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Abstract. This paper presents a tool BE-PUM (Binary Emulator for
PUshdown Model generation), which generates a precise control flow
graph (CFG), under presence of typical obfuscation techniques of mal-
ware, e.g., indirect jump, self-modification, overlapping instructions, and
structured exception handler (SEH), which cover packers. Experiments
are performed on 2000 real-world malware examples taken from VX
Heaven and compare the results of a popular commercial disassembler
IDA Pro, a state-of-the-art tool JakStab, and BE-PUM. It shows that
BE-PUM correctly traces CFGs, whereas IDA Pro and JakStab fail. By
manual inspection on 300 malware examples, we also observe that the
starts of these failures exactly locate the entries of obfuscation code.
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1 Introduction

Recently, control flow graphs (CFGs) attract attention in malware detection at
industry levels, e.g., VxClass at Google. They use semantic fingerprints [24,29,36]
to overcome the limitation on advanced polymorphic viruses of bits-based fin-
gerprints [35,15], which are popular in commercial antivirus software. Semantic
fingerprints consist of code and control flow graph fragments, which are obtained
by disassembly. Then, the similarity is detected by statistical methods.

Beyond detection, malware classification requires more precise control flow
graphs to observe what kinds of obfuscation/infection techniques are used. How-
ever, precise disassembly is not easy. For instance, commercial disassemblers,
e.g., IDA Pro and Capstone, are easily cheated by typical obfuscation tech-
niques, like indirect jump, structured exception handler, overlapping instructions,
and self-modification. Typical self-modification is a self-decryption, and often by
modifying encryption keys, a polymorphic virus mutates. Worse, recent pack-
ers, e.g., UPX, Themida, Telock, PECompact, Yoda, give us easy generation of
polymorphic viruses.

Our ultimate goal is malware classification by their obfuscation techniques.
As the first step, the aim of this research is to generate a precise CFG of
x86/Win32 binary under presence of typical obfuscation techniques, which in-
cludes precise disassembly. As a byproduct, we observe that when the results of
IDA Pro and BE-PUM differ, they locate the entries of the obfuscation code.
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Corresponding to the nature of dynamic parsing of x86, we apply on-the-
fly CFG generation. To handle self-modification, we regard a CFG node as a
pair of a location and an instruction, such that a modified code is regarded as
a different node. They are also applied in McVeto [37], but different from its
CEGAR approach, we apply dynamic symbolic execution (concolic testing) in
a breadth-first manner to decide the next destinations of multiple paths at a
conditional jump [12]. Concolic testing requires a binary emulator. Our choice is
to restrict the binary emulation to a user process, and APIs are handled by stubs.
This gives the flexibility to handle anti-debugging and trigger-based behavior [9],
at the cost of manual stub construction and approximation.

The framework is implemented as BE-PUM (Binary Emulator for PUshdown
Model generation), and experiments are performed on 2000 real-world malware
taken from VX Heaven1 to compare the results of a popular commercial disas-
sembler IDA Pro, a state-of-the-art tool JakStab, and BE-PUM. It shows that
BE-PUM correctly traces CFGs, whereas IDA Pro and JakStab fail. By man-
ual inspection on 300 malware examples, we also observe that the starts of the
failures exactly locate the entries of obfuscation code.

Contributions Each element of the techniques in BE-PUM is not new, e.g.,
on-the-fly control flow graph generation [37,38], dynamic symbolic execution
(concolic testing) [12,13], and formal x86 (32bit) semantics [7]. Dynamic symbolic
execution for precise CFG generation is also not new, e.g., for C [34] and x86
binaries of system software [28]. Our contributions are:

– We compose them as a tool BE-PUM to generate precise CFG of x86 binary
under the presence of obfuscation techniques, and its precision and practical
efficiency are confirmed by empirical study.

– A preliminary BE-PUM was presented in [27], which supports 18 x86 instruc-
tions, no Windows APIs, and no self-modifying code. Current BE-PUM is
extended to support about 200 x86 instructions and 310 Win32 APIs.

– We observe that when the results of IDA Pro and BE-PUM differ, they
correctly locate the entry points of obfuscation codes.

CFGs generated by disassembler tools can be used to build models for model
checking malware [4,32,33,16,18,19]. For instance, a CFG generated by IDA Pro
was used for this purpose in [32,33]. Our approach immediately boosts such
model checking by providing more precise models.

Another popular method to detect malware behavior is dynamic execution
on binary emulators. However, malware behavior observation is sometimes not
enough for classifying techniques. Even worse, dynamic execution may miss hid-
den behavior of malware. For instance, malware detects that they are in a sand-
box by anti-debugging techniques, e.g., observing response time, checking be-
havior of rarely used Windows APIs, and calling the API “IsDebuggerPresent”.
Another difficulty is trigger-based behaviors [9,31,25], e.g., attacks triggered by
specific date and time. We believe that semantic understanding of malware will
compensate these limitations.

1 http://vx.netlux.org
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2 Typical obfuscation techniques and their difficulty

Roughly speaking, malware techniques consist of three steps.

1. Obfuscation, e.g., complex control flow to get rid of the bit-based detection,
and anti-debugging to hide malicious intention during sandbox emulation.

2. Infection / spreading techniques, e.g., attacking Windows security holes.
3. Malicious behavior, e.g., information leak.

We focus on the first step. Nowadays, at least 75% of malware uses a packer [30].
The original aim of a packer is the code compaction, and later includes obfus-
cation techniques to evade reverse engineering for software license protection.
Most of control flow obfuscation are combinations of techniques below.

– Indirect jump. This technique stores the target of the jump in a register, a
memory address, or a stack frame (jumping with ret), of which these values
are often modified with arithmetic operations. It also appears as overlapping
instruction [21], which confuses the boundary of instructions at the binary
level.

– Structured exception handler (SEH). When exceptions like division by
zero and write on protected area occur, the control is spawn to a system
error handler and the stack is switched to another memory area in the user
process. When the system error handler ends, the control returns to the user
process, and the stack is recovered to the original. An SEH is an exception
handler in a user process, prepared for post processing of an exception. SEH
techniques often modify the return address at fs:[0x00].

– Self modifying code (SMC). During the execution, binary code loaded
on memory is modified. Often, it appears as Self decryption, in which the
execution of a header part modifies the later part of binary code.

– Entry point obscuring. The entry point is set to outside the .code section.

IDA Pro is the most popular commercial disassembler, which combines re-
cursive disassembly and linear sweep. We show obfuscation examples, in which
IDA Pro is confused.

Indirect jump

Indirect jump hides the control flow by storing the target of a jump in a register
or memory. Virus.Adson.1559 shows a typical approach to dynamically load a
library by calling Windows API GetProcAddress for retrieving the address of the
target API. By calling convention of the API, the return value of GetProcAddress
is stored in the register eax and it calls the API by jumping to the value of eax.

004024 A6 50 PUSH EAX ; FindFirstFileA

004024 A7 FFB5 36324000 PUSH DWORD PTR SS:[ EBP +403236]

; Kernel32 Handle

004024 AD FF95 3 A324000 CALL DWORD PTR SS:[ EBP +40323 A]

; Call GetProcAddress

004024 B3 FFE0 JMP EAX ; Call FindFirstFileA

IDA Pro fails to resolve the next address at 004024B3, and JakStab as well.
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Overlapping instruction

From 0040B332 to 0040B334 and 0040B326 to 0040B32C in Virus.Bagle.bf
(from the VX Heaven), it pops the value 0040B08F from the stack (as esp
points to 0012FFA4) to ecx and increments its value. Then, it pushes the value
0040B090 of ecx to the stack again. At 0040B32C, ret jumps to 0040B090,
where the binary code is EB 13 EB 02 and interpreted as jmp 0x0040b0a5,
whereas IDA-Pro jumps to 0040B08F and fails to interpret E8 EB 13 EB 02.

IDA -Pro Correct CFG

0040 B08A E89E020000 call sub_40B32D

0040 B08F E8EB13EB02 call near ptr 32 BC47Fh

0040 B090 EB13FB02 jmp 0 x0040b0a5

...

0040 B326 EB03 jmp short loc_40B32B jmp 0 x0040b32b

0040 B32B 51 push ecx pushl %ecx

0040 B32C C3 retn ret

...

0040 B332 59 pop ecx popl %ecx

0040 B333 41 inc ecx incl %ecx

0040 B334 EBF0 jmp short loc_40B326 jmp 0 x0040b326

3 CFG reconstruction techniques

3.1 Concrete model and its on-the-fly generation

The execution of binary code is dynamic, i.e., interpret a binary sequence that
starts from a memory address pointed by the register eip, which decides the
next address to set eip. Corresponding to such nature, our CFG construction
is designed in an on-the-fly manner. In the figure below, when a CFG node is a
conditional jump, we apply concolic testing to decide next destinations.

The state of a binary program can be regarded as an environment consisting of
values of registers, flags, and a memory status (which includes the status of the
stack). Our concrete model represents such a state by a pair 〈(k, asm), ψ(ᾱ)〉 of
a CFG node and a path condition ψ(ᾱ) of a path ᾱ reaching from the initial
CFG node to (k, asm). This path condition encodes the environment after the
execution from the entry point. We adopt a pair of a location and an instruction
as a CFG node to handle self-modifying code. When self-modification occurs,
we distinguish (k, asm) and (k, asm′) as different CFG nodes. This idea is also
used in McVeto [37]. We fix the notation as.
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– k is an address in M and k0 is the entry address,

– asm is an x86 assembly instruction,

– asm obtained by disassembly of a binary sequence starting from k ∈ M is
referred by asm = instr(EnvM , k),

– (m, asm′) = next(k, asm) with k = EnvR(eip) and asm = instr(EnvM , k)
is decided by a transition Env → Env′ (described in Fig. 1) as m =
Env′

R
(eip) and asm′ = instr(Env′

M
,m).

3.2 Concolic testing and multiple path detection

Symbolic execution [22] is a traditional technique to symbolically execute a pro-
gram, which maintains a symbolic state 〈p, ψ〉 where p is a CFG node and ψ
is a path formula of the path from the initial CFG node to p. A path formula
ψ describes the precondition of the execution path to p, starting from the pre-
condition at the program entry. If ψ is satisfiable (often checked by SAT/SMT
solvers), the path is feasible.

In binary code, for data instructions (e.g., MOV, ADD, XOR), the next
location is statically decided by the length of the instruction. However, for control
instructions (e.g., JMP, CMP), it may be dynamically decided, especially at
indirect (conditional) jumps. Using symbolic execution, there are two ways to
explore possibly multiple destinations of a CFG node (in the figure below).

– Static symbolic execution (SSE), in which next destination candidates
are statically detected, and the feasibility of each destination p′ is checked
by the satisfiability of ψ∧next = p′. To refine statically detected candidates,
it can be combined with CEGAR, like in McVeto [37].

– Dynamic symbolic execution (DSE), in which the feasibility is checked
by testing with a satisfiable instance of ψ (concolic testing), which requires
a binary emulator. This will continue until ψ ∧ next = p′ ∧ next = p′′....
becomes UNSAT for explored next destinations p′, p′′, ..., like in [12].

We describe a path formula as a pair of an environment of parameters (e.g.,
registers, flags) and a Presburger formula consisting of constants and symbolic
values of inputs, which is obtained by deploying the current values of param-
eters as the updates of their initial values. It ignores system status and kernel
procedures, and focuses only on a user process.
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3.3 API as stub

Concolic testing requires a binary emulator, and our choice is to restrict a binary
emulation to a user process, and APIs are handled by stubs. This gives the
flexibility in symbolic execution, at the cost of manual stub construction and
an approximation. Current BE-PUM implements the stubs for 310 APIs. The
output of an API in the stub is given either by Java API or as a symbolic value.
Note that a stub keeps a post-condition as the same as the pre-condition, but
updates the environment by its output.

– For typical APIs functions, such that FindFirstFileA, GetModuleHandle,
FindNextFileA, we rely on JNA (Java Native Access), which allows Java
programs to call native shared libraries. Each system call is treated as if
a single instruction such that (i) the update of the path formulas and the
environments follow to the technical specification at Microsoft Developer
Network.3; and (ii) the return value is obtained by executing Java API.
Note that most of major APIs (though not all APIs) are covered by Java
API.

– Sometimes, specific APIs are used for obfuscation techniques, e.g., anti-
debugger or anti-debugging, and trigger-based behavior. For them, we must
avoid execution of the API, since it will make us fall into the "trap" of the
malware. For example, some malware performs anti-emulator by calling the
system call like IsDebuggerPresent or CheckRemoteDebuggerPresent. If this
API is executed under an emulator, a specific value will be returned, and
the malware changes its behavior to hide its intention. For them, instead of
calling Java API, we simply adopt a symbolic value as an output of the API,
like in [9]. This is also effective for trigger-based behavior.

4 Control flow graph reconstruction

4.1 X86 operational semantics

Our x86 binary semantics are inspired by [7]. We assume that a target X86 binary
program Progx86 is loaded on a memory area, referred as M . The instruction
pointer eip and the stack pointer esp are special registers that point to the
current address of instructions and the top of the stack, respectively. The former
is initially set to the entry address of Progx86. The stack is taken in M , where
the stack top frame is pointed by the register esp and the stack bottom is pointed
by the register ebp. In Windows, the stack area is taken between the stack base
and the stack limit, which has the length of 1M bytes (and can be enlarged); but
we ignore these boundaries.

Definition 1. A memory model is a tuple (F,R, S,M), where F is the set of
9 system flags (AF , CF , DF , IF , OF , PF , SF , TF , and ZF ), R is the set
of 16 registers (eax, ebx, ecx, edx, esi, edi, esp, edp, cs, ds, es, fs, gs, ss,
eip, and eflags), M is the set of memory locations to store, and S(⊆ M) is the
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set of contiguous memory locations for a stack (associated standard push/pop
operations).

For k = EnvR(eip) ∈ M , let instr(EnvM , k) be a mapping that disassem-
bles a binary code at the memory location k and return an instruction (with its
arguments). An operational semantics of binary codes Progx86 is described as
transitions in Fig. 1 among environments Env, which consists of a flag valua-
tion EnvF , a register valuation EnvR, a stack valuation EnvS, and a memory
valuation EnvM (on M \ S).

In BE-PUM, each register in R is represented by a 32-bit vector. Meanwhile,
system flags in F are simply represented as boolean variables. Each memory
location in M is represented by a 8-bit vector, in which the arithmetic operations
are bit-encoded. BE-PUM dynamically identifies the instruction boundary as a
sequence of 8-bit vectors (instead of a fixed 32-bit segment in the preliminary
version [27]), which helps us to handle overlapping instructions.

EnvR(eip) = k, instr(EnvM , k) =′′ call r′′,
m′ = k + |call r|, m = EnvR(r), push(S, m′) = S′

(EnvF , EnvR, EnvS , EnvM )→ (EnvF , EnvR[eip← m, esp← esp− 4], EnvS′ , EnvM )

[

Call
]

EnvR(eip) = k, instr(EnvM , k) =′′ ret′′, empty(S)

(EnvF , EnvR, EnvS , EnvM )→⊥

[

Return (empty stack)
]

EnvR(eip) = k, instr(EnvM , k) =′′ ret′′,¬empty(S), pop(S) = (S′, m)

(EnvF , EnvR, EnvS , EnvM )→ (EnvF , EnvR[eip← m, esp← esp + 4], EnvS′ , EnvM )

[

Return
]

EnvR(eip) = k, instr(EnvM , k) =′′ jmp r′′, EnvR(r) = m

(EnvF , EnvR, EnvS , EnvM )→ (EnvF , EnvR[eip← m], EnvS , EnvM )

[

(Indirect)Jump
]

R(eip) = k, instr(EnvM , k) =′′ jmp m′′, M(m) = m′

(EnvF , EnvR, EnvS , EnvM )→ (EnvF , EnvR[eip← m′], EnvS , EnvM )

[

Jump
]

EnvR(eip) = k, instr(EnvM , k) =′′ cmp r1 r′′

2 , m = k + |cmp r1 r2|,
c = EnvR(r1) − EnvR(r2), sf = (c < 0), zf = (c = 0),
cf = ((EnvR(r1) >= 0) ∧ (EnvR(r2) < 0)) ∨ ((c < 0) ∧ ((EnvR(r1) >= 0) ∨ (EnvR(r2) < 0)),
of = ((EnvR(r1) < 0) ∧ (EnvR(r2) >= 0) ∧ (c > 0)) ∨ ((EnvR(r1) >= 0) ∧ (EnvR(r2) < 0) ∧ (c < 0))

(EnvF , EnvR, EnvS , EnvM )→ (EnvF [CF ← cf, OF ← of, SF ← sf, ZF ← zf ], EnvR[eip← m], EnvS , EnvM )

[

Cmp
]

EnvR(eip) = k, instr(EnvM , k) =′′ mov t r′′,
r ∈ R, w = EnvR(r), m = k + |mov t r|

(EnvF , EnvR, EnvS , EnvM )→ (EnvF , EnvR[eip← m], EnvS , EnvM [t← w])

[

Move
]

Fig. 1: Some of rules of operational semantics for control instructions

Fig. 1 shows some examples of the description of the operational semantics
of x86 instructions, which follows the technical description at Intel Software
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Developer’s Manual. For instance, in the instruction Call, the register eip points
to the address k in memory M of the next instruction, and instr(EnvM , k) maps
the binary code at k to the next instruction call r. The return address of call r
is calculated by adding the size of the instruction call r to the current address
k and is pushed onto the top of the stack S. The address of next instruction is
updated with the value m of memory pointed by the address r.

4.2 Concrete model with path conditions and CFG reconstruction

Definition 2. We borrow notations from Definition 1. A control flow graph
(CFG) node is a pair of a location k and and an assembly instruction asm.
A configuration of a concrete model is a pair 〈(k, asm), ψ(ᾱ)〉 where (k, asm) is
a CFG node, ᾱ is a path (a sequence of CFG nodes) from the initial CFG node
(k0, asm0) to (k, asm), and ψ(ᾱ) is a path condition given by

{

ψ(ǫ) := true

ψ(ᾱ′) := ψ(ᾱ) ∧ (SideCond ∧ PostCond) if ᾱ′ = ᾱ.next(k, asm)

for the side conditions SideCond appearing in Env → Env′ and the strongest
post condition PostCond at (k, asm), which is a Presburger formula consisting
of constants and symbolic values of inputs.

We obtain a CFG of an x86 binary program Progx86 by extracting (k, asm)
from a configuration 〈(k, asm), ψ(ᾱ)〉 in Definition 2. There are several reasons
for causing branching on a CFG. next(k, asm) may have multiple possibility de-
pending on an initial environment, which may be given by external system status.
In current BE-PUM implementation, possible next(k, asm)’s are explored by re-
peated concolic testing with its satisfiable instances. This exploration continues
until it reaches to UNSAT by adding the refutations of already explored next
destinations.

5 BE-PUM implementation

5.1 BE-PUM architecture

BE-PUM implements CFG reconstruction (in Definition 2) based on concolic
testing. It applies JakStab 0.8.3 [20] as a preprocessor to compute a single-step
disassembly instr(EnvM , k), and an SMT Z3.4.3 as a backend engine to generate
a test instance for concolic testing.

The figure below shows the architecture of BE-PUM, which consists of three
components: symbolic execution, binary emulation, and CFG storage. The sym-
bolic execution picks up one from the frontiers (symbolic states at the ends of
explored execution paths), and it tries to extend one step. If the instruction is a
data instruction (i.e., only EnvM is updated and the next location is statically
decided), it will simply disassemble the next instruction. If the instruction is a
control instruction (e.g., conditional jumps), the concolic testing is applied to
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decide the next location. Note that some variable does not appear in the path-
condition, the SMT will not return its value. If the concolic testing needs this
value, BE-PUM terminates. However, in our observation, this is unlikely. When
either a new CFG node or a new CFG edge is found, they are stored in CFG
storage and a configuration is added to the frontiers. This procedure continues
until either the exploration has converged (which will be discussed later), or
reaching to unknown instructions, system calls, and/or addresses.

The next figure shows the implementation of a stub in BE-PUM, which
consists of three components: a pre-condition P , the binary emulation, and a
post condition P ′. Currently, the BE-PUM implementation passes P to P ′ as
identical, but with the update of the environment by an output of an API,
which is obtained together with the return address by executing native shared
library in JNA.

Note that exceptions, like the division by zero, are detected at the binary emu-
lator, which pass them to the Windows system error handler.
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5.2 Strategy and limitations

There are several limitations in our implementation.

– X86 instructions are about 1000 and Windows APIs are more than 4000.
Current BE-PUM covers only 200 x86 instructions and 310 APIs. They are
selected by the frequency appearing in malware from VX Heaven.2 Frequency
is initially estimated by JakStab, and bootstrapped by observing unexpected
termination of BE-PUM by unknown instructions or unknown API.

– Since CFG reconstruction is by a bounded symbolic execution, complete
CFG reconstruction requires loop invariant generation. Currently, BE-PUM
simply unfolds loops and if the same CFG node is visited one million times,
it terminates. This naive choice still works, since most of loops in malware
have the fixed number of iterations for the self-decryption. Another reason is,
due to the limited support of x86 instructions and Windows API, BE-PUM
terminates more by unknown instructions and APIs.

– The binary emulation in BE-PUM limits its scope only on a user process,
and handling APIs by manually prepared stubs. This gives the flexibility to
handle anti-debugger and trigger-based behavior [9], at the cost of manual
stub construction and approximation.

BE-PUM also adopts choices on initial setting.

– When BE-PUM starts to generate a model of binary code, the stack S is
initially pushed (i) the address of the file name of the code; (ii) the address of
the system exception handler; and (iii) the return address, which is randomly
selected from the memory image of kernel32. The former two obey to the
standard manner of Win32, and the last is based on the assumption that a
code is often started by a call from somewhere in kernel32. This frequently
holds and is often used by malware, e.g., Aztec [23].

– The initial environment (e.g., registers and flags) follows to the reference3.
• Flags: CF = False, PF = True, AF = False, ZF = True, SF =

False, TF = False, DF = False, OF = False, IF = False.
• Registers: EAX,CS,DS,ES, FS,GS, SS,EFFLAGS are set to sym-

bolic values, EIP and EDX to the address of the entry point, ESP and
EBP to the addresses of the top and the base of the stack, respectively.
The rest is set as ECX = 0, EBX = 7EFDE00, EDI = 0, ESI = 0.

6 Experiments

We perform experiments of CFG reconstruction for 2000 real-world malware,
taken from VX Heaven, and 6 non-malware examples. We compare the results
of BE-PUM with IDA Pro and JakStab for the coverage of nodes, edges, and
processing time. Our experiments are performed on Windows XP with AMD
Athlon II X4 635, 2.9 GHz and 8GB. Note that BE-PUM may have stopped
with an unknown instruction or API.
2 http://vx.netlux.org
3 https://code.google.com/p/corkami/wiki/InitialValues



Obfuscation code localization based on CFG generation of malware 11

6.1 Model generation performance

In general, the number of reachable nodes of BE-PUM is better than IDA Pro
and JakStab. Since IDA Pro uses syntactic analysis, it is easily confused by
indirect jumps and encrypted codes. JakStab also fails since its static analysis
cannot effectively analyze. BE-PUM encounters the problem at the cost of higher
processing time than JakStab and IDA Pro due to its concolic testing.

As a statistical observation of the experimental result, we show the averages
of the ratios among tools.

– The ratio between the numbers of CFG edges and CFG nodes, which shows
detection of multiple paths. The ratios for JakStab, IDA Pro, and BE-PUM
are 1.05, 2.05, and 1.24, respectively. This shows that IDA Pro detects mul-
tiple paths better, but they could be infeasible paths.

– The ratio between the numbers of explored CFG nodes by two tools. Be-
tween BE-PUM and JakStab is 11.59, and between BE-PUM and IDA
Pro is 6.61. Notable examples in Table 1 are, Virus.Artelad.2173, Email-
Worm.LoveLetter.b, Virus.Pulkfer.a, and Email-Worm.Klez.h, in which nodes
are about 10 times more by BE-PUM. Since the numbers of CFG nodes and
edges by BE-PUM are almost the same, BE-PUM fails to find multiple paths.
This can occur when the loop counter is set to a constant and the loop con-
tinues to decrypt/modify some fragment. Further investigation is needed on
these examples.

With closer look, Table 1 shows 28 malware examples among 2000 and 6
non-malware examples, in which the unit of Time is the millisecond. Among
2000, BE-PUM successfully converges with 250 examples, and it is interrupted
on many viruses by unknown instructions (e.g., Email-Worm.Bagle) and unsup-
ported APIs (e.g., Virus.Cabanas) due to the limited support of instructions and
APIs. It is also interrupted by unknown addresses (e.g., Virus.Seppuku except
for Seppuku.1606) due to jumping to an address outside the file area (e.g. the
address of an unknown API or a system file).

IDA Pro sometimes detects more nodes. It is partially because IDA Pro covers
most of x86 instructions, whereas BE-PUM covers only 200. Another reason is
that IDA Pro is cheated by obfuscation and continues to generate unrelated
assembly code, e.g., Benny.3219.a/b and Eva.a/b, whereas BE-PUM terminates
with a precise CFG. This also occurs in non-malware examples. IDA Pro often
has better results than BE-PUM because of its full support of Windows APIs.
For example, with Winever.exe, BE-PUM fails to resolve the return address of
Windows API ShellAboutW@shell32.dll.

01001284 56 PUSH ESI

01001285 56 PUSH ESI

01001286 8D45 BC LEA EAX ,DWORD PTR SS:[EBP -44]

01001289 50 PUSH EAX

0100128 A 56 PUSH ESI

0100128 B FF15 3 C100001 CALL ShellAboutW@Shell32 .dll
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However, in systray.exe, BE-PUM is better than IDA Pro, since IDA Pro fails
to resolve obfuscation techniques, like an indirect return at

010010 BD C2 0400 RETN 4

and an indirect jump at

010010 CA 6A 00 PUSH 0

010010 CC BF 5 C100001 MOV EDI , 0100105 C

010010 D1 57 PUSH EDI

010010 D2 FFD6 CALL ESI

Table 1: Part of experimental results for model generation

Example
Size JakStab IDA Pro BE-PUM

KByte Nodes Edges Time Nodes Edges Time Nodes Edges Time

Virus.Artelad.2173 23 134 154 10ms 159 162 1133ms 1610 1611 236468ms

Email-Worm.LoveLetter.b 60 1027 1026 297 984 1011 10 7558 7602 1073984

Virus.Pulkfer.a 129 907 924 10 805 823 20 8347 8353 44672

Email-Worm.Klez.h 137 192 178 20 50 56 1 5652 5651 46344

Email-Worm.Coronex.a 12 26 27 500 148 157 204 308 339 1000

Trojan-PSW.QQRob.16.d 25 89 100 766 17 15 382 91 105 953

Virus.Aztec 8 104 111 1973 223 215 495 300 313 44384

Virus.Belial.a 4 41 42 407 118 116 198 128 134 985

Virus.Benny.3219.a 8 138 153 890 599 603 415 149 164 2438

Virus.Benny.3223 12 42 47 328 770 781 135 149 164 2218

Virus.Bogus.4096 38 87 98 546 88 86 269 88 98 656

Virus.Brof.a 8 17 17 343 98 102 167 137 147 1484

Virus.Cerebrus.1482 8 6 5 156 164 165 70 179 198 735

Virus.Compan.a 8 25 26 360 83 81 176 91 98 484

Virus.Cornad 4 21 20 141 68 72 67 94 100 344

Virus.Eva.a 8 14 13 329 381 392 145 249 277 13438

Virus.Htrip.a 8 10 10 359 145 143 172 148 157 2187

Virus.Htrip.d 8 10 10 265 164 162 124 165 173 2296

Virus.Seppuku.1606 8 131 136 1968 381 390 965 339 364 8372

Virus.Wit.a 4 54 60 360 153 151 172 185 203 2641

Email-Worm.Bagle.af 21 123 143 937 142 151 461 140 166 2157

Email-Worm.Bagle.ag 17 127 147 828 13 12 413 127 147 1047

Virus.Cabanas.a 8 3 2 156 1 1 78 68 72 1532

Virus.Cabanas.b 8 3 2 140 9 7 70 63 66 1781

Virus.Canabas.2999 8 2 1 656 7 6 85 358 401 8703

Virus.Seppuku.1638 8 139 144 2266 414 412 112 689 712 13000

Virus.Seppuku.3291 8 26 25 187 556 554 66 253 270 12156

Virus.Seppuku.3426 8 27 27 188 30 28 61 299 317 13484

non-malware binary

hostname.exe 8 329 360 2412 343 389 33 326 357 235610

winver.exe 6 162 166 422 310 345 24 232 240 122484

systray.exe 4 110 136 532 115 138 14 123 139 16125

regedt32.exe 3 52 54 266 56 61 11 61 69 22844

actmovie.exe 4 164 179 281 187 215 51 180 196 243469

nddeapir.exe 4 164 179 500 187 215 24 180 196 223297
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6.2 Example of obfuscation localization and classification

We show a case-study of Seppuku.1606. Most of malware in VX Heaven are tra-
ditional and some have known assembly source (e.g., for Aztec, Bagle, Benny,
and Cabanas), where Seppuku.1606 has no available assembly source. We man-
ually traced the result of BE-PUM with the help of Ollydbg, and found code
fragments for SEH technique and self-modification.

An intended exception occurs at 00401035 by reading the memory address
77E80000 pointed by register esi, and then storing that value in the register eax.
Since 77E80000 is protected, this raises an exception caught by an SEH.

00401028 33C0 xor eax , eax

0040102 A 64 FF30 push dword ptr fs:[ eax]

0040102 D 648920 mov fs:[ eax], esp

00401030 BE0000E877 mov esi , 77 E80000h

00401035 66AD lods ds:[ esi]

The self-modification occurs at 004010EB that Seppuku.1606 overwrites the
opcode at 00401646 from E8FFFFF9B5 to E800000000, which means the mod-
ification from Call 00401000 to Call 0040164B.

004010 E4 57 PUSH EDI

004010 E5 8 B8589144000 MOV EAX ,DWORD PTR SS:[ EBP +401489]

004010 EB AB STOS DWORD PTR ES:[ EDI]

004010 EC 83 C404 ADD ESP ,4

In the correct CFG, the path from 0040164B finally reaches the exit point
after a call of an API MessageBoxA. BE-PUM correctly traces this behavior,
where IDA Pro fails at 00401646 with call sub_401000.

00401000 60 PUSHA

00401001 E800000000 CALL $+5

.....

00401646 E800000000 CALL Virus_Wi .0040164 B

0040164 B 6A10 PUSH 10

0040164 D 6800204000 PUSH Virus_Wi .00402000

00401652 6827204000 PUSH Virus_Wi .00402027

00401657 6A00 PUSH 0

00401659 E80D000000 CALL <JMP .& USER32 . MessageBoxA >

0040165 E 6A00 PUSH 0

00401660 E800000000 CALL <JMP .& KERNEL32 . ExitProcess >

The CFG generated by IDA Pro has a wrong path at the instruction 004010EB,
whereas BE-PUM successfully continued as this point. We observe that 004010EB
is in fact the entry point of the self-modification. A similar situation occurs for
all of other 285 obfuscation samples (Section refsec:ManualInsp).

6.3 Manual obfuscation classification

We expect that when the results of IDA Pro and BE-PUM differ, they will locate
the entry points of obfuscation code. To confirm this idea, we choose 300 viruses
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among 2000 from VX Heaven, and generate CFGs by BE-PUM and IDA Pro.
They are automatically compared, and the former is manually investigated at
the point that the difference occurs with the help of Ollydbg. We observe that
293 viruses contain obfuscation code and they are classified into

– 249 indirect jumps: Virus.Delf.n, Virus.Delf.r, Virus.Delf.w, Worm.Randin.b,
Worm.Limar, Worm.Delf.q, Worm.Delf.o, ...

– 110 SEH: Virus.Eva.a Virus.Eva.b, Virus.Eva.c, Virus.Eva.e, Virus.Eva.f,
Virus.Eva.g, Virus.Rever, ...

– 30 self-modifying code: Virus.Cabanas.2999 Virus.Rever, Net-Worm.Sasser.b,
Net-Worm.Sasser.c, Virus.Pesin.a, ...

– 6 encryption: Virus.Cabanas.2999, Virus.Savior.1828, Net-Worm.Sasser.a,
Net-Worm.Sasser.f, Virus.Glyn, Virus.Hader.2701.

and all of the cases, when the results of IDA Pro and BE-PUM differ, they
exactly locate where obfuscation starts. There are 7 viruses without obfuscation
code, and IDA Pro and BE-PUM report the same result.

As an example of indirect jumps (by retn, similar to Virus.Bagle.bf in Sec-
tion 2), we observe Virus.HLLW.Rolog.f.

BE -PUM IDA Pro

00437001 60 PUSHAD

00437002 E8 03000000 CALL 0043700 A

00437007 E9 EB045D45 JMP 45 A074F7

00437008 EB04 JMP 0043700 E

0043700 A 5D POP EBP

0043700 B 45 INC EBP

0043700 C 55 PUSH EBP

0043700 D C3 RETN

At 00437002, the Call instruction put the return address 00437007 into the
stack. From 0043700A to 0043700D, 00437007 in the top stack frame is popped
to the register ebp, incremented, and pushed again. Thus, at 0043700D, it must
return to 00437008, instead of 00437007.

BE-PUM correctly read JMP 0043700E, whereas IDA Pro is confused as JMP

45A074F7. JakStab also handles this obfuscation.

7 Related Work

There are two main targets of binary code analysis. The first one is system soft-
ware, which is compiled code but its source is inaccessible, due to legacy software
and/or commercial protection. It is often large, but relatively structured from
the compiled nature. The second one is malware, which is distributed in bi-
nary only. It is often small, but with tricky obfuscation code. For the former,
a main obstruction is scalability. IDA Pro 4 and Capstone 5 are the most pop-

4 https://www.hex-rays.com/products/ida/
5 http://www.capstone-engine.org/
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ular disassemblers. Other remarkable approaches include OSMOSE [5] built on
BINCOA [6], BitBlaze [13], Veritesting [1] built on BAP [10], and SAGE [28].

There are various model generation tools for binary executables. Destinations
of indirect jumps can be identified by either static or dynamic method. BE-
PUM stands in between, using both methods. For instance, CodeSurfer/x86 [2],
McVeto [37], and JakStab [20]) adopt a static approach, while OSMOSE [5],
BIRD [26], Renovo [17], Syman [38], and SAGE [28] choose a dynamic one.
Generally, dynamic methods seems more effective on malware analysis [11].

Static methods are abstract interpretation (static analysis) for an over ap-
proximation, and symbolic execution to check feasibility of an execution path
for an under-approximation. JakStab and McVeto apply CEGAR to refine over
approximations. McVeto also uses symbolic execution to check the path feasibil-
ity (named a concrete trace). X-Force [14] executes dynamically, which is imple-
mented on PIN from Intel. It explores different execution paths by systematically
forcing the branch outcome of conditional transfer instructions. BE-PUM uses
dynamic symbolic execution, instead of dynamic execution. BitBlaze [13] also
combine static and dynamic analyses on binary. It is based on Value Set Anal-
ysis (VSA) [3] for handling indirect jumps. It also adopts existing disassemblers
like IDA Pro, and handling obfuscated code relies on them. Moser [12] devel-
oped a system for Windows to explore multiple paths. In [12], it is mentioned
not to cover self-modification. MineSweeper [9] uses symbolic values for APIs
to detect trigger-based behavior. In [9], it is mentioned not to cover indirect
jumps. Syman [38] emulates the full Windows OS. Such detailed information
makes symbolic execution complex and models easily explode even for small bi-
nary code. OSMOSE and CodeSurfer/x86 reduce to 32-bit vector models, called
DBA (Dynamic Bit-vector Automaton) [5]. CoDisasm [8] is proposed very re-
cently, which disassembles based on analyses of dynamic traces by decomposing
into waves. It also can handle overlapping instructions and self-modification, and
further comparison is needed.

In summary, BE-PUM is the most similar to McVeto. However, McVeto finds
candidates of the destinations by static analysis (which are possibly infinitely
many), and chooses one and checks the satisfiable condition of the path at the
destination to conclude whether it is reachable (concrete trace). BE-PUM solves
the path condition at the source of an indirect jump, and applies concolic testing
(over binary emulator) to decide (one of) the destination. Unfortunately, we
could not find access to the McVeto implementation, and we did not compare
with experiments. McVeto seems not to support APIs, which limits to analyze
SEH techniques. Concolic testing is easier to adopt stubs for APIs. The table
below summarizes the comparison, in which ? means not confirmed yet.
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Indirect Jump
Overlapping
Instruction

SEH
SMC
Self-Decryption

Packer

IDA Pro No No No No No
JakStab Static analysis Static No No No
MineSweeper No No No No No
X-Force Dynamic emulation Yes No Yes ?
McVeto Symbolic execution Yes No Yes ?
CoDisasm Dynamic analysis Yes ? Yes Yes
BE-PUM Concolic testing Yes Yes Yes Yes

8 Conclusion

This paper introduced a tool BE-PUM (Binary Emulator for PUshdown Model
generation), which generates a precise control flow graph (CFG) of malware
under presence of typical obfuscations, based on dynamic symbolic execution
on x86 binaries. Experiments are performed over 2000 malware examples taken
from VX-Heaven database. Although each element of the techniques in BE-PUM
is not new, the combination works in practical efficiency, and is effective such
that when the results of IDA Pro and BE-PUM differ, they correctly locate the
entry points of the obfuscation code. This is confirmed by manual classification
of 300 examples.

A precise CFG is a backbone model for model checking. Future work includes
to clarify the target properties of model checking to automatic classification of
obfuscation techniques. We have some observations.

– Indirect jump comes together with arithmetic operations on a register or
a memory address that appears as an argument of a jump instruction, or
a pop-inc-push sequence for the overlapping instruction technique (as in
Bagle.bf and Heher.j).

– SEH set up the return address in SEH by the specific sequence of instructions
push fs:[0] and mov esp, fs:[0].

– SMC comes together with a loop of XORing and a sequence in the CFG that
has previously visited locations with modified instructions.

Another future work is loop handling. BE-PUM applies concolic testing to
decide the destinations, but symbolic execution is a bounded search. Current
BE-PUM simply unfolds loops, relying on the observation that most of loops in
malware have the fixed number of iterations for self-decryption. Loop invariant
generation is an ultimate solution; before that we are planning to apply constant
propagation to detect a constant loop counter, which would improve in practice.
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