examples. Our work also shows applications to private secure sketches and to
other obfuscation tasks such as obfuscating conjunctions and affine spaces while the work of [GKW17c]
gives new results showing the uninstatiability of random oracle schemes.

1.4 Our Techniques

Our result relies on the graph induced multilinear maps of Gentry, Gorbunov and Halevi [GGH15]. In
the original work [GGH15], such maps were used in a heuristic manner to construct iO and various other
applications, but there was no attempt to define or prove any stand-alone security properties of such maps.
The subsequent work of [CLLT16] came up with attacks on various uses of such multilinear maps, showing
that some of the applications in [GGH15] are insecure. However, a series of works also showed that certain
highly restricted uses of these multilinear maps are actually provably secure under the LWE assumption.
In particular, the works of [BVWW16, KW16, AP16, GKW17b, CC17] all either implicitly or explicitly
rely on various provably secure properties of the [GGH15] multilinear map. Following [BVWW16] we
refer to a restricted version of the [GGH15] scheme as a directed encoding.

Our particular use of directed encodings is inspired by the recent work of Goyal, Koppula and Wa-
ters [GKW17b] which studied the seemingly unrelated problem of circular security counterexamples for
symmetric-key bit-encryption. As one of the components of their solution, they described a clever way of
encoding branching programs. We essentially use this encoding as the core component of our obfuscation
construction. The work of [GKW17b] did not explicitly define or analyze any security properties of their
encoding and did not draw a connection to obfuscation. Indeed, as we will elaborate later, there are
major differences between the security properties of the encoding that they implicitly used in the context
of their construction and the ones that we rely on in our work. We show how to use this encoding to get a
“basic obfuscation scheme” for compute-and-compare program CC[f, y] where f is a branching program
and y has very high pseudo-entropy. We then come up with generic transformations to go from branching
programs to circuits or Turing Machines and to reduce the requirements on the pseudo-entropy of y to
get our final result.

Directed Encodings. A directed encoding scheme contains public keys Ai ∈ Z
n×m
q . We define an

encoding of a “small” secret S ∈ Z
n×n
q along the edge Ai → Aj as a “small” matrix C ∈ Z

m×m
q such that

AiC = SAj + E where E ∈ Z
n×m
q is some “small” noise. For simplicity, we will just write AiC ≈ SAj

where the ≈ hides “small” noise. Creating such an encoding requires knowing a trapdoor for the public
key Ai.

Given an encoding C1 of a secret S1 along an edge A1 → A2 and an encoding C2 of a secret S2 along
an edge A2 → A3, the value C1 ·C2 is an encoding of S1 ·S2 along the edge A1 → A3 with slightly larger
noise. More generally, given encodings Ci of secrets Si along edges Ai → Ai+1, the value C∗ =

∏L
i=1Ci

is an encoding of S∗ =
∏L

i=1 Si along the edge A1 → AL+1 meaning that A1C
∗ ≈ S∗AL+1.

We can also encode a secret S along multiple edges {A1 → A′1 , . . . , Aw → A′w} simultaneously by
sampling a matrix C ∈ Z

m×m
q such that

A1

. . .
Aw

C =

S ·A′1 +E1

. . .
S ·A′w +Ew

This can be done the same way as in the single-edge case given the trapdoor for the matrix B =

A1

. . .
Aw

with dimensions (n ·w)×m. The resulting encoding C satisfies AjC ≈ SA′j for all j ∈ [w] and therefore
is an encoding of S along each one of the edges Aj → A′j separately.

5

Encoding Branching Programs. As a building block, we define the notion of “encoding” a permuta-
tion branching program P . This encoding is not an obfuscation scheme yet, since it does not allow us to
evaluate the encoded program and learn the output. However, it’s a useful first step toward obfuscation.

We think of a boolean permutation branching program P of input size ℓin, length L and width w, as
a graph containing (L+ 1) ·w vertices that are grouped into (L+ 1) levels of w vertices each; we denote
these vertices by (i, j) for i ∈ {1, . . . , L+ 1}, j ∈ {0, . . . , w − 1}. Each level i ≤ L is associated with two
permutations πi,0, πi,1 over {0, . . . , w − 1}. For each vertex (i, j) at level i ≤ L we use the permutations
to define two outgoing edges labeled with 0 and 1 that respectively go to vertices (i + 1, πi,0(j)) and

(i+1, πi,1(j)) at level i+1. To evaluate the branching program P on an input x = (x1, . . . , xℓin) ∈ {0, 1}ℓin
we start at the vertex (1, 0) and at each level i ∈ [L] we follow the edge labeled with the bit x(i mod ℓin).
At the final level L + 1, we end up at a vertex (L + 1, b) where b ∈ {0, 1} is the output of the program
P (x). See Figure 1.4 for an example. By Barrington’s theorem [Bar89], any NC1 circuit can be converted
into a branching program with constant-width w = 5 and polynomial-length.2

start
output 0

output 1

(1,0)

(1,1)

(1,2)

(2,0)

(2,1)

(2,2)

(3,0)

(3,1)

(3,2)

(4,0)

(4,1)

(4,2) 𝑥1 𝑥2 𝑥1 Input bit:

Figure 1: Example of a branching program of length L = 3, width w = 3, and input size ℓin = 2. Solid
edges are labeled with 1 and the dashed edges with 0. For example, on input x = 10 (i.e., x1 = 1, x2 = 0)
the program evaluates to 0. (Technically, the above simple example is not a legal branching program since
on input x = 01 it does not evaluate to 0 or 1, but it is useful to illustrate the concept.)

To encode a branching program, we associate a public key Ai,j with each vertex (i, j) of the branch-
ing program. For each level i ∈ [L] we pick two random secrets Si,0,Si,1 and create two encodings
Ci,0,Ci,1 where Ci,b encodes Si,b simultaneously along the w edges {Ai,0 → Ai+1,πi,b(0) , . . . , Ai,w−1 →
Ai+1,πi,b(w−1)} that are labeled with the bit b. For any input x ∈ {0, 1}ℓin we can then “evaluate” the
encoded branching program on x to get:

D := A1,0 ·
(

L∏

i=1

Ci,x(i mod ℓin)

)
satisfying D ≈

(
L∏

i=1

Si,x(i mod ℓin)

)
·AL+1,P (x).

Note that this “evaluation” does not allow us to recover the output P (x), but only gives us an LWE
sample with respect to the matrix AL+1,P (x) which depends on the output.

We can also encode a branching program P with ℓout-bit output, by thinking of it as a sequence of
boolean branching programs P = (P (1), . . . , P (ℓout)) for each output bit, where all the programs have a
common length L, width w, and access pattern in which the i’th level reads the input bit (i mod ℓin). We
essentially encode each boolean program P (k) separately as described above with fresh and independent

public keys A
(k)
i,j but we use the same secrets Si,0,Si,1 across all programs. This allows us to evaluate

2We depart from the usual definition of branching programs by insisting that the input-bits are accessed in a fixed order
where step i reads bit i mod ℓin. However, this is without loss of generality since any branching program that reads the
input in an arbitrary order can be converted into one of this form at the expense of increasing the length by a factor of ℓin.

6

the entire sequence of encoded programs on some input x and derive a sequence of LWE samples D(k) ≈
S∗ ·A(k)

L+1,P (k)(x)
with a common secret S∗ =

(∏L
i=1 Si,x(i mod ℓin)

)
. In other words, for each output bit k

we get an LWE sample with the secret S∗ and one of two possible matrices A
(k)
L+1,0 or A

(k)
L+1,1 depending

on the value of that bit. We show that under the LWE assumption the above encoding is “semantically
secure”, meaning that it completely hides the program P .

From Encoding to Obfuscation. We use the above idea to obfuscate the compute-and-compare
program CC[f, y] where the function f : {0, 1}ℓin → {0, 1}ℓout can be computed via a polynomial-size
branching program P = (P (1), . . . , P (ℓout)) and the target value is y ∈ {0, 1}ℓout . To do so, we simply

encode the program P as described above, but instead of choosing all of the public keys A
(k)
i,j randomly

we choose the keys at the last level L+1 to satisfy
∑ℓout

k=1A
(k)
L+1,yk

= 0. If y has sufficiently large (pseudo-
)entropy given f than, by the leftover hash lemma, this is statistically close to choosing the public keys
at random and therefore, by the semantic security of the encoding scheme for branching programs, the
obfuscation does not reveal any partial information about f or y. To evaluate the obfuscated program on

x, we evaluate the sequence of encoded branching programs to get LWE samples D(k) ≈ S∗ ·A(k)

L+1,P (k)(x)

and check if
∑ℓout

k=1D
(k) ≈ 0.

This gives us our basic obfuscation scheme but several issues remain. Firstly, it only works for functions
f which can be represented by polynomial length branching programs rather than all polynomial size
circuits or polynomial time Turing Machines. Secondly, in order to set the parameters in a way that
balances correctness and security, we would need y to have “very large” pseudo-entropy which depends
polynomially on the length of the branching program L and the security parameter λ. Ideally, we
would like to only require that y has some non-trivial pseudo-entropy λε or, better yet, just that it is
computationally unpredictable given f . We show how to solve these problems via generic transformations
described below.

Relation to [GKW17b]. The above technique for encoding branching programs follows closely from
ideas developed by Goyal, Koppula and Waters [GKW17b] in the completely unrelated context of con-
structing circular-security counter-examples for bit-encryption. The technique there is used as part of a
larger scheme and is not analyzed modularly. However, implicitly, their work relies on entirely different
properties of the encoding compared to our work. In [GKW17b], the branching-programs being encoded
are public and there is no requirement that the scheme hides them in any way. Instead, that work relies

on hiding the correspondence between the components C
(k)
i,b of the encoded branching programs and the

input bits b that they correspond to. Their scheme gives out various such components at different times
and if a user collects ones corresponding to an input x on which f(x) = y this can be efficiently checked.

In our work, we make the correspondence between the components C
(k)
i,b and the bits b public, in order

to allow the user to evaluate the encoded program on arbitrary inputs, but rely on hiding the actual
branching program being encoded.

Upgrading Functionality and Security. Our basic obfuscation scheme for compute-and-compare
programs CC[f, y] only works for functions f represented by branching programs of some polynomial
length L and values y with very large pseudo-entropy that exceeds some polynomial bound in the security
parameter λ and the branching program length L. We show a series of generic transformations to upgrade
the functionality and security of our scheme.

Firstly, we can reduce the requirement on the pseudo-entropy of y to only exceeding some small
threshold λε for some constant ε > 0. We do so by applying a pseudo-random generator (PRG) G and
using our obfuscator on the program CC[G ◦ f,G(y)]. We need an injective PRG in NC1 that takes as
input any seed y with pseudo-entropy λε and outputs an arbitrarily large number of pseudo-random bits.
Luckily, we have such PRGs under LWE.

7

Secondly, we can “bootstrap” our obfuscator for branching programs into one for circuits or Turing
Machines by using a (leveled) fully homomorphic encryption (FHE) scheme with decryption in NC1,
which is known to exist under LWE. A similar type of bootstrapping was used to convert iO for branching
programs into iO for circuits in [GGH+13b], although in our scenario we can get away with an even
simpler variant of this trick. To obfuscate the program CC[f, y] where f is an arbitrary circuit or Turing
Machine, we first encrypt f via the FHE scheme and make the ciphertext ct← Encpk(f) public. We then
obfuscate the program CC[Decsk, y] which is essentially a “plaintext-equality tester” that checks if an
input ciphertext decrypts to y. Since Decsk is in NC1, we can rely on our basic obfuscation construction
for branching programs to accomplish this. To evaluate the obfuscated program on an input x we first
perform a homomorphic computation over ct to derive a ciphertext ct∗ = Encpk(f(x)) and then run the
obfuscated plaintext-equality tester on ct∗. To argue security, notice that when y has sufficient pseudo-
entropy given f then the obfuscated program CC[Decsk, y] can be simulated without knowledge of sk
and therefore it hides sk, y. We can then rely on the semantic security of the encryption scheme to also
argue that the ciphertext ct also hides f . If the function f is represented as a Turing Machine then our
obfuscator is succinct since it only encrypts f but doesn’t need to run it at obfuscation time. Summarizing,
the above approach generically transforms a compute-and-compare obfuscator for branching programs
into one for circuits and Turing Machines.

Thirdly, we can reduce the requirement on the distribution of y even further and only insist that it
is computationally unpredictable given f (for example, f may include a one-way permutation of y in its
description so that y has no pseudo-entropy given f but still remains computationally unpredictable). To
do so, we use the same trick as previously by taking a PRGG and obfuscating the programCC[G◦f,G(y)],
but now we need an injective PRG that converts any computationally unpredictable source y into a long
pseudo-random output (but we no longer need the PRG to be in NC1). Such PRGs exist in the random
oracle model or assuming the existence of extremely lossy functions (ELFs) [Zha16], which in turn exists
assuming exponential security of the DDH in elliptic curve groups.

Lastly, we construct an obfuscator for multi-bit compute-and-compare programs MBCC[f, y, z](x)
which output a message z if f(x) = y and otherwise output ⊥. We again rely on a PRG G and interpret
G(y) as outputting a series of blocks G0(y), G1(y) . . . , Gℓmsg

(y) where ℓmsg := |z| and each block is
sufficiently large. To obfuscate MBCC[f, y, z] we instead obfuscate a series of single-bit compute-and-
compare programs P0 = CC[G0◦f,G0(y)], P1 = CC[G1◦f, u1], . . . , Pℓmsg

= CC[Gℓmsg
◦f, uℓmsg

] where we

set ui := Gi(y) if zi = 1 and ui := Gi(y) (denoting the bit-wise complement) if zi = 0. Let (P̃0, . . . , P̃ℓmsg
)

be the obfuscated programs. On input x we can then evaluate P̃0(x) and if it outputs 0 we output ⊥.
Otherwise we can recover each bit zi of z by setting zi := P̃i(x). Security of the multi-bit obfuscator
follows from the security of the single-bit one and the security of the PRG.

2 Notation and Preliminaries

We use the notation [n]
def
= {1, . . . , n}. For a distribution or a random variable X, we let x ← X denote

the process of sampling x according to X. Similarly for a randomized algorithm f we let y ← f(x) denote

the process of running f(x) with fresh randomness and taking y as the output. For a set X we let x
$← X

denote sampling x uniformly at random from X .

Statistical Distance and Entropy. We write x← S when sampling x uniformly at random from the
finite set S, and x ← A when sampling x using the probabilistic algorithm A(·). For random variables
X,Y with support X ,Y respectively, we define the statistical distance

SD(X,Y)
def
=

1

2

∑

u∈X∪Y

|Pr[X = u]− Pr[Y = u]| .

8

We write X
s≈ε Y if SD(X,Y) ≤ ε. We say that two ensembles of random variables X = {Xλ}, Y = {Yλ}

are statistically indistinguishable, denoted by X
s≈ Y , if SD(Xλ, Yλ) = negl(λ). The min-entropy of a

random variable X, denoted as H∞(X), is defined as H∞(X)
def
= − log(maxx Pr[X = x]). The (average)

conditional min-entropy of a random variable X conditioned on a correlated variable Y , denoted as
H∞(X|Y), is defined as

H∞(X|Y)
def
= − log

(
E

y←Y

[
max
x

Pr[X = x|Y = y]
])

.

The optimal probability of an unbounded adversary guessingX given the correlated value Y , is 2−H∞(X|Y).
We rely on the following two lemmas.

Lemma 2.1 (Leftover Hash Lemma [ILL89, DORS08]). Let H be a universal hash function family
consisting of function h : X → Y. Let X,Z be random variables such that H∞(X|Z) ≥ log |Y|+2 log(1/ε)
for some ε > 0 and X is supported over X . Let H,Y be uniformly random and independent over H,Y
respectively. Then SD((H,H(X), Z) , (H,Y, Z)) ≤ ε.

Lemma 2.2 ([DORS08]). Let X,Y, Z be (possibly dependent) random variables, where the support of Z
is of size ≤ 2ℓ. Then H∞(X|Y, Z) ≥ H∞(X|Y)− ℓ.

Indistinguishability, Pseudo-entropy and Unpredictability. We say that two ensembles of ran-

dom variables X = {Xλ}, Y = {Yλ} are computationally indistinguishable, denoted by X
c≈ Y , if for all

(non-uniform) PPT distinguishers A we have |Pr[A(1λ, Xλ) = 1] − Pr[A(1λ, Yλ) = 1]| = negl(λ). We
define the conditional pseudo-entropy of X conditioned on Y as follows.

Definition 2.3 (Conditional (HILL) Pseudo-Entropy [HILL99, HLR07]). Let X = {Xλ}, Y = {Yλ}
be ensembles of jointly distributed random variables. We define the conditional pseudo-entropy of X
conditioned on Y to be at least ℓ(λ), denoted by HHILL(X|Y) ≥ ℓ(λ) if there exist some X ′ = {X ′λ} jointly
distributed with Y such that (X,Y)

c≈ (X ′, Y) and H∞(X ′λ|Yλ) ≥ ℓ(λ).

Definition 2.4 (Computational Unpredictability). Let X = {Xλ}, Y = {Yλ} be (possibly dependent)
ensembles of random variables. We say that X is computationally unpredictable given Y if for all
(non-uniform) PPT adversaries A we have Pr[A(1λ, Yλ) = Xλ] = negl(λ).

2.1 Lattices and LWE

Notation. For any integer q ≥ 2, we let Zq denote the ring of integers modulo q. We represent
elements of Zq as integers in the range (−q/2, q/2] and define the absolute value |x| of x ∈ Zq by taking
its representative in this range. For a vector c ∈ Z

n
q we write ||c||∞ ≤ β if each entry ci in c satisfies

|ci| ≤ β. Similarly, for a matrix C ∈ Z
n×m
q we write ||C||∞ ≤ β if each entry ci,j in C satisfies |ci,j | ≤ β.

We say that a distribution χ over Zq is β-bounded if Pr[|x| ≤ β : x ← χ] = 1. By default, all vectors
are assumed to be row vectors.

Lemma 2.5 ([Ajt99, GPV08, MP12]). There exist PPT algorithms TrapGen, SamPre, Sam with the fol-
lowing syntax:

• (B, td)← TrapGen(1k, 1m, q) samples a matrix B ∈ Z
k×m
q with a trapdoor td.

• C← Sam(1m, q) samples a “small” matrix C ∈ Z
m×m
q .

• C ← SamPre(B,B′) gets B,B′ ∈ Z
k×m
q along with a trapdoor td for B and samples a “small”

matrix C ∈ Z
m×m
q such that BC = B′.

9

Given integers k ≥ 1, q ≥ 2 there exists some m∗ = O(k log q), γ = O(k
√
log q) such that for all m ≥ m∗

we have:

1. For any (B, td) ← TrapGen(1k, 1m, q), B′ ∈ Z
k×m
q , C ← SamPre(B,B′, td) we have BC = B′ and

||C||∞ ≤ γ (with probability 1).

2. We have the statistical indistinguishability requirement B
s≈ B′

where (B, td)← TrapGen(1k, 1m, q), B′
$← Z

k×m
q .

3. We have the statistical indistinguishability requirement (B, td,C)
s≈ (B, td,C′)

where (B, td)← TrapGen(1k, 1m, q), C← Sam(1m, q), B′
$← Z

k×m
q , C′ ← SamPre(B,B′, td).

All statistical distances are negligible in k and therefore also in the security parameter λ when k = λΩ(1).

Learning with Errors (LWE). The learning with errors (LWE) assumption was introduced by Regev
in [Reg05]. We define several variants.

Definition 2.6 ([Reg05]). Let n, q be integers and χ a probability distribution over Zq, all parameterized
by the security parameter λ. The (n, q, χ)-LWE assumption says that for all polynomial m the following
distributions are computationally indistinguishable

(A, sA+ e)
c≈ (A,u) : A

$← Z
n×m
q , s

$← Z
n
q , e← χm,u

$← Z
m
q .

The work of [ACPS09] showed that the (n, q, χ)-LWE assumption above also implies security when
the secret is chosen from the error distribution χ:

(A, sA+ e)
c≈ (A,u) : A

$← Z
n×m
q , s

$← χn, e← χm,u
$← Z

m
q .

Via a simple hybrid argument, we also get security when S is a matrix rather than a vector:

(A,SA+E)
c≈ (A,U) : A

$← Z
n×m
q ,S

$← χn×n,E← χn×m,U
$← Z

n×m
q (1)

The above variant of (n, q, χ)-LWE is the one we will rely on in this work.
The works of [Reg05, Pei09, BLP+13] show that the LWE assumption is as hard as (quantum)

solving GapSVP and SIVP under various parameter regimes. In particular, we will assume for any
polynomial p = p(λ) there exists some polynomial dimension n = n(λ), a modulus q = q(λ) = 2λ

O(1)
,

and a distribution χ = χ(λ) which is β = β(λ) bounded such that q > (λ · β)p and the (n, q, χ)-LWE
assumption holds. Furthermore we can ensure that H∞(χ) ≥ ω(log λ). We refer to the above as the
LWE assumption when we don’t specify parameters. This is known to be as hard as solving GapSVP
and (quantum) SIVP with sub-exponential approximation factors, which is believed to be hard.

Lastly, we will rely on the following fact.

Claim 2.7. If χ is a distribution over Zq such that H∞(χ) ≥ ω(log λ) then for any polynomial n = n(λ),
the probability that S← χn×n is invertible is 1− negl(λ).

2.2 Fully Homomorphic Encryption

A fully homomorphic encryption (FHE) scheme FHE = (KeyGen, Enc, Dec, Eval) consists of procedures:

• (pk, sk)← KeyGen(1λ) generates a public-key pk and a secret key sk.

• ct← Encpk(b) encrypts a bit b ∈ {0, 1} under public-key pk to get a ciphertext ct.

• b = Decsk(ct) decrypts a ciphertext ct using the secret key sk.

10

• ct∗ = Evalpk(f, ct1, . . . , ctn) homomorphically evaluates a circuit f : {0, 1}n → {0, 1} over the
ciphertexts ct1, . . . , ctn.

Although we assume that the scheme natively only supports 1-bit plaintexts, we can extend the no-
tation to arbitrary length messages. For a message x ∈ {0, 1}n we write ct ← Encpk(x) to denote
ct = (ct1, . . . , ctn) where cti ← Encpk(xi) and xi is the i’th bit of x. Similarly for ct = (ct1, . . . , ctn) we
write x = Decsk(ct) to denote x = (x1, . . . , xn) where xi = Decsk(cti). For a function f : {0, 1}n →
{0, 1}m and ct = (ct1, . . . , ctn) we also write ct∗ = Evalpk(f, ct) to denote ct∗ = (ct∗1, . . . , ct

∗
m) where

ct∗k = Evalpk(f
(k), ct1, . . . , ctn) and f (k) computes the k’th output-bit of f .

• Correctness: For all x ∈ {0, 1}n, and all circuits f : {0, 1}n → {0, 1}m we have

Pr[Decsk(ct
∗) = f(x) : (pk, sk)← KeyGen(1λ), ct← Encpk(x), ct

∗ = Evalpk(f, ct)] = 1.

• Compactness: There exists some fixed polynomial p(λ) such that for all f : {0, 1}n → {0, 1} and
all bit-ciphertexts (ct1, . . . , ctn) the ciphertext ct∗ ← Evalpk(f, ct1, . . . , ctn) is of size |ct∗| = p(λ).

• Semantic Security: The scheme satisfies the standard notion of semantic security of encryption.

An FHE scheme has decryption in NC1 if the circuit Decsk(·) is in NC1. In particular, it can be
computed by a circuit of some depth d(λ) = O(log λ).

We refer to the above definition as a true FHE. A leveled FHE is a relaxation where the key generation
algorithm takes as an input an additional parameter 1d and we only require correctness to hold for all
circuits f of depth d. Although the size of the public key pk and the run-time of the encryption algorithm
can depend on d, we still insist on the size of the secret key sk, the size of the ciphertexts ct that are
produced by the encryption or evaluation algorithm, and the run-time of the decryption algorithm to
only depend on the security parameter λ. Moreover, for leveled FHE with decryption in NC1 we still
require that the decryption circuit is of some fixed depth of d(λ) = O(log λ).

Under the LWE assumption, there exists a leveled FHE scheme with decryption in NC1. Under the
LWE assumption and an additional circular-security assumption there exists a true FHE scheme with
decryption in NC1 [BV11, BGV12, GSW13, BV14].

2.3 Pseudo-Random Generators with Weak Seeds

We rely on pseudo-random generators (PRGs) that convert “weak” seeds (which may not be uniformly
random but have some pseudo-entropy or are computationally unpredictable) into a pseudo-random
output. We insist on PRGs with arbitrarily large polynomial stretch. We also consider additional
restrictions, such as PRGs that are injective or are in NC1.

Definition 2.8 (PRGs for Weak Seeds). Let D be a class of distributions D = {Dλ} where (s, aux)← Dλ

outputs a seed s ∈ {0, 1}n(λ) and some auxiliary information aux. A PRG (Gen,G) for the class D consists
of a family of polynomial-time functions G = {G : {0, 1}n → {0, 1}m} sampled via G ← Gen(1n, 1m).
We require that for every D ∈ D and for every polynomial m(λ) we have

(G,G(s), aux)
c≈ (G, u, aux)

where G← Gen(1n(λ), 1m(λ)), (s, aux)← Dλ, u
$← {0, 1}m(λ).

• A PRG for α-pseudo-entropy seeds is a PRG for the class D of distributions where HHILL(s | aux) ≥
α(λ). A PRG for unpredictable seeds is a PRG for the class D of distributions where s is compu-
tationally unpredictable given aux.

11

• A PRG is injective if there exists some polynomial m∗(n) such that for all m ≥ m∗(n) the function
G ← Gen(1n, 1m) is injective with overwhelming probability. A PRG is strongly injective if G is
injective even when restricted to only the first m∗(n) bits of output.

• A PRG is in NC1 if for all G ← Gen(1n, 1m), we can compute G by a circuit of depth d(n) =
O(log n). In particular, the depth is independent of m.

PRGs for Pseudo-Entropy Seeds. The work of [BPR12] shows that, under the LWE assumption,

the function GA(s) = ⌊sA⌉p is a PRG for a uniformly random seed s
$← Z

n
q , where the function GA

is parameterized by a random matrix A
$← Z

n×m
q and ⌊·⌉p is a “rounding” operation. Furthermore it

is easy to show that this PRG is strongly injective and is in NC1. The work of [AKPW13], building
on [GKPV10], shows that the above PRG is also secure for α-pseudo-entropy seeds s ∈ {0, 1}n, when
α(λ) = λε for any ε > 0.

Claim 2.9 ([GKPV10, BPR12, AKPW13]). Under LWE, there exists a PRG which is secure for λε-
pseudo-entropy seeds for any ε > 0. Furthermore, the PRG is strongly injective and is in NC1.

PRGs for Unpredictable Seeds. PRGs for unpredictable seeds exist in the random-oracle model
and can be made strongly injective by choosing a sufficiently large output size relative to the input size.
Therefore we can also assume that standard cryptographic hash functions satisfy this security notion.
Recently, the work of Zhandry [Zha16] constructs such PRGs using extremely lossy functions (ELFs),
which can in turn be instantiated under the exponential hardness of DDH over elliptic curves. Moreover,
Zhandry shows that the resulting PRGs are injective. (We will not rely on such PRGs being in NC1.)

3 Obfuscation Definitions

We begin by giving a general definition of distributional VBB obfuscation. To keep our definition general,
we define obfuscation for a class of programs P without specifying how programs P ∈ P are represented
(e.g., branching programs, circuits, Turing Machines). We assume that a program has an associated set
of parameters P.params (e.g., input size, output size, circuit size, etc.) which we are not required to hide.

Definition 3.1 (Distributional VBB). Consider a family of programs P and let Obf be a PPT algorithm,
which takes as input a program P ∈ P, a security parameter λ ∈ N, and outputs a program P̃ ←
Obf(1λ, P). Let D be a class of distribution ensembles D = {Dλ}λ∈N that sample (P, aux) ← Dλ with
P ∈ P. We say that Obf is an obfuscator for the distribution class D over the program family P, if it
satisfies the following properties:

1. Functionality Preserving: There is some negligible function ν(λ) = negl(λ) such that for all programs
P ∈ P with input size n we have

Pr[∀x ∈ {0, 1}n : P (x) = P̃ (x) | P̃ ← Obf(1λ, P)] ≥ 1− ν(λ),

where the probability is over the coin tosses of Obf.

2. Distributional Virtual Black-Box: For every (non-uniform) polynomial size adversary A, there
exists a (non-uniform) polynomial size simulator Sim, such that for every distribution ensemble
D = {Dλ} ∈ D, and every (non-uniform) polynomial size predicate ϕ : P → {0, 1}:
∣∣∣ Pr
(P,aux)←Dλ

[A(Obf(1λ, P), aux) = ϕ(P)]− Pr
(P,aux)←Dλ

[SimP (1λ, P.params, aux) = ϕ(P)]
∣∣∣ = negl(λ)

where SimP has black-box access to the program P .

12

Distributional Indistinguishability. We also consider an alternative security definition called distri-
butional indistinguishability, which implies distributional VBB (as discussed below) but is much simpler
and easier to work with.

Definition 3.2 (Distributional Indistinguishability). An obfuscator Obf for the distribution class D over
a family of program P, satisfies distributional indistinguishability if there exists a (non-uniform) PPT
simulator Sim, such that for every distribution ensemble D = {Dλ} ∈ D, we have

(Obf(1λ, P), aux)
c≈ (Sim(1λ, P.params), aux),

where (P, aux)← Dλ.

Note that distributional indistinguishability does not give the simulator black-box access to the pro-
gram P at all. This definition makes sense when obfuscating evasive programs in which case black-box
access to the program P is useless.

We now show that distributional indistinguishability implies distributional VBB (a similar but more
restricted result was also shown in [BVWW16]). In more detail, to get distributional VBB for some
class D we will need to distributional indistinguishability to hold for a slightly larger “augmented” class
D′ = aug(D) where we can add an arbitrary 1-bit predicate of the program to the auxiliary input.

Definition 3.3 (Predicate Augmentation). For a distribution class D, we define its augmentation under
predicates, denoted aug(D), as follows. For any (non-uniform) polynomial-time predicate ϕ : {0, 1}∗ →
{0, 1} and any D = {Dλ} ∈ D the class aug(D) includes the distribution D′ = {D′λ} where D′λ samples
(P, aux)← Dλ, computes aux′ = (aux, ϕ(P)) and outputs (P, aux′).

Theorem 3.4. For any family of programs P and a distribution class D over P, if an obfuscator Obf

satisfies distributional-indistinguishability (Definition 3.2) for the class of distributions aug(D) then it
also satisfies distributional-VBB security for the distribution class D (Definition 3.1).

Proof. Let Sim be a simulator for Obf as per the definition of distributional indistinguishability. Let
D = {Dλ} ∈ D be a distribution and let ϕ : P → {0, 1} be a polynomial-time predicate. Then by the
distributional indistinguishability of Obf for the class aug(D) we have:

(Obf(1λ, P), ϕ(P), aux)
c≈ (Sim(1λ, P.params), ϕ(P), aux) (2)

where (P, aux)← Dλ.

For any poly-time adversaryA define the simulator S̃im
P
(1λ, P.params, aux) = A(Sim(1λ, P.params), aux).

We claim that S̃im is a valid simulator satisfying the definition of distributional VBB security since:
∣∣∣ Pr
(P,aux)←Dλ

[A(Obf(1λ, P), aux) = ϕ(P)]− Pr
(P,aux)←Dλ

[S̃im
P
(1λ, P.params, aux) = ϕ(P)]

∣∣∣

=
∣∣∣ Pr
(P,aux)←Dλ

[A(Obf(1λ, P), aux) = ϕ(P)]− Pr
(P,aux)←Dλ

[A(Sim(1λ, P.params), aux) = ϕ(P)]
∣∣∣

= negl(λ).

The last line follows from (2) by defining a distinguisher B(P̃ , b, aux) which outputs 1 iff A(P̃ , aux) = b.
This proves the theorem.

3.1 Defining Obfuscation for Compute-and-Compare Programs

Given a program f : {0, 1}ℓin → {0, 1}ℓout along with a target value y ∈ {0, 1}ℓout , we define the compute-
and-compare program:

CC[f, y](x) =

{
1 if f(x) = y
0 otherwise

13

We assume that programs CC[f, y] have some canonical description that makes it it easy to recover
the components f, y from CC[f, y]. We define three distinct classes of compute-and-compare programs
depending on whether f is represented as a branching program, a circuit, or a Turing Machine.

Branching Programs. We define the class PBP

CC
of compute-and-compare programs CC[f, y] where f

is a permutation branching program (see Section 4.3 for a formal definition). In this case we define
CC[f, y].params = (1L, 1ℓin , 1ℓout) where L denotes the length of the branching program f .

Circuits. We define the class PCIRC

CC
to consist of programs CC[f, y] where f is represented as a circuit.

We define CC[f, y].params = (1|f |, 1ℓin , 1ℓout) where |f | denotes the circuit size.

Turing Machines. Lastly we define the class PTM

CC
of compute-and-compare programs CC[f, y] where

the function f is given as a Turing Machine with some fixed run-time t. The main advantage
of considering Turing Machines instead of circuits is that the run-time of the obfuscator P̃ ←
Obf(1λ,CC[f, y]) and the size of the obfuscated program P̃ can be sub-linear in the run-time t.
When we consider an obfuscator for Turing Machines, we also require that the run-time of the
obfuscated program P̃ , which is itself a Turing Machine, is poly(λ, t). We define CC[f, y].params =
(1|f |, 1ℓin , 1ℓout , t) where |f | denotes the Turing Machine description size and t denotes the run-time.

Classes of Distributions. We will consider distribution ensembles D over compute-and-compare pro-
grams where each distribution D = {Dλ} in D is polynomial-time samplable. We define the following
classes of distributions:

• Unpredictable: The class of unpredictable distributions DUNP consists of ensembles D = {Dλ} over
(CC[f, y], aux) such that y is computationally unpredictable given (f, aux). (See Definition 2.4)

• α-Pseudo-Entropy: For a function α(λ), the class of α-pseudo-entropy distributions Dα-PE consists
of ensembles D = {Dλ} such that (CC[f, y], aux) ← Dλ satisfies HHILL(y | (f, aux)) ≥ α(λ). For
a two-argument function α(λ, L), we define Dα-PE analogously but require HHILL(y | (f, aux)) ≥
α(λ, L) where L is the length of the branching program f .

Distributional Indistinguishability by Default. When considering obfuscation for compute-and-
compare programs and the above classes of distributions, we can safely focus on distributional indistin-
guishability (Definition 3.2) as our default security notion since it automatically implies distributional-
VBB security (Definition 3.1) by Theorem 3.4. In particular, it is easy to see that the class DUNP is
already closed under predicate augmentation aug(DUNP) ⊆ DUNP since an additional 1 bit of information
about y preserves unpredictability. Furthermore, for any function α, we have aug(Dα-PE) ⊆ D(α−1)-PE

since an additional 1 bit of information about y decreases its min-entropy by at most 1 bit.

4 Basic Obfuscation Construction

In this section, we construct our “basic obfuscator” for compute and compare programs CC[f, y] where
f is a polynomial-length branching program and y has high pseudo-entropy exceeding some polynomial
threshold α(λ, L) in the security parameter λ and the branching program length L. In particular, we will
prove the following theorem.

Theorem 4.1. Under the LWE assumption, there exists some polynomial α = α(λ, L) in the secu-
rity parameter λ and branching program length L, for which there is an obfuscator for compute-and-
compare branching programs PBP

CC
which satisfies distributional indistinguishability for the class of α-

pseudo-entropy distributions Dα-PE.

14

4.1 Parameters

Throughout this section we rely on the following parameters:

• q: an LWE modulus

• n,m: matrix dimensions

• χ: a distribution over Zq

• β: the distribution χ is β-bounded

• w: branching program width; for concreteness we can set w = 5

The above parameters are chosen in a way that depends on the security parameter λ and the branching
program length L to ensure that the following conditions hold:

1. The modulus satisfies q > (4mβ)Lλω(1).

2. The distribution χ has super-logarithmic entropy, H∞(χ) > ω(log λ).

3. In Lemma 2.5, if we set k = n ·w then the values m∗ = O(k log q) and γ = O(k
√
log q) specified by

the lemma satisfy m ≥ m∗ and β ≥ γ.

4. The (n, q, χ)-LWE assumption holds.

The general LWE assumption we discussed in the preliminaries allows us to choose the above parameters
as a function of λ, L so that the above conditions are satisfied.

4.2 Directed Encodings

Definition 4.2 (Directed Encoding). Let Ai,Aj ∈ Z
n×m
q . A directed encoding of a secret S ∈ Z

n×n
q with

respect to an edge Ai → Aj and noise level β is a value C ∈ Z
m×m
q such that AiC = SAj + E where

||S||∞, ||C||∞, ||E||∞ ≤ β. We define the set of all such encodings by:

Eβ
Ai→Aj

(S)
def
= {C : AiC = SAj +E and ||S||∞, ||C||∞, ||E||∞ ≤ β}.

It’s easy to see that the above definition implies that

C1 ∈ Eβ1

A1→A2
(S1) , C2 ∈ Eβ2

A2→A3
(S2) ⇒ C1C2 ∈ E2mβ1β2

A1→A3
(S1S2) (3)

since

A1C1C2 = (S1A2 +E1)C2 : ||E1||∞ ≤ β1

= S1(S2A3 +E2) +E1C2 : ||E2||∞ ≤ β2

= S1S2A3 + S1E2 +E1C2 : ||S1E2 +E1C2||∞ ≤ nβ1β2 +mβ1β2 ≤ 2mβ1β2

and ||S1S2||∞ ≤ nβ1β2 ≤ 2mβ1β2 as well as ||C1C2||∞ ≤ mβ1β2 ≤ 2mβ1β2.
In particular, by iteratively applying equation (3), we get the following claim:

Claim 4.3. If Ci ∈ EβAi→Ai+1
(Si) for i ∈ [L] then (C1C2 · · ·CL) ∈ Eβ(2mβ)L−1

A1→AL+1
(S1S2 · · ·SL).

15

Directed Encoding Scheme. Next we show how to create directed encodings. We construct a directed
encoding scheme that lets us create an encoding C of a secret S with respect to w separate edges
{A0 → A′0 , . . . , Aw−1 → A′w−1} simultaneously.

Construction 4.4. We define the algorithms (DE.TrapGen,DE.Encode):

• (B, tdB) ← DE.TrapGen(): Output (B, tdB) ← TrapGen(1w·n, 1m, q) where TrapGen(1k, 1m, q) is

defined in Lemma 2.5. We parse B ∈ Z
w·n×m
q as B =

A0

. . .
Aw−1

 with Ai ∈ Z

n×m
q .

• C← DE.Encode(B→ B′,S, tdB): Parse B =

A0

. . .
Aw−1

, B′ =

A′0
. . .

A′w−1

. Set

H := (Iw ⊗ S) ·B′ +E =

S ·A′0 +E0

. . .
S ·A′w−1 +Ew−1

 where E =

E0

. . .
Ew−1

← χw·n×m.

Output C← SamPre(B,H, tdB) where the SamPre algorithm is defined in Lemma 2.5.

We prove two properties for the above directed encoding scheme. One is a correctness property, saying
that the value C sampled above is indeed an encoding of S along each of the w edges Aj → A′j . The
second is a security property, saying that if we encode the same secret S many times with respect to
different sets of edges Bk → B′k then this can be simulated without knowing either Bk or B′k.

Claim 4.5 (Correctness). For every S with ||S||∞ ≤ β, for all (B, tdB)← DE.TrapGen(), all B′ ∈ Z
w·n×m
q

and all C← DE.Encode(B→ B′,S, tdB) it holds that:

∀j ∈ {0, . . . , w − 1} : C ∈ Eβ
Aj→A′

j
(S) where B =

A0

. . .
Aw−1

 ,B′ =

A′0
. . .

A′w−1

 .

Proof. The SamPre algorithm outputs an encoding C ∈ Z
m×m
q with ||C||∞ ≤ β such that

BC = (Iw ⊗ S) ·B′ +E ⇒ ∀j ∈ {0, . . . , w − 1} AjC = SA′j +Ej

where E← χw·n×m, and thus ||E||∞, ||Ej ||∞ ≤ β.Therefore C ∈ Eβ
Aj→A′

j
(S).

Claim 4.6 (Security). Let ℓ = ℓ(λ) be any polynomial on the security parameter. Under the (n, q, χ)-
LWE assumption, there exists an efficiently samplable distribution DE.Sam() such that the following two
distributions are computationally indistinguishable:

(Bk,B
′
k,Ck, tdBk

)k∈[ℓ]
c≈ (Bk,B

′
k,C

′
k, tdBk

)k∈[ℓ] (4)

where S← χn×n and for all k ∈ [ℓ]:

(Bk, tdBk
)← DE.TrapGen(1λ), B′k

$← Z
w·n×m
q ,

Ck ← DE.Encode(Bk → B′k,S, tdBk
), C′k ← DE.Sam().

Proof. We define DE.Sam() to output Sam(1m, q) where Sam is defined in Lemma 2.5. We show the
indistinguishability of the above distributions with the following sequence of hybrids.

16

Hybrid 0. This is the left-hand side of equation (4). Here for all k ∈ [ℓ] the encodings are sampled as
Ck ← DE.Encode(Bk → B′k,S, tdBk

) which means sampling Hk := (Iw⊗S)·B′k+Ek and computing
Ck ← SamPre(Bk,Hk, tdBk

).

Hybrid 1. Here for all k ∈ [ℓ], we replace the matrices Hk in hybrid 0 with a uniformly random matrices

Uk
$← Z

w·n×m
q . In other words, this is the distribution

(Bk,B
′
k, Ĉk, tdBk

)k∈[ℓ]

where Ĉk ← SamPre(Bk,Uk, tdBk
).

By the (n, q, χ)-LWE assumption (Equation 1) hybrids 0 and 1 are indistinguishable. In particular,
we are relying on LWE with the secret matrix S andm·w·ℓ samples where the coefficients come from
the random matrices B′k to replace all of the matrices {Hk}k∈[ℓ] with {Uk}k∈[ℓ]. In the reduction
from LWE, we can sample all the values Bk, tdBk

ourselves.

Hybrid 2. This is the right-hand side of equation (4). Here, for all k ∈ [ℓ], the encodings are sampled
as C′k ← DE.Sam().

By Lemma 2.5, hybrids 1 and 2 are indistinguishable. In particular, we can replace Ĉk ←
SamPre(Bk,Uk, tdBk

) with C′k ← DE.Sam(), for k ∈ [ℓ] one-by-one in a sequence of ℓ interme-
diate steps to show the indistinguishability of hybrids 1 and 2.

4.3 Obfuscating Compute-and-Compare Branching Programs

We now use the directed encoding scheme to construct and obfuscator for compute-and-compare branching
programs. First, we formally define our notion of branching programs. Then we define an encoding scheme
for branching programs. Lastly, we show how to turn this encoding scheme into an obfuscator.

Branching Programs (BPs). A boolean permutation branching program P of input size ℓin, length
L and width w, is described by a sequence of 2L permutations

πi,b : {0, . . . , w − 1} → {0, . . . , w − 1}

for i ∈ [L], b ∈ {0, 1}.
Given a program P = (πi,b)i∈[L],b∈{0,1} we can evaluate P (x) on an arbitrary input x ∈ {0, 1}ℓin .

We do by defining the start state v1 = 0. Then in a sequence of steps i = 1, . . . , L we define vi+1 =
πi,x(i mod ℓin)

(vi). In other words, in each step i we read the bit in position (i mod ℓin) of x and this
determines which of the two permutations πi,0, πi,1 to apply to the current state vi. We define the final
state vL+1 to be the output of the program. A valid branching program ensures that vL+1 ∈ {0, 1} for
all inputs x.

Note that we assume a fixed ordering in which the input bits are accessed, where the i’th step reads
the input bit (i mod ℓin).

3 This departs from standard definitions that allow the program to read the
input in an arbitrary order. However, we can easily convert any arbitrary branching program into one
that reads its input in the above fixed order by blowing up the length of the branching program by a
factor of at most ℓin.

By Barrington’s theorem [Bar89], any NC1 circuit can be converted into a branching program with
constant-width w = 5 and polynomial-length. In particular, any circuit with input-size ℓin and depth

3Any other fixed access pattern where the i’th step read the ti’th input bit would work equally well as long as the locations
ti ∈ [ℓin] are fixed/public and the same for all branching programs. We restrict ourselves to ti = (i mod ℓin) for simplicity.

17

d can be computed by a branching program of length ℓin · 4d, where the factor of ℓin comes from our
insistence on having a fixed access pattern to the input.

We also consider a branching program P with ℓout-bit output to consist of ℓout separate boolean
branching programs P =

(
P (k)

)
k∈[ℓout]

for each output bit, where all the programs have a common length

L, width w, and access pattern in which the i’th level reads the input bit (i mod ℓin). To evaluate P (x)
we separately evaluate each of the programs P (k)(x) to get each output bit.

Encoding BPs. We first show how to encode a permutation branching program P =
(
P (k)

)
k∈[ℓout]

with ℓout-bit output. This is not an obfuscation scheme yet since it does not allow us to evaluate the
encoded program and learn the output. Instead, when we encode the program, we specify two matrices

A
(k)
0 ,A

(k)
1 for each output bit k ∈ [ℓout]. When we evaluate the encoded branching program on some

input x we will get LWE tuples D(k) ≈ S∗A
(k)

P (k)(x)
with respect to some common secret S∗ and matrices

A
(k)

P (k)(x)
that depend on the output P (x).

Construction 4.7. We define the algorithms (BP.Encode,BP.Eval) as follows.

• BP.Encode
(
P, (A

(k)
0 ,A

(k)
1)k∈[ℓout]

)
: Takes as input A

(k)
0 ,A

(k)
1 ∈ Z

n×m
q and a branching program

P =
(
P (k)

)
k∈[ℓout]

with ℓin-bit input, ℓout-bit output and length L. Parse P (k) = (π
(k)
i,b)i∈[L],b∈{0,1}.

– For k ∈ [ℓout] and i ∈ [L] sample (B
(k)
i , td

B
(k)
i

)← DE.TrapGen() with B
(k)
i =

A
(k)
i,0

. . .

A
(k)
i,w−1

.

– For k ∈ [ℓout] sample the matrix B
(k)
L+1 =

A
(k)
L+1,0

. . .

A
(k)
L+1,w−1

 by setting A

(k)
L+1,0 := A

(k)
0 ,A

(k)
L+1,1 :=

A
(k)
1 and sampling A

(k)
L+1,j

$← Z
n×m
q for j ∈ {2, . . . , w − 1}.

– For i ∈ [L], b ∈ {0, 1}, sample Si,b ← χn×n.

– For i ∈ [L], b ∈ {0, 1}, k ∈ [ℓout] sample: C
(k)
i,b ← DE.Encode(B

(k)
i → π

(k)
i,b (B

(k)
i+1),Si,b, td

B
(k)
i

),

where (abusing notation) we define π(B
(k)
i) =

A
(k)
i,π(0)

. . .

A
(k)
i,π(w−1)

.

– Finally, output the sequence P̂ =

(
A

(k)
1,0,
(
C

(k)
i,b

)
i∈[L],b∈{0,1}

)

k∈[ℓout]

.

• BP.Eval(P̂ , x). To evaluate P̂ on input x ∈ {0, 1}ℓin, the evaluation algorithm for all k ∈ [ℓ]
computes

D(k) := A
(k)
1,0 ·

(
L∏

i=1

C
(k)
i,x(i mod ℓin)

)

and outputs the sequence
(
D(k)

)
k∈[ℓout]

.

We now analyze a correctness and a security property that the above scheme satisfies. The correctness

property says that when we evaluate the encoded program P̂ on x we get LWE samples D(k) ≈ S∗A
(k)

P (k)(x)

with respect to some common secret S∗. The security property says that the above encoding completely

hides the branching program P (and in particular the choice of permutation π
(k)
i,b) being encoded.

18

Claim 4.8 (Correctness). For every branching program P =
(
P (k)

)
k∈[ℓout]

with ℓin-bit input and ℓout-bit

output, for all choices of (A
(k)
0 ,A

(k)
1)k∈[ℓout], and for all x ∈ {0, 1}ℓin the following holds. For

P̂ ← BP.Encode
(
P, (A

(k)
0 ,A

(k)
1)k∈[ℓout]

)
,

(
D(k)

)
k∈[ℓout]

= BP.Eval(P̂ , x)

there exist S∗ ∈ Z
n×n
q , E(k) ∈ Z

n×m
q such that D(k) = S∗ ·A(k)

P (k)(x)
+E(k) and ||E(k)||∞ ≤ β(2mβ)L−1.

Proof. In the evaluation of P (k) on x, let v
(k)
1 := 0 and for i ∈ {2, . . . , L} let v

(k)
i+1 = π

(k)
i,xi

(vi) be the

states during the execution of the branching program so that v
(k)
L+1 = P (k)(x). For convenience, we define

xi = x(i mod ℓin) for i ∈ [L].

In the creation of P̂ , we choose C
(k)
i,xi
← DE.Encode(B

(k)
i → π

(k)
i,xi

(B
(k)
i+1),Si,xi

, td
B

(k)
i

) where

B
(k)
i =

A
(k)
i,0

. . .

A
(k)
i,w−1

 , π

(k)
i,xi

(B
(k)
i+1) =

A
(k)

i+1,π
(k)
i,xi

(0)

. . .

A
(k)

i+1,π
(k)
i,xi

(w−1)

 .

By Claim 4.5, we therefore have C
(k)
i,xi
∈ Eβ

A
(k)
i,vi
→A

(k)
i+1,vi+1

(Si,xi
). By Claim 4.3, we have

(∏L
i=1C

(k)
i,xi

)
∈

Eβ(2mβ)L−1

A
(k)
1,0→A

(k)

L+1,P (k)(x)

(S∗) where S∗ =
∏L

i=1 Si,xi
. By the definition of directed encodings, this means that

D(k) = A
(k)
1,0

(
L∏

i=1

C
(k)
i,xi

)
= S∗A

(k)

P (k)(x)
+E(k)

where ||S∗||∞, ||E(k)||∞ ≤ β(2mβ)L−1.

Claim 4.9 (Security). Under the (n, q, χ)-LWE assumption, there exists a PPT simulator Ŝim, such that
for all ensembles of permutation branching programs P of length L input size ℓin and output-size ℓout (all
parameterized by λ), the following two distributions are indistinguishable

BP.Encode
(
P, (A

(k)
0 ,A

(k)
1)k∈[ℓout]

)
c≈ Ŝim(1λ, (1L, 1ℓin , 1ℓout)) (5)

where A
(k)
0 ,A

(k)
1

$← Z
n×m
q .

Proof. For this proof, let DE.Sam() be the algorithm from Claim 4.6. First, we define the simulator

Ŝim(1λ, (1L, 1ℓin , 1ℓout)) in the following way.

• Sample A
(k)
1,0

$← Z
n×m
q for k ∈ [ℓout].

• Sample C
(k)
i,b ← DE.Sam() for k ∈ [ℓout], b ∈ {0, 1} and i ∈ [L].

• Output the simulated encoding P̂ =

(
A

(k)
1,0,
(
C

(k)
i,b

)
i∈[L],b∈{0,1}

)

k∈[ℓout]

.

We prove indistinguishability via a sequence of hybrids defined below for j ∈ {0, . . . , L}.

Hybrid Hj,0 :

BL+1 ← Z
w·n×m
q

19

for i ∈ [L], k ∈ [ℓout] and b ∈ {0, 1} do
if i > j then

B
(k)
i

$← Z
w·n×m
q

C
(k)
i,b ← DE.Sam()

else
(B

(k)
i , td

B
(k)
i

)← DE.TrapGen()

Si,b ← χn×n

C
(k)
i,b ← DE.Encode(B

(k)
i → π

(k)
i,b (B

(k)
i+1),Si,b, td

B
(k)
i

)

end if
end for

output the sequence P̂ =

(
A

(k)
1,0,
(
C

(k)
i,b

)
i∈[L],b∈{0,1}

)

k∈[ℓout]

.

Hybrid Hj,1 : This is the same as Hj,0 except that when i = j we now sample:

C
(k)
i,0 ← DE.Sam()

Hybrid Hj,2 : This is the same as Hj,0 except that when i = j we now sample:

C
(k)
i,0 ← DE.Sam(),C

(k)
i,1 ← DE.Sam()

Notice that HL,0 and H0,0 are respectively the left-hand and right-hand sides of Eq (5). The proof of
security then follows from the following observations.

• For all j, Hj,0
c≈ Hj,1.

This follows by applying security Claim 4.6 on directed encodings
(
C

(k)
j,0

)
k∈[ℓout]

with the secret

Sj,0 and the matrices Bk = B
(k)
j , B′k = π

(k)
j,b (B

(k)
j+1). Since in hybrids Hj,0, Hj,1 the matrix B

(k)
j+1

is uniformly random, so is B′k. Note that in the reduction, we can sample all the other matrices

B
(k)
i for i 6∈ {j, j + 1} and also all the encodings C

(k)
i,b for (i, b) 6= (j, 0) ourselves. To sample the

encodings C
(k)
j,1 we need the trapdoor td

B
(k)
j

which is provided by the security game in Claim 4.6.

• For all j, Hj,1
c≈ Hj,2.

This follows identically as above by applying security Claim 4.6 on directed encodings
(
C

(k)
j,1

)
k∈[ℓout]

with the secret Sj,1 and the matrices Bk = B
(k)
j , B′k = π

(k)
j,b (B

(k)
j+1).

• For all j, Hj,2
c≈ Hj−1,0.

The only difference between these hybrids is that in Hj,2 we sample (B
(k)
j , td

B
(k)
j

)← DE.TrapGen()

while in Hj−1,0 we sample B
(k)
j

$← Z
w·n×m
q . This is indistinguishable by Lemma 2.5.

Combining the above we get that H0,0
c≈ HL,0 which proves the claimed Eq (5).

Obfuscating BPs. Finally, we are ready to construct an obfuscator for compute-and-compare programs
CC[f, y] where f : {0, 1}ℓin → {0, 1}ℓout is a permutation branching program of length L. To do so,

we simply use the BP encoding scheme to encode f but we choose the matrices A
(k)
0 ,A

(k)
1 to satisfy∑ℓout

k=1A
(k)
yk = 0. Then, to evaluate the obfuscated program on x, we evaluate the encoded program to

get matrices D(k) and check that
∑ℓout

k=1D
(k) ≈ 0.

20

Construction 4.10. Our construction of an obfuscator Obf for compute-and-compare branching pro-
grams is defined as follows.

Obf(1λ,CC[f, y]) : Let f be a BP with input size ℓin, output size ℓout, length L and width w.

• For all k ∈ [ℓout], b ∈ {0, 1}, except for (k, b) = (ℓout, yℓout), sample A
(k)
0 ,A

(k)
1 ← Z

n×m
q .

• Set A
(ℓout)
yℓout

:= −
∑ℓout−1

k=1 A
(k)
yk .

• Set f̂ ← BP.Encode
(
f, (A

(k)
0 ,A

(k)
1)k∈[ℓout]

)
.

• Create a program P̃ [f̂] that takes as input x ∈ {0, 1}ℓin and does the following:

– Compute
(
D(k)

)
k∈[ℓout]

= BP.Eval(f̂ , x). Let D∗ =
∑ℓout

k=1D
(k).

– If ||D∗||∞ ≤ ℓout · β · (2mβ)L−1 then output 1 and otherwise output 0.

Output P̃ [f̂].

We now show that our obfuscator satisfies correctness and security.

Claim 4.11 (Correctness). There exists a negligible function ν(λ) = negl(λ) such that for all branching
programs f with input size ℓin and output size ℓout and for all y ∈ {0, 1}ℓout we have

Pr
P̃←Obf(1λ,CC[f,y])

[
∀x ∈ {0, 1}ℓin : P̃ (x) = CC[f, y](x)

]
≥ 1− ν(λ).

Proof. Let P̃ [f̂]← Obf(1λ,CC[f, y]) with f̂ ← BP.Encode
(
f, (A

(k)
0 ,A

(k)
1)k∈[ℓout]

)
. By Claim 4.8, for all

x ∈ {0, 1}ℓin we have that
(
D(k)

)
k∈[ℓout]

= BP.Eval(f̂ , x) satisfies D(k) = S∗ · A(k)

f (k)(x)
+ E(k) for some

S∗,E(k) with ||E(k)||∞ ≤ β(2mβ)L−1.
Note that S∗ is a product of matrices Si,b ← χn×n each of which is invertible with overwhelming

probability by Claim 2.7. Therefore, with overwhelming probability, for all x, the matrix S∗ derived as
above is invertible. Let us condition on this event for the remainder of the argument.

For all x such that f(x) = y, we have D∗ =
∑ℓout

k=1D
(k) =

∑ℓout
k=1(S

∗A
(k)
yk + E(k)) =

∑ℓout
k=1E

(k) which

satisfies ||D∗||∞ ≤ ℓout · β · (2mβ)L−1. Therefore, P̃ [f̂](x) = CC[f, y](x) = 1 with probability 1.

For all x such that f(x) 6= y, we haveD∗ =
∑ℓout

k=1D
(k) =

∑ℓout
k=1(S

∗A
(k)

f (k)(x)
+E(k)). Since ||

∑ℓout
k=1E

(k)||∞ ≤
ℓout ·β · (2mβ)L−1 the only way that ||D∗||∞ ≤ ℓout ·β · (2mβ)L−1 could occur is if ||

∑ℓout
k=1 S

∗A
(k)

f (k)(x)
||∞ ≤

2ℓout · β · (2mβ)L−1. Since S∗ is invertible and independent of the uniformly random matrices A
(k)

f (k)(x)
,

the sum
∑ℓout

k=1 S
∗A

(k)

f (k)(x)
is uniformly random over Z

n×m
q . Therefore, the probability that for any such

x we have ||
∑ℓout

k=1 S
∗A

(k)

f (k)(x)
||∞ ≤ 2ℓout · β · (2mβ)L−1 is ≤ 2ℓout·β·(2mβ)L−1

q
. By the union bound, the

probability that there exists such an x is

≤ 2ℓin · 2 · ℓout · β · (2mβ)L−1

q
≤ ℓout · (4mβ)L

q
≤ λ−ω(1).

Therefore the probability that there exists an x such that f(x) 6= y and P̃ [f̂](x) = 1 is negligible.

Claim 4.12 (Security). Let α(λ, L) = n ·m · log(q) + ω(log λ) = poly(λ, L). Then there exists a PPT
simulator Sim, such that for every distribution ensemble D = {Dλ} ∈ Dα−PE over PBP

CC
(see Section 3.1)

the following two distributions are indistinguishable

(Obf(1λ,CC[f, y]), aux)
c≈ (Sim(1λ, (1L, 1ℓin , 1ℓout)), aux)

where (CC[f, y], aux)← Dλ.

21

Proof. Define the simulator Sim(1λ, (1L, 1ℓin , 1ℓout)) to run f̂ ← Ŝim(1λ, (1L, 1ℓin , 1ℓout)), where Ŝim is the
BP encodings simulator from Claim 4.9, and output the program P̃ [f̂].

To show indistinguishability we rely on a hybrid argument. We define the following distributions.

REAL: This is the real distribution (P̃ , aux) where (CC[f, y], aux)← Dλ and P̃ [f̂]← Obf(1λ,CC[f, y]).

HYB: This is the distribution (P̃ , aux) where (CC[f, y], aux)← Dλ but we modify the execution of P̃ [f̂]←
Obf(1λ,CC[f, y]) and select A

(ℓout)
yℓout

$← Z
n×m
q uniformly at random instead of setting A

(ℓout)
yℓout

:=

−
∑ℓout−1

k=1 A
(k)
yk .

REAL
c≈ HYB are indistinguishable by the leftover-hash lemma (Lemma 2.1). In particular, notice

that:

A(ℓout)
yℓout

= −
ℓout−1∑

k=1

A(k)
yk

=

ℓout−1∑

k=1

(yk(A
(k)
0 −A

(k)
1)−A

(k)
0)

If we define the hash function family h(y1, . . . , yℓout−1) =
∑ℓout−1

k=1 (yk(A
(k)
0 − A

(k)
1) − A

(k)
0) then

this family is universal. Furthermore HHILL((y1, . . . , yℓout−1)|f, aux) ≥ α − 1 = n · m · log(q) +
ω(log λ) by Lemma 2.2 (and the definition of HILL entropy). Therefore, by the leftover-hash

lemma (in combination with the definition of HILL entropy), we get that A
(ℓout)
yℓout

= −
∑ℓout−1

k=1 A
(k)
yk

is indistinguishable from uniformly random even conditioned on (f, aux).

SIM: This is the simulated distribution (P̃ , aux) where (CC[f, y], aux)← Dλ and P̃ [f̂]← Sim(1λ, (1L, 1ℓin , 1ℓout)).

The only difference from HYB is that instead of selecting f̂ ← BP.Encode
(
P, (A

(k)
0 ,A

(k)
1)k∈[ℓout]

)

where the matrices A
(k)
b are uniformly random, we now select f̂ ← Ŝim(1λ, (1L, 1ℓin , 1ℓout)).

HYB
c≈ SIM are indistinguishable by Claim 4.9.

Therefore REAL
c≈ SIM which proves the claim.

The combination of Claim 4.11 and Claim 4.12 proves Theorem 4.1.

5 Upgrading Functionality and Security

We now show how to upgrade the functionality and security properties of our basic obfuscation scheme
using generic transformations. In particular, our basic scheme allows us to obfuscate compute-and-
compare programs CC[f, y] where f is a branching program of length L and y has at least α(λ, L) bits
of pseudo-entropy conditioned on (f, aux) for some large polynomial α. We propose a series of upgrades
to the basic obfuscator as follows:

• In Section 5.1 we show how to get security for a larger class of distributions where, for any constant
ε > 0, we only require y to have at least λε bits of pseudo-entropy conditioned on (f, aux). We
still require that f is a polynomial-length branching program but the amount of pseudo-entropy
required from y is now independent of its length L.

• In Section 5.2 we then show how to upgrade functionality and allow f to be an arbitrary polynomial-
size circuit or even a polynomial-time Turing Machine. In the latter case our obfuscator is succinct.

• In Section 5.3 we then show how to improve security even further to allow for all unpredictable
distributions, where y is only computationally unpredictable given (f, aux).

• Lastly, in Section 5.4, we show how to extend our results to multi-bit compute and compare programs
MBCC[f, y, z] which output a message z iff f(x) = y.

22

5.1 Compiler: From Large to Small Pseudo-Entropy

So far, we constructed an obfuscator Obf for compute-and-compare branching programs PBP

CC
with security

for α-pseudo-entropy distributions Dα-PE where α = α(λ, L) is some large polynomial that depends on
the security parameter λ and the branching program length L. We now show how to convert any such
obfuscator Obf into an obfuscator Obf ′ for PBP

CC
which satisfies distributional indistinguishability for the

class of distributions Dα′-PE having some small amount of pseudo-entropy α′(λ) = λε for any ε > 0.

Construction 5.1. Let Obf be an obfuscator for PBP

CC
with distributional indistinguishability for Dα-PE

for some polynomial α = α(λ, L). Let (Gen, G) be an injective PRG in NC1 for α′-pseudo-entropy seeds,
with injectivity parameter m∗(n) as in Definition 2.8.

Obf ′(1λ,CC[f, y]): Let f : {0, 1}ℓin → {0, 1}ℓout be a branching program. Let L′ be the length of the
branching program needed to compute G◦f for G← Gen(1ℓout , ·).4 Set ℓ′out := max{α(λ, L′),m∗(ℓout)}.

• Sample G← Gen(1ℓout , 1ℓ
′
out). Define (G ◦ f)(x) = G(f(x)).

• Output P̃ ← Obf(1λ,CC[G ◦ f,G(y)]).

Theorem 5.2. Under the stated conditions, the constructed obfuscator Obf ′ is an obfuscator for compute-
and-compare branching programs PBP

CC
which satisfies distributional indistinguishability for the class of

α′-pseudo-entropy distributions Dα′-PE.
In particular, under the LWE assumption, there exists an obfuscator Obf ′ for PBP

CC
which satisfies

distributional indistinguishability for the class Dλε-PE for any ε > 0.

Proof. The correctness of the obfuscator Obf ′ follows from that of Obf and the fact that the PRG is
injective. Furthermore, we rely on the fact that G ◦ f can be computed by a branching program of
polynomial length L′.

To argue security, let D′ = {D′λ} ∈ Dα′-PE. Define D = {Dλ} to be the distribution (G◦f,G(y), aux)
where (CC[f, y], aux)← D′λ and G← Gen(1ℓout , 1ℓ

′
out). By the security of the PRG, since y has α′-pseudo-

entropy given (f, aux), we get that G(y) is pseudo-random given (G, f, aux) and therefore HHILL(G(y) | G◦
f, aux) ≥ ℓ′out ≥ α(λ, L∗) which means that D ∈ Dα-PE. Therefore, by the security of the obfuscator Obf
with simulator Sim we have

(Obf ′(1λ,CC[f, y]), aux) = (Obf(1λ,CC[G ◦ f,G(y)]), aux)
c≈ (Sim(1λ, (1L

∗

, 1ℓin , 1ℓ
′
out)), aux).

By defining Sim′(1λ, (1L, 1ℓin , 1ℓout)) = Sim(1λ, (1L
′
, 1ℓin , 1ℓ

′
out)) we see that Sim′ is a good simulator

for Obf ′ proving that it satisfies distributional indistinguishability for the class of α′-pseudo-entropy
distributions Dα′-PE. This proves the first part of the theorem.

By instantiating the PRG with the one from Claim 2.9, the second part of the theorem follows.

How low can you go? Although the obfuscator we constructed satisfies distributional indistinguisha-
bility for distributions with even a small amount of pseudo-entropy α′(λ) = λε for any ε > 0, the exact
security necessarily deteriorates as ε approaches 0. Therefore, in applications, we will generally avoid
“abusing” this theorem, and will mainly apply it on distributions where α′(λ) is a sufficiently large poly-
nomial in λ. However, we will crucially rely on the fact that α′(λ) only depends on the security parameter
λ and does not depend on the branching program length L.

4We rely on the fact that the circuit depth of G, and therefore also the branching-program length L
′, does not depend

on the output length ℓ
′
out of the PRG.

23

5.2 Compiler: From BPs to Circuits and TMs

Let Obf be an obfuscator for the class of compute-and-compare branching programs PBP

CC
. We show how to

bootstrap it to construct an obfuscator Obf ′ for the class of compute-and-compare circuits PCIRC

CC
or even

Turing Machines PTM

CC
. Our compiler relies on fully homomorphic encryption (FHE) with decryption in

NC1. To obfuscateCC[f, y], we encrypt the circuit f via an FHE scheme and then obfuscate a “plaintext-
equality tester” CC[Decsk, y] that allows users to test whether an arbitrary ciphertext decrypts to y.

Construction 5.3. Let FHE = (KeyGen,Enc,Dec,Eval) be a fully homomorphic encryption scheme with
decryption in NC1 and let Obf be an obfuscator for compute-and-compare branching programs PBP

CC
. We

construct an obfuscator Obf ′ for compute-and-compare circuits PCIRC

CC
.

Obf ′(1λ,CC[g, y]): On input a circuit g : {0, 1}ℓin → {0, 1}ℓout and y ∈ {0, 1}ℓout do the following.

• Sample (pk, sk)← KeyGen(1λ).

• Encrypt the circuit g to get ct← Encpk(g).

• Construct the polynomial-size branching program for the function fsk defined as

fsk(ct
∗)

def
= (Decsk(ct

∗
1), . . . ,Decsk(ct

∗
ℓout

))

where ct∗ = (ct∗1, . . . , ct
∗
ℓout

) consists of ℓout bit-ciphertexts.

• Compute the obfuscated plaintext-equality tester: T̃ ← Obf(1λ,CC[fsk, y]).

• Create the program P̃ [T̃ , pk, ct] which contains T̃ , pk, ct hard-coded and, on input x ∈ {0, 1}ℓin,
works as follows:

– Compute ct∗ = Evalpk(Ux, ct), where Ux is the universal circuit that takes as input a circuit

g and outputs Ux(g)
def
= g(x). Output the bit b = T̃ (ct∗).

Output the program P̃ = P̃ [T̃ , pk, ct].

The above construction also works using a leveled FHE instead of true FHE. In this case the only
thing that changes is that we sample (pk, sk) ← KeyGen(1λ, 1d) where d is the depth of the universal
circuit Ux that takes as input a circuit of size |g|.

Theorem 5.4. Assume that FHE is a (leveled) fully homomorphic encryption scheme with decryption in
NC1 and Obf is an obfuscator for compute-and-compare branching programs PBP

CC
which satisfies distribu-

tional indistinguishability for α-pseudo-entropy distributions Dα-PE where α = α(λ) is some polynomial
in (only) the security parameter λ. Then Obf ′ is an obfuscator for all compute-and-compare circuits
PCIRC

CC
which satisfies distributional indistinguishability for Dα-PE.

In particular, under the LWE assumption, there is an obfuscator for all compute-and-compare circuits
PCIRC

CC
which satisfies distributional indistinguishability for the class Dλε-PE for any ε > 0.

Proof. Correctness of the obfuscator Obf ′ follows directly from that of the obfuscator Obf and from the
correctness of the FHE scheme.

To argue the security of Obf ′, we need to construct a simulator Sim′(1λ, (1|g|, 1ℓin , 1ℓout)) that simulates
P̃ [T̃ , pk, ct] which is equivalent to simulating the components (T̃ , pk, ct). We define the simulator Sim′

to sample (pk, sk) ← KeyGen(1λ), ct ← Encpk(0
|g|) and T̃ ← Sim(1λ, (1L, 1ℓ

′
in , 1ℓout)) where Sim is the

simulator for Obf.
To show indistinguishability, letD′ = {D′λ} be any distribution inDα-PE which samples (CC[g, y], aux′)←

D′λ. We need to show the indistinguishability of the real and simulated (T̃ , pk, ct) even given aux′. We do so

24

by introducing an intermediate hybrid distribution. In particular, we first show that REAL
c≈ HYB

c≈ SIM

where:

REAL
def
=

(
(T̃ , pk, ct), aux′ :

(g, y, aux′)← D′λ, (pk, sk)← KeyGen(1λ), ct← Encpk(g)

T̃ ← Obf(1λ,CC[fsk, y])

)

HYB
def
=

(
(T̃ , pk, ct), aux′ :

(g, y, aux′)← D′λ, (pk, sk)← KeyGen(1λ), ct← Encpk(g)

T̃ ← Sim(1λ, (1L(λ), 1ℓ
′
in , 1ℓout))

)

SIM
def
=

(
(T̃ , pk, ct), aux′ :

(CC[g, y], aux′)← D′λ, (pk, sk)← KeyGen(1λ), ct← Encpk(0
|g|)

T̃ ← Sim(1λ, (1L(λ), 1ℓ
′
in , 1ℓout))

)

Firstly, to show REAL
c≈ HYB we define the distribution D = {Dλ} as follows:

• Sample (pk, sk)← KeyGen(1λ), (CC[g, y], aux′)← D′λ, ct← Encpk(g).

• Output (CC[fsk, y], aux = (aux′, pk, ct)).

Then for (CC[fsk, y], aux) ← Dλ we have HHILL(y|fsk, aux) = HHILL(y|g, aux′) ≥ α(λ) and therefore we
can rely on the security of the obfuscator Obf to argue that T̃ ← Obf(1λ,CC[fsk, y]) is indistinguishable
from T̃ ← Sim(1λ, (1L(λ), 1ℓ

′
in , 1ℓout)) even given aux = (aux′, pk, ct).

Next, HYB
c≈ SIM simply follows from the semantic security of the FHE scheme since the secret key

sk does not appear in either distribution.

Combining the above we get REAL
c≈ SIM which proves the distributional indistinguishability security

of the obfuscation scheme.

Succinct Obfuscation for Turing Machines. We can also use the obfuscator Obf ′ constructed above
as an obfuscator for the class PTM

CC
of programs CC[g, y] where the function g : {0, 1}ℓin → {0, 1}ℓout is

represented as a Turing Machine with some fixed run-time t. In this case the only changes are:

• We use the FHE scheme to encrypt the Turing Machine g (instead of a circuit).

• We define P̃ = P̃ [T̃ , pk, ct, t] analogously to how it was defined before but include the parameter t
explicitly. In the evaluation of P̃ ′, we now construct the universal circuit Ux which takes as input
a Turing Machine g (instead of a circuit) and runs g(x) for t steps.

The security and correctness analysis of this obfuscator remain exactly the same as in the case of
circuits (Theorem 5.4). However, now our obfuscator is succinct meaning that the the run-time of the
obfuscator and the size of the obfuscated program are sub-linear in the run-time t.

In particular, if we use a true FHE scheme, then our obfuscator is truly succinct meaning that the
run-time of the obfuscation procedure P̃ ← Obf(1λ,CC[g, y]) and the size of the obfuscated program |P̃ |
is poly(λ, |g|, |y|, log t) where |g| is the Turing Machine description size and t is the run-time.

If we instead use a leveled FHE, we get an obfuscator which is weakly succinct, meaning that the
run-time of the obfuscator and the size of the obfuscated program is poly(λ, |g|, |y|, log t, d) where d is the
depth of the circuit computing g.

5.3 Compiler: From Pseudo-Entropy to Unpredictability

We now show how to upgrade the security of an obfuscator. In particular we start with an obfuscator
which is secure for α-pseudo-entropy distributions Dα-PE for some polynomial α = α(λ) and we show how
to use it to construct an obfuscator Obf ′ which is secure for a larger class of all unpredictable distributions
DUNP where y is computationally unpredictable given (g, aux); see Section 3.1.

25

In fact, out construction is essentially identical to Construction 5.1 which reduces the amount of
pseudo-entropy needed from y by using a PRG. In this section, we also use a PRG to reduce the re-
quirement on y from pseudo-entropy to unpredictability. In this case, we need an injective PRG for
unpredictable seeds (but we do not need it to be in NC1).

Construction 5.5. Let Obf be an obfuscator for compute-and-compare circuits PCIRC

CC
(respectively,

Turing Machines PTM

CC
) which satisfies distributional indistinguishability α-pseudo-entropy distributions

Dα-PE for some polynomial α = α(λ). Let (Gen, G) be an injective PRG for unpredictable seeds with
some injectivity parameter m∗ = m∗(λ, n) as in Definition 2.8.

Obf ′(1λ,CC[f, y]) On input a circuit (resp. Turing Machine) f : {0, 1}ℓin → {0, 1}ℓout and y ∈ {0, 1}ℓout.

• Sample G← Gen(1ℓout , 1max{α(λ),m∗(λ,ℓout)}). Define (G ◦ f)(x) = G(f(x)).

• Output P̃ ← Obf(1λ,CC[G ◦ f,G(y)]).

Theorem 5.6. Assume Obf is an obfuscator for compute-and-compare circuits PCIRC

CC
which satisfies

distributional indistinguishability for α-pseudo-entropy distributions Dα-PE where α = α(λ) is some poly-
nomial and let (Gen, G) be an injective PRG for unpredictable seeds. Then Obf ′ is an obfuscator for
PCIRC

CC
which satisfies distributional indistinguishability for all unpredictable distributions DUNP.

If Obf is a truly (resp. weakly) succinct obfuscator for the class PTM

CC
then so is Obf ′.

The proof of the above theorem is essentially identical to the proof of Theorem 5.2.

5.4 Compiler: From One-Bit to Multi-Bit Output

Given a function f : {0, 1}ℓin → {0, 1}ℓout along with a target value y ∈ {0, 1}ℓout and a message
z ∈ {0, 1}ℓmsg , we define the multi-bit compute-and-compare program:

MBCC[f, y, z](x) =

{
z if f(x) = y
⊥ otherwise

We define the class PCIRC

MBCC
and PTM

MBCC
to consist of canonical descriptions of such programsMBCC[f, y, z]

where f is represented as a circuit and a Turing Machine respectively.
We define classes of distributions D analogously to the definitions for standard compute-and-compare

programs. In particular, we define the class unpredictable distributions DUNP to consist of ensembles
D = {Dλ} over (MBCC[f, y, z], aux) such that y is unpredictable given (f, z, aux) (See Definition 2.4).
For a function α(λ), we define the class of α-pseudo-entropy distributions Dα-PE to consists of ensembles
D = {Dλ} such that (MBCC[f, y, z], aux)← Dλ satisfies HHILL(y | (f, z, aux)) ≥ α(λ).

We now show how to construct an obfuscator Obf ′ for multi-bit compute-and-compare programs using
an obfuscator Obf for standard compute-and-compare programs along with a strongly injective PRG.

Construction 5.7. Let Obf be an obfuscator for PCIRC

CC
(or PTM

CC
) which satisfies distributional indis-

tinguishability for β-pseudo-entropy distributions Dβ-PE. Let (Gen,G) be a strongly injective PRG with
injectivity parameter m∗ = m∗(n) as in Definition 2.8. Let β = β(λ) be some parameter.

Obf ′(1λ,MBCC[f, y, z]) On input a circuit (or TM) f : {0, 1}ℓin → {0, 1}ℓout, y ∈ {0, 1}ℓout and
z ∈ {0, 1}ℓmsg :

• Let γ = max{m∗(ℓout), β(λ)}.
• Compute G← Gen(1ℓout , 1γ·(ℓmsg+1)).
We think of G(s) as outputting ℓmsg + 1 blocks of γ bits each and we use the notation Gi(s)
to denote the i’th block of output. Let (y0, . . . , yℓmsg

) = G(y).

26

• Compute P̃0 ← Obf(1λ,CC[G0 ◦ f, y0]) and for i = 1, . . . , ℓmsg compute P̃i ← Obf(1λ,CC[Gi ◦
f], yi) if zi = 1 or P̃i ← Obf(1λ,CC[Gi ◦ f, yi]) if zi = 0. Here we use yi to denote flipping all
bits of of yi.

• Output the program P̃ = P̃ [P̃0, P̃1, . . . , P̃ℓout] which gets an input x ∈ {0, 1}ℓin and proceeds as
follows:

– If P̃0(x) = 0 then output ⊥.
– Else output a string z ∈ {0, 1}ℓmsg by setting zi = P̃i(x).

Theorem 5.8. Assume Obf is an obfuscator for PCIRC

CC
which satisfies distributional indistinguishability

for β-pseudo-entropy distributions Dβ-PE and (Gen,G) is a strongly injective PRG for α-pseudo-entropy
seeds for some polynomials α(λ), β(λ) in λ. Then Obf ′ constructed above is an obfuscator for PCIRC

MBCC

which satisfies distributional indistinguishability for α-pseudo-entropy distributions Dα-PE. In particu-
lar, under the LWE assumption, for any constant ε > 0 there exists an obfuscator for PCIRC

MBCC
with

distributional indistinguishability for distributions Dλε-PE. Furthermore:

• If (Gen,G) is a strongly injective PRG for unpredictable seeds then Obf ′ satisfies distributional
indistinguishability for all unpredictable distributions DUNP.

• If Obf is a truly (resp. weakly) succinct obfuscator for Turing Machines PTM

CC
then Obf ′ is a truly

(resp. weakly) succinct obfuscator for Turing Machines PTM

MBCC
.

Proof. Correctness of the obfuscator Obf follows from that of Obf ′ and the strong injectivity of the PRG.
In particular f(x) 6= y then, by injectivity, G0(f(x)) 6= y0 , which means that P̃0(x) = 0 and P̃ (x) outputs
⊥. If f(x) = y then P̃0(x) = 1 and P̃i(x) = zi so P̃ (x) = z.

For security, let Sim be the simulator for Obf. We use it to define the simulator Sim′ for Obf ′. Let
paramsi = (1|Gi◦f |, 1ℓin , 1γ) and params′ = (1|f |, 1ℓin , 1ℓout , 1ℓmsg). We define Sim′(1λ, params′):

• For i = 0, . . . , ℓmsg: sample P̃i ← Sim(1λ, paramsi).

• Output P̃ [P̃0, . . . , P̃ℓmsg
] defined the same way as in the construction of Obf ′.

To prove security, we need to show that the following distributions over (P̃0, . . . , P̃ℓmsg
, aux) are indis-

tinguishable:

1. Select (MBCC[f, y, z], aux)← Dλ, G← Gen(1ℓout , 1γ·(ℓmsg+1)) and set P̃i ← Obf(1λ,CC[Gi ◦f, ŷi])
where ŷi = yi if zi = 1 and ŷi = yi if zi = 0.

2. Select (MBCC[f, y, z], aux)← Dλ and P̃i ← Sim(1λ, paramsi).

We do so via the hybrid argument where we switch the programs P̃i from distribution (1) to distribution
(2) one at a time for i = 0, . . . , ℓmsg. The PRG ensures that (y0, . . . , yℓmsg

) is indistinguishable from
uniform even given f, z, aux and therefore HHILL(ŷi | f, z, {ŷj : j > i}) ≥ γ ≥ α. Therefore we can rely
on the security of the obfuscator for the i’th program CC[Gi◦f, ŷi] by thinking of the remaining programs
P̃j ← Obf(1λ,CC[Gj ◦ f, ŷj]) for j > i as auxiliary input in each step of the hybrid argument.

6 Applications

Obfuscating Conjunctions. A conjunction is a function of the form (e.g.)

P (x1, . . . , xℓin) = x2 ∧ ¬x5 ∧ x7 ∧ . . . ∧ ¬xℓin .

In other words, conjunctions correspond exactly to programs CC[f, y] where f : {0, 1}ℓin → {0, 1}ℓout
outputs a subset of the input bits f(x1, . . . , xℓin) = (xi1 , . . . , xiℓout) corresponding to the variables that

27

appear in the conjunction and yj = 1 if the literal xij appears in the conjunction or yj = 0 if the literal
¬xij appears. The work of [BR13] constructed an obfuscator for conjunctions using multi-linear maps
and later [BVWW16] constructed one using a non-standard variant of the Ring-LWE assumptions called
“entropic Ring-LWE”. Our work allows us to obfuscate a significantly larger and more expressive set of
programs, but it offers several advantages even if we restrict our attention solely to conjunctions. Most
importantly, our work only relies on standard LWE wheres [BVWW16] relied on entropic Ring-LWE.
Additionally, we get qualitatively stronger security since our obfuscator even hides that fact that the
obfuscated program is a conjunction function (rather than any other compute-and-compare program
with the same size parameters). Lastly, we can get security for a broader class of distributions. The work
of [BVWW16] required that y has sufficient min-entropy given f while (under appropriate assumptions)
we only require that y is computationally unpredictable given f .

Affine Functions. Generalizing on conjunctions, our obfuscator allows us to obfuscate arbitrary affine
testers which are parameterized by a matrix A and a vector y and test whether an input x satisfies
Ax

?
= y. This corresponds to the compute-and-compare program CC[fA,y] where fA(x) = A · x. We

can think of conjunctions as a special case where the matrix A is a selector matrix that selects some
subset of the coordinates of x. For security, we require that y has pseudo-entropy or is computationally
unpredictable given A.

Private Secure Sketches. Secure sketches were introduced in [DORS08] as a tool to correct errors
in some source without reducing its entropy too much. For example, we can take a “sketch” of some
biometric scan in a way that allows us to correct errors in future scans of the same biometric without
significantly reducing the entropy of the biometric. This is important if we want to use biometrics for
identification or key derivation.

In more detail, let M be some metric space with distance ∆(·, ·). A (k, ℓ, t) secure sketch over M
consists of algorithms (SS,Rec) with the following properties:

• For all w,w′ ∈M with ∆(w,w′) ≤ t we have Rec(w′, SS(w)) = w.

• For all random variables W overM, if H∞(W) ≥ k then H∞(W |SS(W)) ≥ k − ℓ.

Although the sketch SS(W) is guaranteed to reduce the entropy of W by at most ℓ bits, it may reveal
various sensitive information about W . The work of [DS05] considered a notion of private secure sketches
which required an additional property:

• For every adversary A there exists a simulator Sim such that for every source W over M with
H∞(W) ≥ k and every predicate ϕ it holds that Pr[A(SS(W)) = ϕ(W)]− Pr[Sim() = ϕ(W)] ≤ ε.

The work of [DS05] showed how to construct private secure sketches for some metrics, but only at a cost
in parameters and generality. It appears to often be much simpler to construct a non-private sketch than
it is to construct a private one.

Here we give a generic method to construct a computationally private secure sketch (SS′,Rec′) from
any non-private sketch (SS,Rec) by using an obfuscator Obf for multi-bit compute-and-compare circuits
PCIRC

MBCC
. Let H be a family of pairwise-independent hash functions. Define:

• SS′(w): Let σ ← SS(w), h ← H. Define the circuit fh,σ(w
′)

def
= h(Rec(w′, σ)). Output σ′ ←

Obf(1λ,MBCC[fh,σ, h(w), σ]).

• Rec′(w′, σ′): Interpret σ′ as an obfuscated program and compute σ′(w′). If the output is σ 6= ⊥
then output Rec(w′, σ).

28

Assume the original secure sketch is a (k, ℓ, t) secure sketch. We choose the output length α of the
hash functions h to ensure that k−ℓ = α+ω(log λ) and α = λΩ(1). This gives a (k, ℓ+α, t) secure sketch.
Assume that Obf is distributional-VBB secure obfuscator for distributions Dα-PE, which we constructed
under LWE. Then the above construction is a computationally private secure sketch. In particular, by
the leftover hash lemma, h(w) has α bits of pseudo-entropy conditioned on σ, h and so we can rely on the
distributional-VBB security of the obfuscator to argue that the obfuscated program Obf(1λ, fh,σ, h(w), σ)
can be simulated and therefore does not reveal any predicate of w.

Plaintext Equality Checker. We can take any encryption scheme (Gen,Enc,Dec) and use the secret
key sk to create an obfuscated plaintext equality tester which checks if a ciphertext is an encryption of some
target plaintext y. To do so, we simple obfuscate the compute-and-compare program CC[Decsk(·), y].
Or, more generally, we can evaluate an arbitrary polynomial-time function g on the plaintext and test
if g(Decsk(ct)) = y by obfuscating CC[g ◦ Decsk, y]. As long as the target plaintext y has sufficient
pseudo-entropy (or unpredictability), the obfuscated program can be simulated without knowing sk and
therefore it does not break the semantic security of the encryption scheme. In other words, semantic
security continues to hold if we add P̃ ← Obf(1λ,CC[g ◦Decsk, y]) to the public key of the scheme. This
is true since the obfuscated program P̃ can be simulated without knowledge of sk and therefore it cannot
harm semantic security.

We already implicitly used this idea of obfuscating a plaintext equality tester in our compiler from
branching-program obfuscation to obfuscation for circuits/TM. In particular, when this idea is used in
conjunction with fully homomorphic encryption (FHE) it is especially powerful since it allows a user to
perform arbitrary operations on encrypted data and test whether the result matches the target y.

We note that securely adding a zero-test (a plaintext equality tester where the target is y = 0) to
FHE is essentially equivalent to constructing multi-linear maps. In our case, we can only achieve security
when we add a plaintext equality tester with a high pseudo-entropy target y. It would be interesting to
see whether this has tool has further applications or connections to multi-linear maps.

6.1 From Attribute-Based Encryption to One-Sided Predicate Encryption

An attribute based encryption (ABE) scheme allows us to create secret keys skC corresponding to a circuit
C and ciphertexts ct encrypting a message msg with respect to some attribute x. Given any such secret
key skC and ciphertext ct it is possible to recover the message msg iff C(x) = 1. In fact, the adversary
may see many secret keys skC1 , . . . , skCq but as long as all of the circuits evaluate to Ci(x) = 0 the
adversary will not learn anything about the encrypted message msg. The work of [GVW13] gave the first
construction of ABE for all circuits under the LWE assumption. This was later improved along several
dimensions by [BGG+14].

A one-sided predicate encryption (PE) is analogous to ABE except that it aims to also hide the
attribute x from users that aren’t qualified to decrypt. In particular as long as the adversary only gets
secret keys skC1 , . . . , skCq such that Ci(x) = 0 the adversary will not learn anything about the attribute
x or the encrypted message msg. The work of [GVW15] constructed PE for all circuits by carefully
combining the ABE construction of [BGG+14] with FHE. The main idea there relied on the fact that the
ABE of [BGG+14] already achieved some partial attribute hiding properties.

We now show how to generically upgrade any ABE to PE using obfuscation for compute-and-compare
programs. The main advantage of our construction is conceptual simplicity. Another advantage of our
construction is that it uses ABE generically and therefore any future advances in ABE will directly
translate into analogous advances in PE. For example, in all current constructions of ABE and PE,
the run-time of the encryption algorithm depends polynomially on the maximal depth of the supported
circuits. There is no known analogue of “bootstrapping”, which was used to overcome this obstacle in the
case of FHE, even if we’re willing to make a circular security assumption. Our result shows that getting

29

rid of the dependence on circuit depth in ABE will also translate to getting rid of it in PE (at least if
we’re willing to make a circular security assumption.)

The main idea of our construction goes as follows. To encrypt a message msg under an attribute x,
the PE encryption procedure ct′ ← Enc′(mpk, x,msg) first runs an ABE encryption ct ← Enc(mpk, x, y)
encrypting a uniformly random value y under the attribute x. Note that ct may reveal x completely.
Therefore, instead of outputting ct, the PE scheme obfuscates the multi-bit compute-and-compare pro-
gram MBCC[fct, y,msg], where the circuit fct(skC)

def
= DecskC (ct) performs ABE decryption, and sets the

obfuscated program to be the PE ciphetext. To decrypt we evaluate the PE ciphertext on the ABE secret
key skC as an input. If an adversary only gets secret keys skC for circuits C on which C(x) = 0 then
ABE security ensures that y is pseudo-random even given fct,msg and therefore the obfuscated program
can be simulated without knowledge of x,msg.

ABE and PE Definitions. A one-sided predicate-encryption (PE) scheme consists of algorithms
(Setup,KeyGen,Enc,Dec) and domains C = {Cλ},M = {Mλ},X = {Xλ} defined as follows:

• (mpk,msk)← Setup(1λ) outputs a master public/secret key pair mpk,msk.

• skC ← KeyGen(msk, C) takes as input a circuit C ∈ C and outputs skC .

• ct← Enc(mpk, x,msg) encrypts a message msg ∈M with respect to an attribute x ∈ X .

• msg = Dec(skC , ct) outputs msg if C(x) = 1.

For correctness, we require that for all msg ∈M, x ∈ X , C ∈ C such that C(x) = 1 we have

Pr

Dec(skC , ct) = msg :

(mpk,msk)← Setup(1λ),
skC ← KeyGen(msk, C),
ct← Enc(mpk, x,msg)

 = 1− negl(λ)

and for all msg ∈M, x ∈ X , C ∈ C such that C(x) = 0 we have

Pr

Dec(skC , ct) = ⊥ :

(mpk,msk)← Setup(1λ),
skC ← KeyGen(msk, C),
ct← Enc(mpk, x,msg)

 = 1− negl(λ)

For security, we consider the following game PEGamebA(1
λ) with an adversary A and a bit b ∈ {0, 1}.

• Run (mpk,msk)← Setup(1λ) and give mpk to A.

• The adversary AKeyGen(msk,·) gets access to the key generation oracle and eventually outputs two
tuples (x0,msg0), (x1,msg1) ∈ X ×M.

• The challenger encrypts ct← Enc(mpk, xb,msgb) and give ct to A.

• The adversary AKeyGen(msk,·) gets further access to the key generation oracle and eventually outputs
a bit b′ which we define as the output of the game.

An adversary A in the above game is legal if all of its queries C to the key generation oracle satisfy
C(x0) = C(x1) = 0. We require that for all legal PPT adversaries A we have

|Pr[PEGame0A(1
λ) = 1]− Pr[PEGame1A(1

λ) = 1]| = negl(λ).

A PE scheme is selective secure if the adversary has to choose (x0,msg0), (x1,msg1) before seeing mpk

or making key-generation queries.
An attribute based encryption ABE scheme is defined the same way as PE except that the adversary

has to choose the same attribute x0 = x1. This captures the fact that we are not hiding the attribute.

30

Construction: ABE to PE. Let E = (Setup,KeyGen,Enc,Dec) be an ABE scheme with some do-
mains C,M,X . Let Obf be an obfuscator for multi-bit compute-and-compare programs PCIRC

MBCC
or

PTM

MBCC
which satisfies distributional indistinguishability for α-pseudo-entropy distributions Dα-PE for

some polynomial α = α(λ). We assume that {0, 1}α ⊆ M. For any M′ = {0, 1}m(λ) we construct a
PE scheme E ′ = (Setup,KeyGen,Enc′,Dec′) which has identical Setup,KeyGen as the ABE scheme and
domains C,M′,X . The scheme is defined as follows.

• ct′ ← Enc′(mpk, x,msg): Choose y
$← {0, 1}α, and ct ← Enc(mpk, x, y). Let fct be a function that

has ct hard-coded, takes as input skC , and outputs fct(skC) = Dec(skC , ct). Output the obfuscated
program ct′ ← Obf(1λ,MBCC[fct, y,msg]).

• msg = Dec′(skC , ct
′): Interpret ct′ as an obfuscated program and run it on input skC .

Theorem 6.1. If E is an ABE scheme and Obf is a an obfuscator for multi-bit compute-and-compare
programs (either PCIRC

MBCC
or PTM

MBCC
) which satisfies distributional indistinguishability for Dα-PE then

E ′ is a PE scheme. If E is selectively secure then so is E ′.

Proof. Correctness of the PE scheme follows directly from the correctness of the ABE scheme and the
obfuscation scheme.

For security, we show that the games PEGame0A(1
λ) and PEGame1A(1

λ) are indistinguishable via a
sequence of hybrid arguments.

Hybrid 0. This is PEGame0A(1
λ). Note that the challenge ciphertext ct′ is computed by choosing y

$←
{0, 1}α, ct← Enc(mpk, x0, y) and ct′ ← Obf(1λ,MBCC[fct, y,msg0]).

Hybrid 1. In this game, the challenge ciphertext ct′ is computed by choosing y
$← {0, 1}α, ct ←

Enc(mpk, x0, 0
α) and ct′ ← Obf(1λ,MBCC[fct, y,msg0]). In other words, we now use the ABE

to encrypt the message 0α instead of y. Hybrids 0 and 1 are indistinguishable by the security of
the ABE scheme.

Hybrid 2. In this game, the challenge ciphertext ct′ is computed by choosing y
$← {0, 1}α, ct ←

Enc(mpk, x0, 0
α) and ct′ ← Sim(1λ, params) where Sim is the simulator of the obfuscation scheme

and params are the parameters of the program fct. In other words, we now give a simulated program
instead of a correctly obfuscated one. Hybrids 1 and 2 are indistinguishable by the security of the
obfuscation scheme. Note that the value y does not appear anywhere else in the game except in
the obfuscated program and has α bits of real entropy even conditioned on fct and everything else
the adversary sees during the game.

Hybrid 3. This game is the same as Hybrid 1 but with (x1,msg1) instead of (x0,msg0). It is indistin-
guishable from Hybrid 2 by the same reasoning as was used to show indistinguishability of hybrids
1 and 2.

Hybrid 4. This is PEGame1A(1
λ) which is the same as Hybrid 0 but with (x1,msg1) instead of (x0,msg0).

It is indistinguishable from Hybrid 3 by the same reasoning as was used to show indistinguishability
of hybrids 0 and 1.

This completes the proof of security.

Efficiency. If we start with an obfuscator for circuits then the encryption time will be at least as large
as the maximal circuit size of the circuits C ∈ C supported by the ABE. However, if we start with a truly
succinct obfuscator for Turing Machines then the encryption time and the size of the ciphertext in our PE
scheme will only depend on the ciphertext size of the underlying ABE. If we start with a weakly succinct

31

obfuscator for Turing Machines then the encryption time in our PE will also depend on the depth of the
decryption circuit of the ABE.

This means that, under the LWE assumption, we recover the result of [GVW15] with essentially the
same asymptotic efficiency. However, if in the future someone comes up with a new construction of truly
succinct ABE (where the encryption time does not depend on the circuit size or depth at all), then we
will be able to plug it in to our construction (assuming truly succinct FHE) and get a construction of
truly succinct PE.

6.2 From Witness Encryption to Null iO

A witness encryption (WE) [GGSW13] scheme allows us to encrypt a message m with respect to an
arbitrary NP statement x so that anybody that has a witness w for x can decrypt the message. On the
other hand, if the statement x is false, then the scheme computationally hides the encrypted message.

An indistinguishability obfuscation (iO) [BGI+01, GGH+13b] scheme allows us to obfuscate circuits
so that for any two circuits C,C ′ which are functionally equivalent, meaning that for all inputs x we have
C(x) = C ′(x), the obfuscation of C is indistinguishable from that of C ′. A weaker notion of iO, that
we call null iO or niO, only requires security to hold for null circuits C,C ′ such that for all x we have
C(x) = C ′(x) = 0. Note that we still require the obfuscator to be correct on all circuits including ones
that are not necessarily null.

It’s clear that iO implies niO. Also, the work of [GGH+13b] showed that iO implies WE, but it turns
out that their result actually also shows that even niO implies WE. In particular, using niO, we can
encrypt a message m under an NP statement x by obfuscating the circuit C[x,m] which takes as input
a witness w and verifies that it is a valid witness for x – if so it outputs m and else it outputs 0. If x
is a false statement, then C[x,m] is a null circuit and therefore we can use niO security to argue that
the obfuscations of C[x,m] (corresponding to an encryption of m) and C[x,m′] (corresponding to an
encryption of m′) are indistinguishable. Therefore iO implies niO implies WE.

What about the reverse directions; does WE imply niO and does niO imply iO? Previously nothing
about the reverse directions was known. In this work, we use obfuscation for compute-and-compare
programs to convert WE into niO. In other words, we show that under the LWE assumption WE indeed
does imply niO. It remains a fascinating open problem if niO implies iO.

Definitions of Witness Encryption and Null iO. We now introduce the definitions of the two
primitives we consider in this section.

Definition 6.2 (Witness Encryption). A Witness Encryption scheme for some NP language L (with
corresponding witness relation R) consists of PPT algorithms (Enc,Dec) such that the following holds.

Correctness: For all x ∈ L with witness w such that R(x,w) holds and for all messages m ∈ {0, 1}∗ we
have Pr[Dec(w,Enc(1λ, x,m)) = m] = 1

Security: For any ensembles x = {xλ}, m = {mλ}, m′ = {m′λ} such that for all λ ∈ N we have xλ 6∈ L
and |mλ| = |m′λ|, we require that the following holds:

Enc(1λ, xλ,mλ)
c≈ Enc(1λ, xλ,m

′
λ)

Note: We can assume without loss of generality that a ciphertext ct ← Enc(1λ, x,m) contains the
statement x in the clear and that the decryption procedure Dec(w, ct) checks if w is a valid witness for
x and if not it outputs ⊥. In other words, this guarantees that Dec(w,Enc(1λ, x,m)) = m iff (x,w) ∈ R.

Definition 6.3 (Null iO). An null iO (niO) obfuscation scheme satisfies the following properties.

32

Correctness: There is a negligible function ν such that for all circuits C : {0, 1}n → {0, 1}:

Pr[∀x ∈ {0, 1}n : C(x) = C̃(x) | C̃ ← Obf(1λ, C)] ≥ 1− ν(λ),

where the probability is over the coin tosses of Obf.

Security: Let C = {Cλ}, C ′ = {C ′λ} be two ensembles of circuits with equal input length n(λ) and

circuit size, which are furthermore everywhere null meaning that for all x ∈ {0, 1}n(λ) we have

Cλ(x) = C ′λ(x) = 0. Then we require that: Obf(1λ, Cλ)
c≈ Obf(1λ, C ′λ).

Construction: From WE to niO. We now show how to use obfuscation for compute-and-compare
programs to go fromWE to niO. Let (Enc,Dec) be a witness encryption scheme for the circuit satisfiability
language

L = {C : C is a boolean circuit ∃x : C(x) = 1}
with the natural witness relation (C, x) ∈ R if C(x) = 1. Let Obf be an obfuscator for compute-
and-compare circuits PCIRC

CC
which satisfies distributional indistinguishability for α(λ)-pseudo-entropy

distributions Dα−PE for some polynomial α. We build a niO obfuscator Obf ′(1λ, C) which takes as input
a circuit with input size n and does the following.

• Choose a random y ← {0, 1}α(λ) and set ct← Enc(1λ, C, y).

• Let fct(x) be a circuit that takes as input x ∈ {0, 1}n and outputs Dec(x, ct).

• Compute P̃ ← Obf(1λ,CC[fct, y]) and output it.

Theorem 6.4. If (Enc,Dec) is a witness encryption and Obf is an obfuscator for PCIRC

CC
which satisfies

distributional indistinguishability for distribution class Dα−PE for some polynomial α then Obf ′ is a
secure niO scheme. In particular, under the LWE assumption, the above construction converts any
witness encryption scheme into a niO scheme.

Proof. Correctness of the niO obfuscator Obf ′ holds by the correctness of the WE scheme and the ob-
fuscator Obf. In particular, with overwhelming probability over the choice of encryption/obfuscation
randomness we have: P̃ (x) = 1 iff fct(x) = y iff Dec(x, ct) = y iff C(x) = 1.

To show security of Obf, let C = {Cλ} be a circuit ensembles that is everywhere null. We first rely
on the security of the WE scheme to argue that y is pseudo-random even conditioned on ct.

((y, ct) : y ← {0, 1}α(λ), ct← Enc(1λ, Cλ, y))
c≈ ((y, ct′) : y ← {0, 1}α(λ), ct′ ← Enc(1λ, Cλ, 0

α(λ)))

and therefore HHILL(y | fct) ≥ H∞(y | fct′) = α(λ). We can then rely on the security of the obfuscator
Obf ′ to argue that the obfuscated circuit can be simulated:

Obf(1λ,CC[fct, y])
c≈ Sim(1λ, params).

This shows that for any two circuits C = {Cλ}, C ′ = {C ′λ} that are everywhere null and have the same
input-size and circuit-size we have:

Obf ′(1λ, Cλ)
c≈ Sim(1λ, params)

c≈ Obf ′(1λ, C ′λ).

This shows that Obf ′ is an niO obfuscator as we wanted.

33

6.3 Circular-Security Counterexamples

Definitions of encryption security, such as semantic security, are supposed to guarantee that a ciphertext
hides all information about the encrypted plaintext. However, this only holds if the plaintext message is
independent of the secret key. An interesting question is whether such definitions also imply security when
the plaintext message can depend on the secret key. The most natural variants of this question deal with
circular security where the plaintext is the secret key itself Encpk(sk) or, more generally, ℓ-cycle security
where the adversary sees ciphertexts Encpk1(sk2), . . . ,Encpkℓ−1

(skℓ),Encpkℓ(sk1). Can we guarantee that
such ciphertexts look indistinguishable from the encryptions of any other key-independent plaintexts?

It’s easy to see that there are encryption schemes that are semantically secure but are trivially not
circular secure; for example we can take any encryption scheme and modify the encryption procedure
to output the secret key in the clear if it is ever given as a plaintext. However, such trivial counter-
examples go away if we only consider bit-encryption schemes where the message space consists of a single
bit and the only way to encrypt a longer message is to encrypt it one bit at a time. Also, such trivial
counter-examples don’t exist for cycles of length ℓ ≥ 2.

Perhaps we could conjecture that every public-key bit-encryption scheme which is semantically secure
is also circular secure? The works of [Rot13, KRW15] show counter-examples to this but only under
strong non-standard assumptions (multi-linear maps or iO). Even more recently, the work of [GKW17b]
provided such a counter-example for symmetric-key bit-encryption under the LWE assumption. In this
work, we construct such a counter-example for public-key bit-encryption under the LWE assumption.

Perhaps we could instead conjecture that every semantically secure encryption scheme is ℓ-cycle
secure for some sufficiently large ℓ? We know there are counter-example schemes which are not secure for
ℓ = 2-cycles [ABBC10, CGH12, BHW15] under bi-linear group assumptions and LWE. Recently, for any
polynomial ℓ, we also have counter-example schemes that are not ℓ-cycle secure under iO [KRW15, MO14]
and even more recently under LWE [AP16, KW16]. However, the counter-example schemes work for
bounded-length cycles where the bound ℓ is fixed first and then we can create a scheme which is ℓ-cycle
insecure. (Furthermore, the schemes based on DDH and LWE require common parameters to be used
across all schemes.) Therefore this still leaves open the possibility that for every scheme there exists some
sufficiently large polynomial ℓ for which it is ℓ-cycle secure. The latest work of [GKW17a] gives a counter-
example for unbounded-length key cycles by constructing a single scheme which is ℓ-cycle insecure for all
polynomial ℓ, but does so assuming iO. Here we provide such a counter-example for unbounded-length
key cycles (without common parameters) under LWE.

In fact we unify the above two goals by giving a single scheme which is a semantically secure public-
key bit-encryption scheme and which is neither circular secure nor ℓ-cycle secure for any ℓ. In fact, our
counter-example is more dramatic than many of the previous ones since the attacker can completely
recover the secret key(s) in full. Therefore, seeing an encryption of the secret key or a cycle of secret
keys is not only distinguishable from random but allows an attacker to break the security of all future
ciphertexts as well. Perhaps most importantly, our construction relies on a conceptually simple use of
our obfuscation for compute-and-compare programs and therefore significantly simplifies and condenses
the prior literature.

Construction 6.5. Let E = (Gen,Enc,Dec) be any public-key bit-encryption scheme, and let Obf be
an obfuscator for multi-bit compute-and-compare circuits PCIRC

MBCC
with distributional indistinguishability

for α-pseudo-entropy distributions Dα−PE for some polynomial α = α(λ). We define the bit-encryption
scheme E ′ = (Gen′,Enc′,Dec′) as follows.

Gen′(1λ): Run (pk, sk)← Gen(1λ) and y
$← {0, 1}α. Construct the circuit

fsk(ct1, . . . , ctα)
def
= (Decsk(ct1), . . . ,Decsk(ctα))

and let P̃ ← Obf(1λ,MBCC[fsk, y, sk]). Output pk′ = (P̃ , pk), sk′ = (y, sk).

34

Enc′
pk′

(b): Output Encpk(b).

Dec′
sk′
(ct): Output Decsk(ct).

Semantic Security. If E is a semantically secure public-key bit-encryption scheme and Obf satisfies
distributional indistinguishability for the class of α-pseudo-entropy distributions Dα-PE then E ′ is a
semantically secure public-key bit-encryption scheme. The proof of security first relies on the fact that
y is uniformly random even given sk and therefore we can use the security of the obfuscation scheme to
switch from a real P̃ ← Obf(1λ,MBCC[fsk, y, sk]) to a simulated P̃ ← Sim(1λ, params) which does not
depend on the secret key sk. Once we do this, the semantic security of E ′ follows directly from that of E .

Circular Insecurity. It is clear that the above scheme E ′ is not circular secure in a very strong sense.
In particular, given a ciphertext ct = (ct1, . . . , ctq) corresponding to bit-by-bit encryptions of sk′ = (y, sk)
we can run P̃ (ct1, . . . , ctα) on the first α ciphertexts (which encrypt y) to recover sk. This completely
breaks security of the encryption scheme, even for future ciphertexts that don’t depend on the secret key.

ℓ-Cycle Insecurity. If the scheme E is also a (leveled) FHE scheme, then E ′ is ℓ-cycle insecure for every
polynomial ℓ. At a high level, this allows us to convert an ℓ-cycle to a 1-cycle. A similar idea was used
in [GKW17a]. In particular, assume we are given public keys pk′i = (P̃i, pki) and an encrypted key-cycle

Encpk1(sk
′
2), . . . ,Encpkℓ−1

(sk′ℓ),Encpkℓ(sk
′
1)

where plaintexts sk′i = (yi, ski) are encrypted bit-by-bit.
For every i ∈ [ℓ], we can use the FHE evaluation algorithm to come up with a ciphertext Encpki(sk

′
i)

encrypting sk′i = (yi, ski) bit by bit. We can take the first α components of this ciphertext to get
ct∗i = Encpki(yi) and run P̃i(ct

∗
i) which outputs ski. This allows us to completely recover all of the

decryption keys.
The above supposed we have a true FHE scheme. But in fact, we can do the same thing us-

ing only a leveled FHE scheme since we can do the above computation in depth d = poly(log ℓ, λ).
First, for all j in parallel, combine ctj→j+1 = Encpkj (sk

′
j+1) with ctj+1→j+2 = Encpkj+1

(sk′j+2) to

get ctj→j+2 = Encpkj (sk
′
j+2) (additions are modulo ℓ). Then combine ctj→j+2 with ctj→j+4 to get

ctj→j+4 = Encpkj (sk
′
j+4). By continuing this process for log ℓ steps we can get cti→i+ℓ = Encpki(sk

′
i) as

we wanted. (This works directly if ℓ is a power of 2 but it is easy to extend to any ℓ. If ℓ =
∑⌊log ℓ⌋

k=0 bk2
k

then, after we compute ciphertexts ctj→j+2k for all j, k in the first ⌊log ℓ⌋ steps, we can spend another

⌊log ℓ⌋ steps to iteratively compute cti→i+
∑q

k=0 bk2
k for q = 1, . . . , ⌊log ℓ⌋ by combining the appropriate 2k

“jumps” that we computed previously.) Therefore, by upper bounding log ℓ < λ, the computation’s depth
is upper bounded by some fixed polynomial d = d(λ) in the security parameter, which does not depend
on ℓ, and allows us to do the computation for all polynomial ℓ. Therefore, by using this fixed polynomial
d for the depth of the leveled FHE, we get a single scheme which can handle all polynomials ℓ.

Summarizing, we get the following theorem.

Theorem 6.6. Under the LWE assumption there exists a public-key bit-encryption scheme which is
semantically secure but is neither circular secure nor ℓ-cycle secure for any polynomial ℓ.

6.3.1 Circular (In)secure Compiler5

The work of Black, Rogaway, and Shrimpton [BRS03] showed how to transform any semantically secure
scheme into a Key-Dependent Message (KDM) secure one in the random-oracle model. A scheme is
defined to be KDM secure, if it remains secure even if an adversary has access to encryptions of messages

5This result was added subsequently to the otherwise concurrent/independent work of [GKW17c].

35

that depend arbitrary on the secret key. Clearly, KDM security implies circular security. We show
that under the LWE assumption, there exists a semantically secure scheme for which the transformation
of [BRS03] fails to be circular secure in the standard model, when the random oracle is replaced with
any hash function family.

The Compiler [BRS03]. Given a public-key encryption scheme E = (Gen,Enc,Dec) and a hash
function H, the transformation of [BRS03] defines a new public-key scheme E∗ = (Gen∗,Enc∗,Dec∗)
as follows.

• Gen∗(1λ): Run (pk, sk)← Gen(1λ). Output pk∗ = pk, sk∗ = sk.

• Enc∗pk∗(m): Sample r
$← {0, 1}λ. Output (ct1, ct2) = (Encpk(r), H(r)⊕m).

• Dec∗sk∗(ct1, ct2): Output H(Decsk(ct1))⊕ ct2.

The work of [BRS03] proved that when H(·) is modeled as a random oracle and E is semantically secure
then E∗ is KDM secure. Intuitively, the only way to learn anything from ct2 is to call the random oracle
on r but r is hidden by the semantic security of E .

Circular Insecurity in the Standard Model. As our counter-example we take the public-key bit
encryption scheme E ′ from Construction 6.5, where the underlying scheme E used by E ′ is a (leveled)
FHE scheme. We note that E ′ is itself an FHE scheme which we proved to be semantically secure but it
is circular insecure in a very strong sense: given any ciphertext which decrypts to the secret key we can
recover the secret key.

If we apply the compiler of [BRS03] to the scheme E ′ and let H by any standard-model hash function
(or family of hash functions) then we claim that the resulting scheme E∗ fails to be circular secure. In
particular if (ct1, ct2) = Enc∗pk∗(sk

∗) then ct1 = Enc′
pk′

(r) and ct2 = H(r) ⊕ sk′. Since the encryption

scheme E ′ is an FHE scheme, we can homomorphically evaluate the function fct2(r) = H(r)⊕ ct2 on the
ciphertext ct1 to get an encryption of sk′ under pk′. But by the way that E ′ was constructed, any such
encryption allows us to recover sk′.

References

[ABBC10] Tolga Acar, Mira Belenkiy, Mihir Bellare, and David Cash. Cryptographic agility and its
relation to circular encryption. In Henri Gilbert, editor, Advances in Cryptology – EURO-
CRYPT 2010, volume 6110 of Lecture Notes in Computer Science, pages 403–422, French
Riviera, May 30 – June 3, 2010. Springer, Heidelberg, Germany.

[ACPS09] Benny Applebaum, David Cash, Chris Peikert, and Amit Sahai. Fast cryptographic primi-
tives and circular-secure encryption based on hard learning problems. In Shai Halevi, editor,
Advances in Cryptology – CRYPTO 2009, volume 5677 of Lecture Notes in Computer Sci-
ence, pages 595–618, Santa Barbara, CA, USA, August 16–20, 2009. Springer, Heidelberg,
Germany.

[Ajt99] Miklós Ajtai. Generating hard instances of the short basis problem. In ICALP, pages 1–9,
1999.

[AKPW13] Joël Alwen, Stephan Krenn, Krzysztof Pietrzak, and Daniel Wichs. Learning with rounding,
revisited - new reduction, properties and applications. In Ran Canetti and Juan A. Garay,
editors, Advances in Cryptology – CRYPTO 2013, Part I, volume 8042 of Lecture Notes in
Computer Science, pages 57–74, Santa Barbara, CA, USA, August 18–22, 2013. Springer,
Heidelberg, Germany.

36

[AP16] Navid Alamati and Chris Peikert. Three’s compromised too: Circular insecurity for any
cycle length from (ring-)LWE. In Matthew Robshaw and Jonathan Katz, editors, Advances
in Cryptology – CRYPTO 2016, Part II, volume 9815 of Lecture Notes in Computer Sci-
ence, pages 659–680, Santa Barbara, CA, USA, August 14–18, 2016. Springer, Heidelberg,
Germany.

[Bar89] David A. Mix Barrington. Bounded-width polynomial-size branching programs recognize
exactly those languages in nc1. J. Comput. Syst. Sci., 38(1):150–164, 1989.

[BBC+14] Boaz Barak, Nir Bitansky, Ran Canetti, Yael Tauman Kalai, Omer Paneth, and Amit Sahai.
Obfuscation for evasive functions. In Yehuda Lindell, editor, TCC 2014: 11th Theory of
Cryptography Conference, volume 8349 of Lecture Notes in Computer Science, pages 26–51,
San Diego, CA, USA, February 24–26, 2014. Springer, Heidelberg, Germany.

[BGG+14] Dan Boneh, Craig Gentry, Sergey Gorbunov, Shai Halevi, Valeria Nikolaenko, Gil Segev,
Vinod Vaikuntanathan, and Dhinakaran Vinayagamurthy. Fully key-homomorphic encryp-
tion, arithmetic circuit ABE and compact garbled circuits. In Phong Q. Nguyen and Elis-
abeth Oswald, editors, Advances in Cryptology – EUROCRYPT 2014, volume 8441 of Lec-
ture Notes in Computer Science, pages 533–556, Copenhagen, Denmark, May 11–15, 2014.
Springer, Heidelberg, Germany.

[BGI+01] Boaz Barak, Oded Goldreich, Russell Impagliazzo, Steven Rudich, Amit Sahai, Salil P.
Vadhan, and Ke Yang. On the (im)possibility of obfuscating programs. In Joe Kilian,
editor, Advances in Cryptology – CRYPTO 2001, volume 2139 of Lecture Notes in Computer
Science, pages 1–18, Santa Barbara, CA, USA, August 19–23, 2001. Springer, Heidelberg,
Germany.

[BGV12] Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. (Leveled) fully homomorphic
encryption without bootstrapping. In Shafi Goldwasser, editor, ITCS 2012: 3rd Innovations
in Theoretical Computer Science, pages 309–325, Cambridge, MA, USA, January 8–10, 2012.
Association for Computing Machinery.

[BHW15] Allison Bishop, Susan Hohenberger, and Brent Waters. New circular security counterexam-
ples from decision linear and learning with errors. In Tetsu Iwata and Jung Hee Cheon,
editors, Advances in Cryptology – ASIACRYPT 2015, Part II, volume 9453 of Lecture Notes
in Computer Science, pages 776–800, Auckland, New Zealand, November 30 – December 3,
2015. Springer, Heidelberg, Germany.

[BLP+13] Zvika Brakerski, Adeline Langlois, Chris Peikert, Oded Regev, and Damien Stehlé. Classical
hardness of learning with errors. In Dan Boneh, Tim Roughgarden, and Joan Feigenbaum,
editors, 45th Annual ACM Symposium on Theory of Computing, pages 575–584, Palo Alto,
CA, USA, June 1–4, 2013. ACM Press.

[BPR12] Abhishek Banerjee, Chris Peikert, and Alon Rosen. Pseudorandom functions and lattices.
In David Pointcheval and Thomas Johansson, editors, Advances in Cryptology – EURO-
CRYPT 2012, volume 7237 of Lecture Notes in Computer Science, pages 719–737, Cam-
bridge, UK, April 15–19, 2012. Springer, Heidelberg, Germany.

[BR13] Zvika Brakerski and Guy N. Rothblum. Obfuscating conjunctions. In Ran Canetti and
Juan A. Garay, editors, Advances in Cryptology – CRYPTO 2013, Part II, volume 8043 of
Lecture Notes in Computer Science, pages 416–434, Santa Barbara, CA, USA, August 18–22,
2013. Springer, Heidelberg, Germany.

37

[BRS03] John Black, Phillip Rogaway, and Thomas Shrimpton. Encryption-scheme security in the
presence of key-dependent messages. In Kaisa Nyberg and Howard M. Heys, editors, SAC
2002: 9th Annual International Workshop on Selected Areas in Cryptography, volume 2595
of Lecture Notes in Computer Science, pages 62–75, St. John’s, Newfoundland, Canada,
August 15–16, 2003. Springer, Heidelberg, Germany.

[BV11] Zvika Brakerski and Vinod Vaikuntanathan. Efficient fully homomorphic encryption from
(standard) LWE. In Rafail Ostrovsky, editor, 52nd Annual Symposium on Foundations
of Computer Science, pages 97–106, Palm Springs, CA, USA, October 22–25, 2011. IEEE
Computer Society Press.

[BV14] Zvika Brakerski and Vinod Vaikuntanathan. Lattice-based FHE as secure as PKE. In Moni
Naor, editor, ITCS 2014: 5th Innovations in Theoretical Computer Science, pages 1–12,
Princeton, NJ, USA, January 12–14, 2014. Association for Computing Machinery.

[BVWW16] Zvika Brakerski, Vinod Vaikuntanathan, Hoeteck Wee, and Daniel Wichs. Obfuscating
conjunctions under entropic ring LWE. In Madhu Sudan, editor, ITCS 2016: 7th Innovations
in Theoretical Computer Science, pages 147–156, Cambridge, MA, USA, January 14–16,
2016. Association for Computing Machinery.

[Can97] Ran Canetti. Towards realizing random oracles: Hash functions that hide all partial informa-
tion. In Burton S. Kaliski Jr., editor, Advances in Cryptology – CRYPTO’97, volume 1294 of
Lecture Notes in Computer Science, pages 455–469, Santa Barbara, CA, USA, August 17–21,
1997. Springer, Heidelberg, Germany.

[CC17] Ran Canetti and Yilei Chen. Constraint-hiding constrained PRFs for NC1 from LWE. In
Jean-Sébastien Coron and Jesper Buus Nielsen, editors, Advances in Cryptology – EURO-
CRYPT 2017, Part I, volume 10210 of Lecture Notes in Computer Science, pages 446–476,
Paris, France, May 8–12, 2017. Springer, Heidelberg, Germany.

[CD08] Ran Canetti and Ronny Ramzi Dakdouk. Obfuscating point functions with multibit output.
In Nigel P. Smart, editor, Advances in Cryptology – EUROCRYPT 2008, volume 4965 of
Lecture Notes in Computer Science, pages 489–508, Istanbul, Turkey, April 13–17, 2008.
Springer, Heidelberg, Germany.

[CGH12] David Cash, Matthew Green, and Susan Hohenberger. New definitions and separations
for circular security. In Marc Fischlin, Johannes Buchmann, and Mark Manulis, editors,
PKC 2012: 15th International Conference on Theory and Practice of Public Key Cryp-
tography, volume 7293 of Lecture Notes in Computer Science, pages 540–557, Darmstadt,
Germany, May 21–23, 2012. Springer, Heidelberg, Germany.

[CLLT16] Jean-Sébastien Coron, Moon Sung Lee, Tancrède Lepoint, and Mehdi Tibouchi. Cryptanaly-
sis of GGH15 multilinear maps. In Matthew Robshaw and Jonathan Katz, editors, Advances
in Cryptology – CRYPTO 2016, Part II, volume 9815 of Lecture Notes in Computer Sci-
ence, pages 607–628, Santa Barbara, CA, USA, August 14–18, 2016. Springer, Heidelberg,
Germany.

[CRV10] Ran Canetti, Guy N. Rothblum, and Mayank Varia. Obfuscation of hyperplane membership.
In Daniele Micciancio, editor, TCC 2010: 7th Theory of Cryptography Conference, volume
5978 of Lecture Notes in Computer Science, pages 72–89, Zurich, Switzerland, February 9–11,
2010. Springer, Heidelberg, Germany.

38

[DORS08] Yevgeniy Dodis, Rafail Ostrovsky, Leonid Reyzin, and Adam D. Smith. Fuzzy extractors:
How to generate strong keys from biometrics and other noisy data. SIAM J. Comput.,
38(1):97–139, 2008.

[DS05] Yevgeniy Dodis and Adam Smith. Correcting errors without leaking partial information. In
Harold N. Gabow and Ronald Fagin, editors, 37th Annual ACM Symposium on Theory of
Computing, pages 654–663, Baltimore, MA, USA, May 22–24, 2005. ACM Press.

[GGH13a] Sanjam Garg, Craig Gentry, and Shai Halevi. Candidate multilinear maps from ideal lat-
tices. In Thomas Johansson and Phong Q. Nguyen, editors, Advances in Cryptology – EU-
ROCRYPT 2013, volume 7881 of Lecture Notes in Computer Science, pages 1–17, Athens,
Greece, May 26–30, 2013. Springer, Heidelberg, Germany.

[GGH+13b] Sanjam Garg, Craig Gentry, Shai Halevi, Mariana Raykova, Amit Sahai, and Brent Waters.
Candidate indistinguishability obfuscation and functional encryption for all circuits. In 54th
Annual Symposium on Foundations of Computer Science, pages 40–49, Berkeley, CA, USA,
October 26–29, 2013. IEEE Computer Society Press.

[GGH15] Craig Gentry, Sergey Gorbunov, and Shai Halevi. Graph-induced multilinear maps from
lattices. In Yevgeniy Dodis and Jesper Buus Nielsen, editors, TCC 2015: 12th Theory of
Cryptography Conference, Part II, volume 9015 of Lecture Notes in Computer Science, pages
498–527, Warsaw, Poland, March 23–25, 2015. Springer, Heidelberg, Germany.

[GGSW13] Sanjam Garg, Craig Gentry, Amit Sahai, and Brent Waters. Witness encryption and its
applications. In Dan Boneh, Tim Roughgarden, and Joan Feigenbaum, editors, 45th Annual
ACM Symposium on Theory of Computing, pages 467–476, Palo Alto, CA, USA, June 1–4,
2013. ACM Press.

[GKPV10] Shafi Goldwasser, Yael Tauman Kalai, Chris Peikert, and Vinod Vaikuntanathan. Robust-
ness of the learning with errors assumption. In Andrew Chi-Chih Yao, editor, ICS 2010:
1st Innovations in Computer Science, pages 230–240, Tsinghua University, Beijing, China,
January 5–7, 2010. Tsinghua University Press.

[GKW17a] Rishab Goyal, Venkata Koppula, and Brent Waters. Separating IND-CPA and circular
security for unbounded length key cycles. In Serge Fehr, editor, PKC 2017: 20th Inter-
national Conference on Theory and Practice of Public Key Cryptography, Part I, volume
10174 of Lecture Notes in Computer Science, pages 232–246, Amsterdam, The Netherlands,
March 28–31, 2017. Springer, Heidelberg, Germany.

[GKW17b] Rishab Goyal, Venkata Koppula, and Brent Waters. Separating semantic and circular
security for symmetric-key bit encryption from the learning with errors assumption. In
Jean-Sébastien Coron and Jesper Buus Nielsen, editors, Advances in Cryptology – EURO-
CRYPT 2017, Part II, volume 10211 of Lecture Notes in Computer Science, pages 528–557,
Paris, France, May 8–12, 2017. Springer, Heidelberg, Germany.

[GKW17c] Rishab Goyal, Venkata Koppula, and Brent Waters. lockable obfuscation. Cryptology ePrint
Archive, Report 2017/274, 2017. http://eprint.iacr.org/2017/274.

[GPV08] Craig Gentry, Chris Peikert, and Vinod Vaikuntanathan. Trapdoors for hard lattices and
new cryptographic constructions. In STOC, pages 197–206, 2008.

[GSW13] Craig Gentry, Amit Sahai, and Brent Waters. Homomorphic encryption from learning with
errors: Conceptually-simpler, asymptotically-faster, attribute-based. In Ran Canetti and
Juan A. Garay, editors, Advances in Cryptology – CRYPTO 2013, Part I, volume 8042 of

39

http://eprint.iacr.org/2017/274

Lecture Notes in Computer Science, pages 75–92, Santa Barbara, CA, USA, August 18–22,
2013. Springer, Heidelberg, Germany.

[GVW13] Sergey Gorbunov, Vinod Vaikuntanathan, and Hoeteck Wee. Attribute-based encryption
for circuits. In Dan Boneh, Tim Roughgarden, and Joan Feigenbaum, editors, 45th Annual
ACM Symposium on Theory of Computing, pages 545–554, Palo Alto, CA, USA, June 1–4,
2013. ACM Press.

[GVW15] Sergey Gorbunov, Vinod Vaikuntanathan, and Hoeteck Wee. Predicate encryption for cir-
cuits from LWE. In Rosario Gennaro and Matthew J. B. Robshaw, editors, Advances in
Cryptology – CRYPTO 2015, Part II, volume 9216 of Lecture Notes in Computer Science,
pages 503–523, Santa Barbara, CA, USA, August 16–20, 2015. Springer, Heidelberg, Ger-
many.

[Had00] Satoshi Hada. Zero-knowledge and code obfuscation. In Tatsuaki Okamoto, editor, Advances
in Cryptology – ASIACRYPT 2000, volume 1976 of Lecture Notes in Computer Science,
pages 443–457, Kyoto, Japan, December 3–7, 2000. Springer, Heidelberg, Germany.

[HILL99] Johan H̊astad, Russell Impagliazzo, Leonid A. Levin, and Michael Luby. A pseudorandom
generator from any one-way function. SIAM Journal on Computing, 28(4):1364–1396, 1999.

[HLR07] Chun-Yuan Hsiao, Chi-Jen Lu, and Leonid Reyzin. Conditional computational entropy, or
toward separating pseudoentropy from compressibility. In Moni Naor, editor, Advances in
Cryptology – EUROCRYPT 2007, volume 4515 of Lecture Notes in Computer Science, pages
169–186, Barcelona, Spain, May 20–24, 2007. Springer, Heidelberg, Germany.

[ILL89] Russell Impagliazzo, Leonid A. Levin, and Michael Luby. Pseudo-random generation from
one-way functions (extended abstracts). In 21st Annual ACM Symposium on Theory of
Computing, pages 12–24, Seattle, WA, USA, May 15–17, 1989. ACM Press.

[KRW15] Venkata Koppula, Kim Ramchen, and Brent Waters. Separations in circular security for
arbitrary length key cycles. In Yevgeniy Dodis and Jesper Buus Nielsen, editors, TCC 2015:
12th Theory of Cryptography Conference, Part II, volume 9015 of Lecture Notes in Com-
puter Science, pages 378–400, Warsaw, Poland, March 23–25, 2015. Springer, Heidelberg,
Germany.

[KW16] Venkata Koppula and Brent Waters. Circular security separations for arbitrary length cycles
from LWE. In Matthew Robshaw and Jonathan Katz, editors, Advances in Cryptology –
CRYPTO 2016, Part II, volume 9815 of Lecture Notes in Computer Science, pages 681–700,
Santa Barbara, CA, USA, August 14–18, 2016. Springer, Heidelberg, Germany.

[MO14] Antonio Marcedone and Claudio Orlandi. Obfuscation→ (IND-CPA security 6→ circular se-
curity). In Michel Abdalla and Roberto De Prisco, editors, SCN 14: 9th International Con-
ference on Security in Communication Networks, volume 8642 of Lecture Notes in Computer
Science, pages 77–90, Amalfi, Italy, September 3–5, 2014. Springer, Heidelberg, Germany.

[MP12] Daniele Micciancio and Chris Peikert. Trapdoors for lattices: Simpler, tighter, faster, smaller.
In EUROCRYPT, pages 700–718, 2012.

[Pei09] Chris Peikert. Public-key cryptosystems from the worst-case shortest vector problem: ex-
tended abstract. In Michael Mitzenmacher, editor, 41st Annual ACM Symposium on Theory
of Computing, pages 333–342, Bethesda, MD, USA, May 31 – June 2, 2009. ACM Press.

40

[Reg05] Oded Regev. On lattices, learning with errors, random linear codes, and cryptography. In
Harold N. Gabow and Ronald Fagin, editors, 37th Annual ACM Symposium on Theory of
Computing, pages 84–93, Baltimore, MA, USA, May 22–24, 2005. ACM Press.

[Rot13] Ron Rothblum. On the circular security of bit-encryption. In Amit Sahai, editor, TCC 2013:
10th Theory of Cryptography Conference, volume 7785 of Lecture Notes in Computer Science,
pages 579–598, Tokyo, Japan, March 3–6, 2013. Springer, Heidelberg, Germany.

[Wee05] Hoeteck Wee. On obfuscating point functions. In Harold N. Gabow and Ronald Fagin,
editors, 37th Annual ACM Symposium on Theory of Computing, pages 523–532, Baltimore,
MA, USA, May 22–24, 2005. ACM Press.

[Zha16] Mark Zhandry. The magic of ELFs. In Matthew Robshaw and Jonathan Katz, editors,
Advances in Cryptology – CRYPTO 2016, Part I, volume 9814 of Lecture Notes in Computer
Science, pages 479–508, Santa Barbara, CA, USA, August 14–18, 2016. Springer, Heidelberg,
Germany.

A A Construction from (null) iO

Technically speaking, D-VBB obfuscation for compute-and-compare programs is incomparable to iO.
However, here we show a very simple construction of the former from the latter. In fact, we only need
null iO rather than full iO.

We sketch the construction of an obfuscator Obf for compute-and-compare programs PCIRC

CC
that

satisfies distributional indistinguishability for the class of distributions D = {Dλ} for which y is sampled

uniformly at random y
$← {0, 1}λ and independently of f, aux. Our construction uses an indistinguishabil-

ity obfuscator iO and an injective PRG G for uniform seeds. If y has some small amount of pseudo-entropy
λε (for any ε > 0) or is computationally unpredictable given (f, aux), we can upgrade security using ap-
propriate PRGs as explained in Sections 5.1, 5.3.

To obfuscate a program CC[f, y] our compute-and-compare obfuscator simply uses an iO scheme to
obfuscate the program CC[G ◦ f,G(y)]. Correctness follows from the correctness of iO and the fact that
G is injective. To argue security, consider some distribution (CC[f, y], aux) ← Dλ where y is random
and independent of f, aux. We first replace G(y) with a uniformly random string y′. By the security of

G we have (iO(CC[G ◦ f,G(y)]), aux)
c≈ (iO(CC[G ◦ f, y′]), aux). Second, y′ lies outside the range of G

with high probability over its choice. Therefore, there is no input x such that CC[G ◦ f, y′](x) = 1, and
thus we can replace CC[G ◦ f, y′] with the (appropriately padded) constant function g(x) = 0. By the

security of the iO obfuscator it holds that (iO(CC[G ◦ f, y′]), aux) c≈ (iO(g), aux). Notice that for this
construction, a null iO obfuscator is sufficient.

41

	Introduction
	Our Results
	Applications
	Concurrent and Independent Work of GKW17c
	Our Techniques

	Notation and Preliminaries
	Lattices and LWE
	Fully Homomorphic Encryption
	Pseudo-Random Generators with Weak Seeds

	Obfuscation Definitions
	Defining Obfuscation for Compute-and-Compare Programs

	Basic Obfuscation Construction
	Parameters
	Directed Encodings
	Obfuscating Compute-and-Compare Branching Programs

	Upgrading Functionality and Security
	Compiler: From Large to Small Pseudo-Entropy
	Compiler: From BPs to Circuits and TMs
	Compiler: From Pseudo-Entropy to Unpredictability
	Compiler: From One-Bit to Multi-Bit Output

	Applications
	From Attribute-Based Encryption to One-Sided Predicate Encryption
	From Witness Encryption to Null iO
	Circular-Security Counterexamples
	Circular (In)secure CompilerThis result was added subsequently to the otherwise concurrent/independent work of GKW17c.

	A Construction from (null) iO

