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Abstract—We present a probabilistic method for segmenting instances of a particular object category within an image. Our approach

overcomes the deficiencies of previous segmentation techniques based on traditional grid conditional random fields (CRF), namely that

1) they require the user to provide seed pixels for the foreground and the background and 2) they provide a poor prior for specific

shapes due to the small neighborhood size of grid CRF. Specifically, we automatically obtain the pose of the object in a given image

instead of relying on manual interaction. Furthermore, we employ a probabilistic model which includes shape potentials for the object to

incorporate top-down information that is global across the image, in addition to the grid clique potentials which provide the bottom-up

information used in previous approaches. The shape potentials are provided by the pose of the object obtained using an object

category model. We represent articulated object categories using a novel layered pictorial structures model. Nonarticulated object

categories are modeled using a set of exemplars. These object category models have the advantage that they can handle large

intraclass shape, appearance, and spatial variation. We develop an efficient method, OBJCUT, to obtain segmentations using our

probabilistic framework. Novel aspects of this method include: 1) efficient algorithms for sampling the object category models of our

choice and 2) the observation that a sampling-based approximation of the expected log-likelihood of the model can be increased by a

single graph cut. Results are presented on several articulated (e.g., animals) and nonarticulated (e.g., fruits) object categories. We

provide a favorable comparison of our method with the state of the art in object category specific image segmentation, specifically the

methods of Leibe and Schiele and Schoenemann and Cremers.

Index Terms—Object category specific segmentation, conditional random fields, generalized EM, graph cuts.

Ç

1 INTRODUCTION

IMAGE segmentation has seen renewed interest in the field
of Computer Vision, in part due to the arrival of new

efficient algorithms to perform the segmentation [5], and in
part due to the resurgence of interest in object category
detection [11], [26]. Segmentation fell from favor due to an
excess of papers attempting to solve ill-posed problems
with no means of judging the result. In contrast, interleaved
object detection and segmentation [4], [26], [29], [37], [45] is
both well posed and of practical use. Well posed in that the
result of the segmentation can be quantitatively judged, e.g.,
how many pixels have been correctly and incorrectly
assigned to the object. Of practical use because image
editing tools can be designed that provide a power assist to
cut out applications like “Magic Wand,” e.g., “I know this is
a horse, please segment it for me, without the pain of
having to manually delineate the boundary.”

The conditional random field (CRF) framework [25]
provides a useful model of images for segmentation and
their prominence has been increased by the availability of
efficient publically available code for their solution. The
approach of Boykov and Jolly [5] and, more recently, its
application in a number of systems, including GrabCut by
Rother et al. [34], strikingly demonstrates that, with a
minimum of user assistance objects can be rapidly
segmented (e.g., by employing user-specified foreground
and background seed pixels). However, samples from the
distribution defined by the commonly used grid CRFs (e.g.,
with four or eight-neighborhood) very rarely give rise to
realistic shapes and on their own are ill suited to
segmenting objects. For example, Fig. 1c shows the result
of segmenting an image containing a cow using the method
described in [5]. Note that the segmentation does not look
like the object despite using a large number of seed pixels
(see Fig. 1b) due to the small neighborhood size of the grid
CRF, which cannot provide global top-down information.

In contrast, models used for object detection utilize the
global information of the object to localize it in the image.
Examples of such models include deformable templates [6]
and triangulated polygons [8]. In this work, we employ a set
of shape and texture exemplars, similar to [14], [40], [42].
Given an image, the object is detected by matching the
exemplars to the image. Such a model is particularly
suitable for nonarticulated object categories where a
sufficiently large set of exemplars (SOE) can be used to
handle intraclass shape and appearance variation.

For articulated objects, in addition to shape and appear-
ance, there might also be a considerable spatial variation
(e.g., see Fig. 18). In order to manage this variability there is
a broad agreement that articulated object categories should
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be represented by a collection of spatially related parts each
with its own shape and appearance. This sort of approach
dates back to the pictorial structures (PS) model introduced
by Fischler and Elschlager three decades ago [12]. Recently,
pictorial structures [9] and other related models [11], [29],
[37] have been shown to be very successful for the task of
object recognition. Furthermore, pictorial structures have
been highly effective in detecting frontoparallel views of
objects [9], [32]. Here (and throughout the rest of the paper),
by detection we mean obtaining a rough localization of the
object given that the image contains an instance of the object
category of interest. However, these models alone are not
suitable for obtaining a pixelwise segmentation of the
image. For example, Figs. 1d and 1e show two samples of
the distribution obtained by matching the pictorial struc-
tures model of a cow to an image (as described in Section 5).

In this work, we combine the models used for object
detection with the grid CRF framework used for segmenta-
tion. The coarse localization of the object obtained by
matching a model to an image provides us rough regions
where the foreground (i.e., the object) and background are
present. These regions are used to obtain the object and
background seed pixels. The seed pixels could then be
directly employed to obtain the segmentation using CRF-
based methods. The result would be an automated Boykov-
Jolly style segmentation algorithm [5]. However, such an
approach would still suffer from the problem that the
distribution of the grid CRF would not provide a good
estimate for the shape of the object. In order to address this
deficiency,wegobeyond theprobabilisticmodelsofprevious
approaches. Specifically, we introduce a new framework that
combines the grid CRF (which provides bottom-up informa-
tion) with an object category model (which provides global
top-down information across the image plane).

Using the above framework, pixels of an image can be
labeled as belonging to the foreground or the background
by jointly inferring the MAP estimate of the object detection
and segmentation. However, it would be undesirable to
depend only on the MAP detection since it may not localize
some portion of the object well. We overcome this problem
by marginalizing over various detections obtained for a
given image. Figs. 1d and 1e show two such detections

found using the pictorial structures model of a cow (see
Section 5). Fig. 1f shows the segmentation obtained using
our approach. Unlike previous methods, the segmentation
is object-like.

In summary, we cast the problem of object category
specific segmentation as that of estimating a probabilistic
model which consists of an object category model in
addition to the grid CRF. Put another way, the central idea
of the paper is to incorporate a “shape prior” (either
nonarticulated or articulated) to the problem of object
segmentation. We develop an efficient method, OBJCUT, to
obtain segmentations using this framework. The basis of
our method are two new theoretical/algorithmic contribu-
tions: 1) We provide efficient algorithms for marginalizing
or optimizing the object category models of our choice and
2) we make the observation that a sampling-based approx-
imation of the expectation of the log-likelihood of a CRF

under the distribution of some latent variables can be
efficiently optimized by a single st-MINCUT.

Related work. Many different approaches for segmenta-
tion using both top-down and bottom-up information have
been reported in the literature. We start by describing the
methods which require a limited amount of manual
interaction. Huang et al. [19] describe an iterative algorithm
which alternates between fitting an active contour to an
image and segmenting it on the basis of the shape of the
active contour. Cremers et al. [7] extend this by using
multiple competing shape priors and identifying the image
regions where shape priors can be enforced. However, the
use of level sets in these methods makes them computation-
ally inefficient. Freedman and Zhang [13] describe a more
efficient algorithm based on st-MINCUT which uses a shape
prior for segmentation. However, note that, in all of the
above methods, the user provides the initial shape of the
segmentation. The quality of the solution heavily depends on
a good initialization. Furthermore, these methods are not
suited for parts basedmodels and cannot handle articulation.

There are a few automatic methods for combining top-
down and bottom-up information. For example, Borenstein
and Ullman [4] describe an algorithm for segmenting
instances of a particular object category from images using
a patch-based model learned from training images. Leibe
and Schiele [26] provide a probabilistic formulation for this
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Fig. 1. Segmentation obtained using the CRF formulation. (a) Original image containing a cow. (b) The red and blue rectangles indicate the object
and background seed pixels, respectively, which are provided by the user. (c) Segmentation obtained using the method described in [5]. Note that
the segmentation is not object-like due to the poor prior provided by the grid CRF. (d) and (e) The cow is roughly localized using the pictorial
structures model [9], [12]. The parts detected are shown overlaid on the image. Note that the position and shape of the parts differs between the two
detections (e.g., the head and the torso). (f) The segmentation obtained using our method. Unlike previous methods [2], [5], [34], the segmentation is
object-like.
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while incorporating spatial information of the relative
locations of the patches. Winn and Jojic [44] describe a
generative model which provides the segmentation by
applying a smooth deformation field on a class specific
mask. Shotton et al. [38] propose a novel texton-based
feature which captures long-range interactions to provide
pixelwise segmentation. However, all of the above methods
use a weak model for the shape of the object which does not
provide realistic segmentations.

Winn and Shotton [45] present a segmentation technique
using a parts-based model which incorporates spatial
information between neighboring parts. Their method
allows for arbitrary scaling but it is not clear whether their
model is applicable to articulated object categories. Levin
and Weiss [27] describe an algorithm that learns a set of
fragments for a particular object category which assist the
segmentation. The learned fragments provide only local
cues for segmentation as opposed to the global information
used in our work. The segmentation also relies on the
maximum likelihood estimate of the position of these
fragments on a given test image (found using normalized
cross-correlation). This has two disadvantages:

. The spatial relationship between the fragments is not
considered while matching them to an image (e.g., it
is possible that the fragment corresponding to the
legs of a horse is located above the fragment
corresponding to the head). Thus, the segmentation
obtained would not be object like. In contrast, we
marginalize over the object category model while
taking into account the spatial relationships between
the parts of the model.

. The algorithm becomes susceptible to error in the
presence of background clutter. Indeed, the segmen-
tations provided by [27] assume that a rough
localization of the object is known a priori in the
image. It is not clear whether normalized cross-
correlation would provide good estimates of the
fragment positions in the absence of such knowledge.

More recently, Schoenemann and Cremers [35] proposed an
approach to obtain the globally optimal segmentation for a
given shape prior. Although they extended their framework
to handle large deformations [36], it still cannot handle
articulated object categories such as humans and quadru-
peds. Moreover, it is not clear whether their approach can be
extended to parts based models which are known to provide
an elegant representation of several object categories.

Outline. The paper is organized as follows: In Section 2,
the probabilistic model for object category specific segmen-
tation is described. Section 3 gives an overview of an
efficient method for solving this model for foreground-
background labeling. We provide the details of our choice
of representations for articulated and nonarticulated objects
in Section 4. The important issue of automatically obtaining
the samples of the object from a given image is addressed in
Section 5. Results for several articulated and nonarticulated
object categories and a comparison with other methods is
given in Section 6.

A preliminary version of this paper appeared as [23].
Since its publication, similar techniques have been success-
fully applied for accurate object detection in [31], [33].

2 OBJECT CATEGORY SPECIFIC SEGMENTATION

MODEL

In this section, we describe the model that forms the basis of
our work. There are three issues to be addressed in this
section: 1) how to make the segmentation conform to
foreground and background appearance models, 2) how to
encourage the segmentation to follow edges within the
image, and 3) how to encourage the outline of the segmenta-
tion to resemble the shape of the object. We begin by briefly
describing the model used in previous works [2], [5], [34].

Contrast-dependent random field. We denote the
segmentation of an image by a labeling function fð�Þ
such that

fðaÞ ¼
0; if a is a foreground pixel;
1; if a is a background pixel:

�

ð1Þ

Given image D, previous work on segmentation relies on a
CRF [25] or equivalent contrast-dependent random field
(CDRF) [24] framework which models the conditional
distribution PrðfjD; ��Þ. Here, �� denotes the parameters of
the CDRF. By assuming the Markovian property on the
above distribution and using the Hammersley-Clifford
theorem, Prðf jD; ��Þ can be written as

PrðfjD; ��Þ ¼
1

Z1ð��Þ
expð�Q1ðf ;D; ��ÞÞ; ð2Þ

where Z1ð��Þ is the partition function and the energy
Q1ðf ;D; ��Þ has the form

Q1ðf ;D; ��Þ ¼
X

va2v

�1a;fðaÞ þ
X

ða;bÞ2E

�pab;fðaÞfðbÞ þ �cab;fðaÞfðbÞ: ð3Þ

The terms �1a;fðaÞ, �pab;fðaÞfðbÞ, and �cab;fðaÞfðbÞ are called the
unary, prior, and contrast potentials, respectively. As in
previous work [5], we define these terms as follows:

Unary Potential: The unary potential �1a;fðaÞ is the emission
model for a pixel and is given by

�1a;fðaÞ ¼
� logðPrðDajHobjÞÞ; if fðaÞ ¼ 0;
� logðPrðDajHbkgÞÞ; if fðaÞ ¼ 1;

�

ð4Þ

where Hobj and Hbkg are the appearance models for
foreground and background, respectively. For this work,
Hobj and Hbkg are modeled as RGB distributions. The term
Da denotes the RGB values of the pixel a.

Note that both the data-independent prior term �pab;fðaÞfðbÞ
and the data-dependent contrast term �cab;fðaÞfðbÞ are pairwise
potentials (i.e., they are functions of two neighboring
pixels). Below, we provide the exact form of these terms
separately while noting that their effect should be under-
stood together.

Prior Term: Let fðaÞ and fðbÞ be the labels for neighboring
variables va and vb, respectively. Then, the corresponding
prior term is given by

�pab;fðaÞfðbÞ ¼
�1; if fðaÞ ¼ fðbÞ;
�2; if fðaÞ 6¼ fðbÞ;

�

ð5Þ

Contrast Term: The form of the data-dependent contrast
term �cab;fðaÞfðbÞ is inspired by previous work in segmentation
[5]. For two neighboring pixels a and b, it is given by
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�cab;fðaÞfðbÞ ¼
0; if fðaÞ ¼ fðbÞ;
��ða; bÞ; if fðaÞ 6¼ fðbÞ:

�

ð6Þ

The term �ða; bÞ is defined such that it reduces the cost

within the Ising model prior for fðaÞ 6¼ fðbÞ in proportion to

the difference in intensities of pixels a and b, i.e.,

�ða; bÞ ¼ � 1� exp
��2ða; bÞ

2�2

� �

1

distða; bÞ

� �

; ð7Þ

where �ða; bÞ measures the difference in the RGB values of

pixels a and b, i.e., Da and Db, and distða; bÞ is the euclidean

distance between a and b [5].
In this work, we use the following weight values: �1 ¼ 1,

�2 ¼ 2:2, � ¼ 1, and � ¼ 5. As shown in [24], these weight

values are suitable for encouraging contiguous segments

whose boundaries lie on image edges. Empirically, these

weights were found to provide good results for a large

variety of images.
Reducing the cost of the Ising model prior term in this

manner makes the pairwise terms, i.e., �pab;fðaÞfðbÞ þ �cab;fðaÞfðbÞ,

discontinuity preserving [3], [16]. Note that the contrast

term �cab;fðaÞfðbÞ cannot be included in the prior (since the

prior term is not data dependent). Rather, it leads to a

pairwise linkage between neighboring random variables

and pixels as shown in the graphical model given in Fig. 2.
Object Category Specific CDRF. We introduce an object

category model, parameterized by �, to the grid CDRF

framework which will favor segmentations of a specific

shape as shown in the graphical model depicted in Fig. 2.

We refer to this extension of the grid CDRF model as the

Object Category Specific CDRF. Note that � is connected to

the hidden variables corresponding to the labeling f . This

gives rise to an additional term in the energy function of the

Object Category Specific CDRF which depends on � and f .

Following previous work on object category specific image

segmentation [7], [19], we define the energy function as

Q2ðf;�;D; ��Þ ¼
X

va2v

�

�Aa;fðaÞ þ �Sa;fðaÞ
�

þ
X

ða;bÞ2E

�

�pab;fðaÞfðbÞ þ �cab;fðaÞfðbÞ
�

;
ð8Þ

with posterior

Prðf;�jD; ��Þ ¼
1

Z2ð��Þ
expð�Q2ðf;�;D; ��ÞÞ: ð9Þ

Here �� is the parameter of the Object Category Specific
CDRF and Z2ð��Þ is the partition function. The prior term
�pab;fðaÞfðbÞ and contrast term �cab;fðaÞfðbÞ are as defined above.
The potentials �Aa;fðaÞ and �Sa;fðaÞ are described below.

Appearance Potential: The appearance potential �Aa;fðaÞ is
the same as the unary potential of the CDRF, i.e.,

�Aa;fðaÞ ¼
� logðPrðDajHobjÞÞ; if fðaÞ ¼ 0;
� logðPrðDajHbkgÞÞ; if fðaÞ ¼ 1:

�

ð10Þ

Shape Potential: We call the term �Sa;fðaÞ the shape potential
since it influences the shape of the segmentation to resemble
the object. The shape potential �Sa;fðaÞ is chosen such that,
given � (i.e., one possible localization of the object), the
random variables corresponding to pixels that fall near to a
detected object would be more likely to have foreground
label (i.e., l0) than random variables corresponding to pixels
lying far from the object. It has the form:

�Sa;fðaÞ ¼ � logPrðfðaÞj�Þ: ð11Þ

Following [7], [19], we choose to define PrðfðaÞj�Þ as

PrðfðaÞ ¼ 0j�Þ /
1

1þ expð� � distða;�ÞÞ
;

PrðfðaÞ ¼ 1j�Þ ¼ 1� PrðfðaÞ ¼ 0j�Þ;

ð12Þ

where distða;�Þ is the spatial distance of a pixel a from the
outline of the object defined by � (being negative if inside
the shape). The weight � determines how much the pixels
outside the shape are penalized compared to the pixels
inside the shape.

Hence, the model � contributes the unary term �Sa;fðaÞ for

each pixel a in the image for a labeling f (see Fig. 2).

Alternatively, � can also be associated with the CDRF using

pairwise terms as described in [13]. However, by reparame-

terizing the CDRF [18], both formulations can be shown to be

equivalent.Weprefer theuse of unary terms since theydonot

effect the submodularity of the energy. Hence, it can easily be

shown that the energy function Q2ðf;�;D; ��Þ can be

minimized via st-MINCUT [21]. Fig. 3 shows the advantage

of introducing an object category model in the CDRF.
In this work, we use two types of object category models:

1) For nonarticulated objects, � is represented by a set of
exemplars and 2) for articulated objects, � is specified by
our extension of the pictorial structures model [9], [12].
However, we note here that our methodology is completely
general and could be combined with any sort of object
category model.

The Object Category Specific CDRF framework defined
above provides the probability of the labeling f and the
object category model � as defined in (9). This is similar to
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Fig. 2. Graphical model representation of the Object Category Specific
CDRF. The random variables v are shown as unfilled circles, while the
observed data D is shown using filled circles. The connections induced
by the contrast term are shown as the blue edges below the random
variables. Note that some of these connections (e.g., connecting the
random variables on the left with pixels on the right) are not shown for
the sake of clarity of the image. The random variables v lie in a plane.
Together with the pixels shown below this plane, these form the CDRF

used for segmentation. In addition to these terms, the Object Category
Specific CDRF makes use of an object category model � (shown lying
above the plane). The model � guides the segmentation toward a
realistic shape closely resembling the object of interest.
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the model used by Huang et al. [19] and Cremers et al. [7].
However, our approach differs from these works in the
following respects: 1) In contrast to the level-sets-based
methods employed in [7], [19], we develop an efficient
algorithm based on st-MINCUT; 2) we do not require an
accurate manual initialization to obtain the segmentation;
and 3) unlike [7], [19], we obtain the foreground-back-
ground labeling by maximizing the posterior probability
Prðf jDÞ, instead of the joint probability Prðf;�jDÞ. In order
to achieve this, we must integrate out �, i.e.,

PrðfjDÞ ¼

Z

Prðf;�jDÞd�: ð13Þ

The surprising result of this work is that this intractable
looking integral can in fact be optimized by a simple and
computationally efficient set of operations, as described in
the next section.

3 ROAD MAP OF THE SOLUTION

We now provide a high-level overview of our approach.
Given an image D, the problem of segmentation requires us
to obtain a labeling f� which maximizes the posterior
probability Prðf jDÞ, i.e.,

f� ¼ argmaxPrðfjDÞ ¼ argmax logPrðf jDÞ: ð14Þ

We have dropped the term �� from the above notation to
make the text less cluttered. We note, however, that there is
no ambiguity about �� for the work described in this paper
(i.e., it always stands for the parameter of the Object
Category Specific CDRF). In order to obtain realistic shapes,
we would also like to influence the segmentation using an
object category model � (as described in the previous
section). Given an Object Category Specific CDRF specified
by one instance of �, the required posterior probability
Prðf jDÞ can be computed as

Prðf jDÞ ¼
Prðf;�jDÞ

Prð�jf;DÞ
; ð15Þ

) logPrðf jDÞ ¼ logPrðf;�jDÞ � logPrð�jf;DÞ; ð16Þ

where Prðf;�jDÞ is given by (9) and Prð�jf;DÞ is the
conditional probability of� given the image and its labeling.
Note that we consider the log of the posterior probability
Prðf jDÞ. As will be seen, this allows us to marginalize the
object category model � using the generalized Expectation
Maximization (generalized EM) [15] framework in order to
obtaining the desired labeling f�. By marginalizing �, we
would ensure that the segmentation is not influenced by
only one instance of the object category model (which may
not localize the entire object correctly, leading to undesirable
effects such as inaccurate segmentation).

We now describe the generalized EM framework which
provides anaturalway todealwith�by treating it asmissing
(latent) data. The generalized EM algorithm starts with an
initial estimate f0 of the labeling and iteratively refines it by
marginalizing over �. It has the desirable property that
during each iteration the posterior probability Prðf jDÞ does
not decrease (i.e., the algorithm is guaranteed to converge to a
local maximum). Given the current guess of the labeling f 0,
the generalized EM algorithm consists of two steps: 1) E-step,
where the probability distribution Prð�jf 0;DÞ is obtained,
and2)M-step,where anew labeling f̂ is computed such that
Prðf̂ jDÞ � Prðf 0jDÞ. We briefly describe how the two steps
of the generalized EM algorithm can be computed
efficiently in order to obtain the segmentation. We subse-
quently provide the details for both of the steps.

Efficiently computing the E-step. Given the estimate of
the labeling f 0, we approximate the desired distribution
Prð�jf 0;DÞ by sampling efficiently for �. For nonarticu-
lated objects, this involves computing similarity measures
at each location in the image. In Section 5.1, we show how
this can be done efficiently. For the case of articulated
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Fig. 3. (a) An example cow image. The red and blue rectangles show the seed pixels which are used to learn the RGB distribution of foreground (Hobj)

and background (Hbkg), respectively. (b) The pairwise terms (prior+contrast) for a pixel summed over its entire neighborhood. Pixels marked bright

white indicate the presence of an image edge and are hence more likely to define the segmentation boundary. (c) The unary potential ratio �1a;0=�
1
a;1 of

a pixel computed using Hobj and Hbkg. Pixels marked white are more likely to belong to foreground than the pixels marked black. Clearly, the

likelihoods obtained using only RGB values are not sufficient to obtain a good segmentation. (d) The object category model �. White pixels are the

points that lie inside the object, while black pixels lie outside it. (e) The ratio �Sa;0=�
S
a;1 corresponding to the model �. Again, pixels marked white are

more likely to belong to the foreground than the background. (f) The ratio of the unary terms, i.e., ð�Aa;0 þ �Sa;0Þ=ð�
A
a;1 þ �Sa;1Þ. Compared to (c), the unary

terms in (f) provide more information about which pixels belong to the foreground and the background. Together with the pairwise terms shown in (b),

this allows us to obtain a good segmentation of the object shown in (a).

Authorized licensed use limited to: Oxford University Libraries. Downloaded on April 13,2010 at 17:55:07 UTC from IEEE Xplore.  Restrictions apply. 



objects, we develop an efficient sum-product belief propa-

gation (sum-product BP) algorithm in Section 5.2, which

efficiently computes the marginals for a nonregular Potts

model (i.e., when the labels are not specified by an

underlying grid of parameters, complementing the result

of Felzenszwalb and Huttenlocher [10]). As will be seen,

these marginals allow us to efficiently sample the object

category model using a method similar to [9].
Efficiently computing the M-step: Once the samples of

� have been obtained in the E-step, we need to compute a

new labeling f̂ such that Prðf̂jDÞ � Prðf 0jDÞ. We show that

such a labeling f̂ can be computed by minimizing a

weighted sum of energy functions of the form given in

(8), where the weighted sum over samples approximates

the marginalization of � (see below for details). The

weights are given by the probability of the samples. This

allows the labeling f̂ to be obtained efficiently using a single

st-MINCUT operation [21].
Details. We concentrate on the M-step first. We will later

show how the E-step can be approximately computed using

image features. Given the distribution Prð�jf 0;DÞ, we

average (16) over � to obtain

logPrðf jDÞ ¼ EðlogPrðf;�jDÞÞ � EðlogPrð�jf;DÞÞ; ð17Þ

where Eð�Þ indicates the expectation under Prð�jf 0;DÞ. The

key observation of the generalized EM algorithm is that the

second term on the right side of (17), i.e.,

EðlogPrð�jf;DÞÞ ¼

Z

ðlogPrð�jf;DÞÞPrð�jf 0;DÞd�;

ð18Þ

is maximized when f ¼ f 0 [15]. We obtain a labeling f̂ such

that it maximizes the first term on the right side of (17), i.e.,

f̂ ¼ argmax EðlogPrðf;�jDÞÞ

¼ argmax

Z

ðlogPrðf;�jDÞÞPrð�jf 0;DÞd�;
ð19Þ

then, if f̂ is different from f 0, it is guaranteed to increase the

posterior probability pðf jDÞ. This is due to the following

two reasons: 1) f̂ increases the first term of (17), i.e.,

EðlogPrð�; f jDÞÞ, as it is obtained by maximizing this term;

and 2) f̂ decreases the second term of (17), i.e.,

EðlogPrð�jf;DÞÞ, which is maximized when f ¼ f 0. If f̂ is

the same as f 0 then the algorithm is said to have converged

to a local maximum of the distribution Prðf jDÞ. The

expression in (19) is called the expected complete-data

log-likelihood in the generalized EM literature.
In Section 5, it will be shown that we can efficiently

sample from the object category model� of our choice. This

suggests a sampling-based solution to maximizing equation

(19). Let the set of s samples be �1; . . . ;�s, with weights

wi ¼ Prð�ijf
0;DÞ. Using these samples, (19) can be approxi-

mated as

f̂ ¼ argmax
f

X

i¼s

i¼1

wi logPrðf;�ijDÞ;

¼ argmax
f

X

i¼s

i¼1

wið�Q3ðf;�i;DÞÞ � C; ð20Þ

) f̂ ¼ argmin
f

X

i¼s

i¼1

wiQ3ðf;�i;DÞ þ C: ð21Þ

The form of the energy Q3ðf;�i;DÞ is given in (8). The term
C ¼

P

i wi logZ3ð��Þ is a constant which does not depend on
f or � and can therefore be ignored during the minimiza-
tion. This is the key equation of our approach. We observe that
this energy function is a weighted linear sum of the
energies Q3ðf;�;DÞ which, being a linear combination
with positive weights wi, can also be optimized using a
single st-MINCUT operation [21] (see Fig. 4). This demon-
strates the interesting result that for CDRF (and MRF) with
latent variables, it is computationally feasible to optimize
the complete-data log-likelihood.

The generalized EM algorithm converges to a local
maximum of Prðf jDÞ and its success depends on the initial
labeling f0. In the last section, a graphical model for pixel-
by-pixel segmentation was set up. However, it would be
computationally unsuccessful to use this model straight off.
Rather, we adopt an initialization stage in which we get a
rough estimate of the posterior probability of � from a set
of image features Z (defined in Section 4.1). Image features
(such as textons and edges) can provide high discrimination
at low computational cost. We approximate the initial
distribution Prð�jf0;DÞ as gð�jZÞ, where Z are some image
features chosen to localize the object in a computationally
efficient manner. The weights wi required to evaluate (21)
on the first EM iteration are obtained by sampling from the
distribution gð�jZÞ (defined in Section 4).

Onemight argue that if theMAP estimate of the object has a
veryhighposterior probability compared to other poses, then
(21) can be approximated using only the MAP estimate �

�

instead of the samples �1; . . . ;�s. However, we found that
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Fig. 4. (a) Various samples of a cow model for a given image. Each

sample �i gives rise to one instance of the Object Category Specific

CDRF which can be solved to obtain a segmentation using a single st-

MINCUT operation on a graph, say Gi. The segmentation which

increases the expected complete-data log-likelihood is found using a

single st-MINCUT operation on the weighted average of all graphs Gi
where the weights wi are defined by the probability Prð�ijf

0;DÞ of the

various samples.
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this is not the case especiallywhen the RGBdistribution of the
background is similar to that of the object. For example,
Fig. 15 shows various samples obtained by matching the
model for a cow to two images. Note that different samples
localize different parts of the object correctly andhave similar
posterior probabilities. Thus, it is necessary to use multiple
samples of the object category model.

The road map described above results in the OBJCUT

algorithm, which obtains object category specific segmen-
tation. Algorithms 1 and 2 summarize the main steps of
OBJCUT for nonarticulated and articulated object cate-
gories, respectively. Note that we can keep on iterating
over the E and the M steps. However, we observed that the
samples (and the segmentation) obtained from one
iteration to the next do not differ substantially (e.g., see
Fig. 16). Hence, we run each step once for computational
efficiency, as described in Algorithms 1 and 2. As will be
seen in the experiments, we obtain accurate results for
different object categories using only one iteration of the
generalized EM algorithm.

Algorithm 1. The OBJCUT algorithm for nonarticulated object

categories

. Input: An image D and a nonarticulated object category

model.
. Initial estimate of pose using edges and texture

(Section 5.1.1):

1) A set of candidate poses to ¼ ðxo; yo; �o; �oÞ for the

object is identified using a tree cascade of classifiers

which computes a set of image features Z.

2) The maximum likelihood estimate is chosen as initial

estimate of the pose.

. Improved estimation of pose taking into account color
(Section 5.1.2):

1) The appearance model of both foreground and

background is updated.

2) A new set of candidate poses is generated for the

object by densely sampling pose space around the

estimate found in the above step (again, using a tree

cascade of classifiers for computing Z).

. The samples �1; . . . ;�s are obtained from the posterior
gð�jZÞ of the object category model as described in

Section 5.1.3.

. OBJCUT

1) The weights wi ¼ gð�ijZÞ are computed.

2) The energy in (21) is minimized using a single

st-MINCUT operation to obtain the segmentation f .

Algorithm 2. The OBJCUT algorithm for articulated object

categories

. Input: An image D and an articulated object category

model.

. Initial estimate of pose using edges and texture

(Section 5.2.1):

1) A set of candidate poses ti ¼ ðxi; yi; �i; �iÞ for each

part is identified using a tree cascade of classifiers
which computes a set of image features Z.

2) An initial estimate of the poses of the parts is found

without considering the layering of parts using an

efficient sum-product BP algorithm (described

in the Appendix).

. Improved estimation of pose taking into account color

and occlusion (Section 5.2.2):

1) The appearance model of both foreground and
background is updated.

2) A new set of candidate poses is generated for each

part by densely sampling pose space around the

estimate found in the above step (again, using a tree

cascade of classifiers for computing Z).

3) The pose of the object is estimated using efficient

sum-product BP and the layering of the parts.

. The samples �1; . . . ;�s are obtained from the posterior
gð�jZÞ of the object category model as described

in Section 5.2.3.

. OBJCUT

1) The weights wi ¼ gð�ijZÞ are computed.

2) The energy in (21) is minimized using a single

st-MINCUT operation to obtain the segmentation f .

In the remainder of the paper, we provide details of the
object category model � of our choice. We propose efficient
methods to obtain the samples from the posterior prob-
ability distribution of � required for the marginalization in
(21). We demonstrate the results on a number of articulated
and nonarticulated object categories.

4 OBJECT CATEGORY MODELS

When choosing the model � for the Object Category
Specific CDRF, two issues need to be considered: 1) whether
the model can handle intraclass shape and appearance
variation (and, in the case of articulated objects, spatial
variation) and 2) whether samples from the distribution
gð�jZÞ (which are required for segmentation) can be
obtained efficiently.

We represent the shape of an object (or a part, in the case
of articulated objects) using multiple exemplars of the
boundary. This allows us to handle the intraclass shape
variation. The appearance of an object (or part) is represented
using multiple texture exemplars. Again, this handles the
intraclass appearance variation. Note that the exemplars
model the shape and appearance of an object category.
These should not be confused with the shape and
appearance potentials of the Object Category Specific CDRF

used to obtain the segmentation.
Once an initial estimate of the object is obtained, its

appearance is known. Thus, the localization of the object can
be refined using a better appearancemodel (i.e., one which is
specific to that instance of the object category). For this
purpose, we use histograms which define the distribution of
the RGB values of the foreground and the background.

We define the model � for nonarticulated objects as a set
of shape and texture exemplars (see Fig. 5). In the case of
articulated objects, one must also allow for considerable
spatial variation. For this purpose, we use the PS model.
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Fig. 5. A selection of the multiple exemplars used to represent the model
for bananas and oranges. Multiple shape exemplars are required to
handle intraclass shape variability.
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However, the PS models used in previous work [9], [12]
assume nonoverlapping parts connected in a tree structure.
We extend the PS by incorporating the layering information
of parts and connecting them in a complete graph structure.
We call the resulting representation the layered pictorial
structures (LPS) model. Below, we describe the object
category models in detail.

4.1 Set of Exemplars Model

We represent nonarticulated object categories as 2D
patterns with a probabilistic model for their shape and
appearance. The shape of the object category is represented
using a set of shape exemplars S ¼ fS1;S2; . . . ;Seg. For this
work, each shape exemplar Si is given by a set of points
fsi;1; si;2; . . . ; si;mg describing the outline of the object.
Similarly, the appearance is represented using a set of
texture exemplars T ¼ fT1;T2; . . . ;Teg, where each exem-
plar is an image patch (i.e., a set of intensity values). Note
that we use multiple exemplars (i.e., e > 1) to handle the
shape and appearance variations which are common in
nonarticulated object categories. We call this the SOE model.
Note that similar models were used for object detection in
[14], [40], [42].

4.1.1 Feature Likelihood for Object

Given the putative pose of an object, i.e., to ¼ fxo; yo; �o; 	og
(where fxo; yog is the location, �o is the rotation, and 	o is
the scale), we computed two features Z ¼ fz1; z2g for the
shape and appearance of the object, respectively. Let Do �
D be the set of pixels corresponding to the object at pose to.
The features z1 and z2 are computed using Do. Assuming
independence of the two features, the likelihood based on
the whole data is approximated as

PrðZj�Þ ¼ Prðz1ÞPrðz2Þ; ð22Þ

where Prðz1Þ / expð�z1Þ and Prðz2Þ / expð�z2Þ. We also
assume the prior Prð�Þ to be uniform. This provides us
with the distribution gð�jZÞ as

gð�jZÞ / PrðZj�ÞPrð�Þ / PrðZj�Þ: ð23Þ

We now describe the features z1 and z2 in detail.
Outline (z1). The likelihood of the object shape should be

robust to outliers resulting from cluttered backgrounds. To
this end, we define z1 as the minimum of the truncated
chamfer distances over all the exemplars of the object at
pose to. Let U ¼ fu1; u2; . . . ; umg represent the edges of the
image at to. Then, z1 is computed as z1 ¼ minSi2SdchamðSi;UÞ.
The truncated chamfer distance dchamð�; �Þ is given by
dchamðSi;UÞ ¼

1
m

P

j minfminkkuk � si;jk; 
1g, where 
1 is a
threshold for truncation which reduces the effect of outliers
and missing edges. Orientation information is included by
computing minkkuk � si;jk only over those edge points uk

which have a similar orientation to si;j. This makes the
chamfer distance more robust [14]. We use eight orientation
groups for the outline points.

Texture (z2).We use the VZ classifier [43] which provides
a histogram representation Hi for each exemplar Ti.

1 It also

provides a histogram Ho for the image patch Do. The
feature z2 is computed as z2 ¼ minTi2T dchiðHi;HoÞ, where
dchið�; �Þ is the �2 distance.2

4.1.2 Learning the Exemplars

In order to learn the exemplars, we use manually
segmented images. The outline of each segmented image
provides us with an exemplar Si 2 S. The texture exemplars
Ti are given by the subimage marked as foreground. We
use 20 segmented images each for the “banana” and the
“orange” categories. A subset of the shape exemplars S of
these two categories is shown in Fig. 5.

We now describe an extension to the PS which is used as
the model � for articulated objects.

4.2 Layered Pictorial Structures

In the case of articulated objects, we use the PS model to
handle large deformations. PS are compositions of 2D
patterns, termed parts, under a probabilistic model for their
shape, appearance, and spatial layout. However, the PS

models used previously in [9], [12] are not directly suitable
for applications such as efficient segmentation due to the
following reasons: 1) They use a weak likelihood model
which results in a large number of putative poses for each
part; 2) the parts are connected in a tree structure and
hence, provide a weak spatial model; and 3) they do not
explicitly model self-occlusion. Hence, different parts with
similar shape and appearance (e.g., the legs of cows or
horses) are often incorrectly detected at the same pose (i.e.,
even in cases where they are actually at different poses in
the given image).

We overcome the deficiencies of previous PS models by
extending them in three ways: 1) Similarly to SOE, the
likelihood of a part includes both its outline and its texture
which results in a small number of putative poses for each
part in a given image (see Section 5.2.1); 2) all parts are
connected to each other to form a complete graph instead of
a tree structure which provides a better spatial model; and
3) similarly to the model described in [1], each part pi is
assigned an occlusion number oi which determines its
relative depth. The occlusion numbers allow us to explicitly
model self-occlusion. Specifically, a part pi can partially or
completely occlude part pj if and only if oi > oj. Note that
several parts can have the same occlusion number if they
are at the same depth. Such parts, which share a common
occlusion number, are said to lie in the same layer. We call
this model LPS.

4.2.1 Posterior of the LPS

An LPS can also be viewed as an MRF where the random
variables of the MRF correspond to the nP parts. Each
random variable takes one of nL labels which encode the
putative poses of the part. Similar to the pose of an object
described in Section 4.1, the pose of the ith part is
defined by a label ti ¼ fxi; yi; �i; 	ig. For a given pose ti
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1. The VZ classifier obtains a texton dictionary by clustering intensity
values in an N �N neighborhood of each pixel in Ti for all Ti 2 T . The
histogram Hi is given by the frequency of each entry of this texton
dictionary in Ti. We use N ¼ 3 and 60 clusters in our experiments.

2. The feature z2 described here handles the intraclass variation in
appearance and is used to determine an initial estimate of the pose of the
object. This estimate is then refined using a better appearance model (i.e.,
specific to a particular instance of the object category) as described in
Section 5.1.2.
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and image D, the part pi corresponds to the subset of the
image pixels D which are used to calculate features Zi.

The posterior of the LPS is given by

gð�jZÞ ¼ PrðZj�ÞPrð�Þ; ð24Þ

where Z ¼ fZ1; . . . ;ZnP
g are the image features, pðZj�Þ is

the feature likelihood, and pð�Þ is the prior. Like the SOE

model, the shape of an LPS is specified by a set of shape
exemplars Si for each part pi. The appearance of an LPS is
modeled using a set of texture exemplars T for the object
category. Note that, unlike the shape exemplars, which are
specific to a part of an object category, the texture exemplars
are specific to the object category of interest. Assuming that
the features Zi are computed by not including pixels
accounted for by parts pj for which oj > oi (i.e., parts which
can occlude pi), the feature likelihood is given by
PrðZj�Þ ¼

Qi¼nP

i¼1 PrðZij�Þ. The feature likelihood PrðZij�Þ
for part pi is computed as described in Section 4.1.1.
Specifically, the likelihood of the first feature, i.e., Prðz1Þ, is
computed using the minimum of the truncated chamfer
distance, over the set Si for the part, at pose ti. The texture
likelihood, pðz2Þ, is obtained from the VZ classifier using the
set T for the object category.3

LPS, like PS, are characterized by pairwise only depen-
dencies between the random variables. These are modeled
as a prior on the relative poses of parts:

Prð�Þ / exp �
X

i¼nP

i¼1

X

j¼nP

j¼1;j6¼i

�ðti; tjÞ

 !

: ð25Þ

Note that we use a completely connected MRF as this was
found to provide a better localization of the object than a
tree structured MRF [22]. In our approach, the pairwise
potentials �ðti; tjÞ of putative poses for each pair of parts
are given by a nonregular Potts model, i.e.,

�ðti; tjÞ ¼
d1; if valid configuration;
d2; otherwise;

�

ð26Þ

where d1 < d2. In other words, all valid configurations are

considered equally likely and have a smaller cost. A

configuration is considered valid if the difference between

the two poses ti and tj lies in an interval defined by t
min
ij ¼

fxmin
ij ; ymin

ij ; �min
ij ; �min

ij g and t
max
ij ¼ fxmax

ij ; ymax
ij ; �max

ij ; �max
ij g,

i.e., tmin
ij � jti � tjj � t

max
ij . Note that the above inequalities

should be interpreted component-wise (i.e., xmin
ij � jxi �

xjj � xmax
ij and so on). For each pair of parts pi and pj the

terms t
min
ij and t

max
ij are learned using training video

sequences as described in Section 4.2.2. Using (24), the

posterior of the LPS parameters is given by

gð�jZÞ /
Y

i¼nP

i¼1

PrðZij�Þ exp �
X

j6¼i

�ðti; tjÞ

 !

: ð27Þ

4.2.2 Learning the LPS

Wenowdescribe howwe learn the various parameters of the

LPS model for cows. To this end, we use 20 cow videos of

45 frames each and learn the shape, appearance, and

transformations of rigidly moving segments in each frame

of the video using the motion segmentation method

described in [24]. Correspondence between the segments

learned from two different videos is established using shape

context with continuity constraints [40] as shown in Fig. 6.

The corresponding segments then define a part of the LPS

model. The outline of the segments defines the shape

exemplars Si (see Fig. 7), while the intensity values of the

segmented cows provide the set T . Furthermore, an estimate

of jti � tjj is also obtained (after rescaling the frames of the

video such that the width of the cows is 230 pixels) for each

frame and for all pairs of parts pi and pj. This is used to

compute the parameters t
min
ij and t

max
ij that define valid

configurations.
To obtain the LPS model for horses, we use 20 manually

segmented images. The texture exemplars can be obtained

using the segmented images. However, since these images

do not provide us with any motion information, we cannot

use the method in [24] to obtain the shape exemplars of the

LPS model. In order to overcome this problem, we establish

a point to point correspondence between the outline of a

cow from a training video and the outlines of the horses,

again using shape context with continuity constraints [40]

(see Fig. 8). Using this correspondence and the learned parts

of the cow, the parts of the horse are now easily determined

(see Fig. 9). The part correspondence obtained also maps the

parameters t
min
ij and t

max
ij that were learned for cows to

horses. In the next section, we address the important issue

of developing efficient algorithms for matching the

model � to an image.
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Fig. 6. Correspondence using shape context matching with continuity
constraints. Outlines of two cows which need to be matched are shown.
Lines are drawn to indicate corresponding points.

Fig. 7. (a) A subset of shape exemplars Si for the head of a cow
(obtained by establishing a correspondence between a set of
segmented cow images as shown in Fig. 6). (b) Shape exemplars of
the torso part.

3. Again, the feature z2 described here handles the intraclass variation in
appearance and is used to determine an initial estimate of the pose of the
object. This estimate is then refined using a better appearance model (i.e.,
specific to a particular instance of the object category) as described in
Section 5.2.2.
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5 SAMPLING THE OBJECT CATEGORY MODELS

Given an image D, our objective is to match the object

category model to it in order to obtain samples from the

distribution gð�jZÞ. We achieve this in three stages:

. Initialization, where we fit the object category model
to a given image D by computing features z1 (i.e.,
chamfer) and z2 (i.e., texture) using exemplars. This
provides us with a rough object pose.

. Refinement, where the initial estimate is refined by
computing z2 using a better appearance model (i.e.,
the RGB distribution for the foreground and back-
ground learned using the initial pose together with
the shape) instead of the texture feature used during
initialization. In the case of articulated objects, the
layering information is also used.

. Sampling, where samples are obtained from the
distribution gð�jZÞ.

5.1 Sampling the SOE

We now describe the three stages for obtaining samples by

matching the SOE model (for a nonarticulated object

category) to a given image.

5.1.1 Initial Estimation of Pose

In order to obtain the initial estimate of the pose of an

object, we need to compute the feature likelihood for each

pose using all exemplars. This would be computationally

expensive due to the large number of possible poses and

exemplars. However, most poses have a very low likelihood

since they do not cover the pixels containing the object of

interest. We require an efficient method which discards

such poses quickly. To this end, we use a tree cascade of

classifiers [39].
We term the rotated and scaled versions of the shape

exemplars as templates. When matching many similar

templates to an image, a significant speedup is achieved

by forming a template hierarchy and using a coarse-to-fine

search. The idea is to group similar templates together with

an estimate of the variance of the error within the cluster,

which is then used to define a matching threshold. For each

cluster, a prototype of the cluster is first compared to the

image; the individual templates within the cluster are

compared to the image only if the error is below the

threshold. This clustering is done at various levels, resulting

in a hierarchy, with the templates at the leaf level covering

the space of all possible templates (see Fig. 10).
In our experiments, we constructed a three-level tree by

clustering the templates using a cost function based on

chamfer distance. We use 20 exemplars for each object. The

templates are generated by transforming the exemplars

using discrete rotations between �=4 and =4 radians in

intervals of 0.1 radians and scales between 0.7 and 1.3 in

intervals of 0.1.
The edge image of D is found using edge detection with

embedded confidence [28] (a variation on Canny in which a

confidence measure is computed from an ideal edge

template). The feature z1 (truncated chamfer distance) is

computed efficiently by using a distance transform of the

edge image that is further filtered as suggested in [30]. This

transformation assigns to each pixel in the edge image, the

minimum of 
1 and the distance to its nearest edge pixel.

The truncated chamfer distance of an exemplar at an image

pose to ¼ fxo; yo; �o; 	og is calculated efficiently as the mean

of the distance transform values at the template point

coordinates (using the template defined by rotation �o and

scale 	o of the exemplar, see Fig. 11).
The feature z2 (i.e., texture) is computed only at level 3 of

the tree cascade by determining the nearest neighbor of the

histogram of texton labeling of Do among the histograms of

texture exemplars. For this purpose, we use the efficient

nearest neighbor method described in [17] (modified for

�2 distance instead of euclidean distance).
Associated with each node of the cascade is a threshold

used to reject bad poses. The putative poses to of the object

are found by rejecting bad poses by traversing through the

tree cascade starting from the root node for each pixel fx; yg

of the image D. The likelihoods PrðZj�Þ are computed

using (22). The initial estimate of the pose is determined by

the image location fxo; yog, template orientation �o and

template scale 	o which results in the highest likelihood.

Fig. 12a shows the initial estimate for two banana images.

This estimate is refined using a better appearance model as

described below.
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Fig. 8. Correspondence using shape context matching with continuity
constraints. Outlines of a horse and a cow are shown. Lines are drawn
to indicate corresponding points.

Fig. 9. (a) and (b) The multiple exemplars of the head and the torso
part, respectively. The exemplars are obtained by establishing a
correspondence between segmented images of cows and horses as
shown in Fig. 8.

Fig. 10. The putative poses of the object, e.g., a banana, together with
their likelihood are found using a cascade of classifiers.
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5.1.2 Refinement of Pose

Once the initial estimate of the pose of the object is obtained,

the object location is used to estimate the RGB distribution

of the foreground and background (and texture exemplars

are no longer used). These distributions, denoted as Hobj

and Hbkg for the foreground and background, respectively,

are used to define a better appearance feature z2, which is

specific to the particular instance of the object category in

the image. Specifically,

Prðz2Þ ¼
Y

x2Do

PrðxjHobjÞ

PrðxjHbkgÞ
: ð28Þ

The refined estimate of the putative poses are obtained using

the tree cascade of classifiers as described in Section 5.1.1 by

searching around the initial estimate. In our experiments, we

consider locations fx; yg which are at most at a distance of

15 percent of the size of the object as given by the initial

estimate. When obtaining the refined estimate, all orienta-

tions � and scales 	 are considered at each location fx; yg.

5.1.3 Obtaining Samples of the SOE

We now obtain samples from the distribution gðZj�Þ for the

SOE model. By assuming a uniform prior Prð�Þ for the

model parameter �, this distribution is given by

gðZj�Þ / Prðz1ÞPrðz2Þ. The samples are defined as the best

s matches found in Section 5.1.2 and are obtained by simply

sorting over the various matches at all possible locations of

the image D. Figs. 12b and 12c show some of the samples

obtained using the above method for two banana images.
Next, we describe how to sample the distribution gðZj�Þ

for an LPS model in the case of articulated object categories.

5.2 Sampling the LPS

When matching the LPS model to the image, the number of
labels nL per part has the potential to be very large.
Consider the discretization of the putative poses t ¼
fx; y; �; 	g into 360� 240 for fx; yg with 15 orientations
and seven scales at each location. This results in 9,072,000
poses which causes some computational difficulty when
obtaining the samples of the LPS.

Felzenszwalb and Huttenlocher [9] advocate maintaining
all labels and suggest an OðnPnLÞ algorithm for finding the
samples of the PS by restricting the form of the prior
expð��ðti; tjÞÞ in (25). In their work, priors are specified by
normal distributions. However, this approach would no
longer be computationally feasible as the number of
parameters used to represent a pose ti increase (e.g., six
parameters for affine or eight parameters for projective).

In our approach, we consider the same amount of
discretization as in [9] when we are finding candidate
poses. However, as noted in Section 4.2, using discrimina-
tive features for shape and appearance of the object allows
us to consider only a small number of putative poses, nL,
per part by discarding the poses with low likelihood. We
found that using a few hundred poses per part, instead of
the millions of poses used in [9], was sufficient. The samples
are found by a novel efficient algorithm of complexity
OðnPn

0
LÞ per iteration (where n0L 	 n2

L), which generalizes
the method described in [10] to nonregular Potts model.
Our approach is efficient even for affine and projective
transformations due to the small number of putative
poses nL. We now described the three stages for obtaining
samples of the LPS.

5.2.1 Initial Estimation of Poses

We find the initial estimate of the poses of the LPS for an
image D by first obtaining the putative poses for each part
(along with the corresponding likelihoods) and then
estimating posteriors of the putative poses. Note that we
do not use occlusion numbers of the parts during this stage.

The putative poses are found using a tree cascade of
classifiers for each part as described in Section 5.1.1 (see
Fig. 13). The first feature z1 is computed using a three-level
tree cascade of classifiers for each part. Similar to the first
stage of matching the SOE model, the appearance feature z2
is computed using texture exemplars T of the object
category at the third level of the tree cascade. Note that,
at this stage, the RGB distributions Hobj and Hbkg for the
foreground and background are not known. Hence, the
feature z2 is computed using only texture exemplars to
overcome intraclass variation in appearance.
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Fig. 12. (a) The initial estimate obtained for the pose of a banana in two
images (see Section 5.1.1). Samples of the model obtained using the
RGB distribution of foreground and background are shown in (b) and
(c) (see Section 5.1.3). The detected poses are shown overlaid on the
image. (d) The segmentation obtained.

Fig. 11. (a) Original image containing bananas in a cluttered scene. (b) Edgemap of the image. (c) The distance transform of the edgemap along with
an exemplar of banana. Brighter intensity values indicate points which are far away from the edges. Truncated chamfer distance is calculated as the
mean of the distance transform values at the exemplar point coordinates.
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Next, an initial estimate of the model is obtained by
computing the marginals of the putative poses. Note that,
unlike the SOE model, LPS provides a prior over the relative
poses of the parts which need to be considered while
computing the marginals. The pose of each part in the initial
estimate is given by the putative pose which has the highest
marginal probability.

We use sum-product BP to find the marginal probability
of part pi taking a label ti. Recall that the time complexity of
sum-product BP is OðnPn

2
LÞ per iteration, which makes it

inefficient for large nL. However, we take advantage of the
fact that the pairwise potentials of the LPS are given by a
nonregular Potts model (as shown in (26)). This allows us to
reduce the time complexity to OðnPn

0
LÞ per iteration, where

n0L 	 n2
L, using the efficient sum-product BP algorithm

described in the Appendix.
The beliefs for each part pi and putative pose ti

computed using sum-product BP (denoted by biðtiÞ) allow
us to determine the minimum mean squared error (MMSE)
estimate of the poses of the parts (by choosing the pose with
the highest belief). In addition, it also allows us to compute
the beliefs for putative poses of every pair of parts, i.e.,
bijðti; tjÞ, which is later used for sampling (see Section 5.2.3).
Since the parts are connected to form a complete graph, we
tend to find valid configurations of the object. Fig. 14a
shows the initial estimate for two cow images. Note that the
occlusion numbers are not used to obtain the initial
estimate, as would be the case when using the PS model
instead of the LPS model. Hence, the half limbs (which are
similar to each other in shape and appearance) tend to
overlap. The initial estimate is refined using the layering as
described below.

5.2.2 Layerwise Refinement

Using the initial estimate of the object obtained above, the
RGB distribution of the foreground (i.e., Hobj) and the
background (i.e., Hbkg) is estimated. A better appearance
feature z2 (i.e., specific to the particular instance of the
object category in the images) is now computed as shown in
(28). The refined estimates of the poses are obtained by
compositing the parts of the LPS in descending order of
their occlusion numbers as follows: When considering the
layer with occlusion number o, putative poses of the parts pj
such that oj ¼ o are found using the tree cascade of
classifiers around the initial estimate of pj. In our experi-

ments, we consider locations fx; yg which are at most at a
distance of 15 percent of the size of the part as given by the
initial estimate. At each location, all possible orientations �
and scales 	 are considered. When computing the likelihood
of the part at a given pose, pixels which have already been
accounted for by a previous layer are not used. Again, the
beliefs of each putative pose of every part is computed
using efficient sum-product BP. Fig. 14b shows the MMSE

estimate obtained using layerwise refinement for two cow
images. However, for segmentation we are interested in
samples of the LPS which are obtained in the third stage.

5.2.3 Obtaining Samples of the LPS

We describe the method for sampling by considering only
two layers (called layer 1 and layer 2). The extension to an
arbitrary number of layers is trivial. The basic idea is to
sample the parts in descending order of their occlusion
numbers. In our case, this would imply that we sample the
parts from layer 2 before we sample the parts from layer 1
(since layer 2 can occlude layer 1). Although this method is
not optimal, it produces useful samples for segmentation in
practice. To obtain a sample �i, parts belonging to layer 2
are considered first. The beliefs of these parts are computed
using efficient sum-product BP. The posterior for sample �i

is approximated as

gð�ijZÞ ¼

Q

ij bijðti; tjÞ
Q

i biðtiÞ
qi�1

; ð29Þ

where qi is the number of neighboring parts of pi. Since we
use a complete graph, qi ¼ nP � 1 for all parts pi. Note that
the posterior is exact only for a singly connected graph.
However, using this approximation sum-product BP has
been shown to converge to stationary points of the Bethe
free energy [46].

The posterior is then sampled for poses, one part at a time
(i.e., Gibbs sampling), such that the pose of the part being
sampled forms a valid configuration with the poses of the
parts previously sampled. The process is repeated to obtain
multiple samples�i (which do not include the poses of parts
belonging to layer 1). This method of sampling is efficient
since often very fewpairs of poses formavalid configuration.
Further, these pairs are precomputed during the efficient
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Fig. 14. (a) The initial estimate obtained for poses of parts of a cow in
two images (see Section 5.2.1). The half limbs tend to overlap since
occlusion numbers are not used. Refined estimates of the poses
obtained using the RGB distribution of foreground and background
together with the LPS model are shown in (b) (see Section 5.2.2). The
parts are shown overlaid on the image. (c) The segmentation obtained
using the OBJCUT algorithm.

Fig. 13. The putative poses of a part, e.g., the head, together with their
likelihood are found using a cascade of classifiers. Similarly to the
cascade shown in Fig. 10, a tree structure is used to prune away the bad
poses. The texture (i.e., z2) is measured only at the last level of the tree.
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sum-product BP algorithmas described in theAppendix. The
best nS samples, with the highest belief, are chosen.

To obtain the poses of parts in layer 1 for sample�i, we fix
the poses of parts belonging to layer 2 as given by �i. We
calculate the posterior over the poses of parts in layer 1 using
sum-product BP. We sample this posterior for poses of parts
such that they form a valid configuration with the poses of
the parts in layer 2 and with those in layer 1 that were
previously sampled. As in the case of layer 2, multiple
samples are obtained and the bestnS samples are chosen. The
process is repeated for all samples�i for layer 2, resulting in
a total of s ¼ n2

S samples.
However, computing the likelihood of the parts in layer 1

for each � is expensive as their overlap with parts in layer 2
needs to be considered. We use an approximation by
considering only those poses whose overlap with layer 2 is
below a threshold 
2. Fig. 15 shows some of the samples
obtained using the above method for the cows in Fig. 14.

Once the samples are obtained, they are used as inputs
for the OBJCUT algorithm which provides the segmentation.
Note that the segmentation can then be used to obtain more
accurate samples (i.e., the generalized EM algorithm can be
iterated until convergence). However, we observed that in
almost all cases, the samples obtained in the second
iteration (and hence, the segmentation) did not differ
significantly from the samples in the first iteration (e.g.,
see Fig. 16). Hence, we ran the generalized EM algorithm for
only one iteration for all the images. As shown in the next
section, even using a single iteration provides accurate
segmentation for a large number of object categories.

6 RESULTS

We present several results of the OBJCUT algorithm and
compare it with a state-of-the-art method and ground truth.
In all our experiments, we used the same weight values. As
will be seen, OBJCUT provides reliable segmentation by
incorporating both: 1) modeled deformations, using a set of
exemplars model for nonarticulated objects and the LPS

model for articulated objects, and 2) unmodeled deforma-
tions, by merging pixels surrounding the detected object
into the segmentation via an st-MINCUT operation.

The results for nonarticulated objects are shown for two
categories: bananas and oranges. Fig. 12d shows the results
of the OBJCUT algorithm for two banana images. Fig. 17
shows the segmentations obtained for images containing
oranges. As can be seen, the samples of the SOE model
correctly localize the object in the image. The distinctive
shape and appearance of the object then allows us to obtain
an accurate segmentation using a single st-MINCUT opera-
tion. Note that even though it may appear that object
categories such as fruits can be easily segmented using color
information alone, we found that the shape potential
introduced by the model � significantly improves the
segmentation accuracy (see Fig. 17, top row).

We also tested the OBJCUT algorithm on two articulated
object categories: cows and horses. Fig. 14c shows the
results of our approach for two cow images. Figs. 18 and 19
show the segmentation of various images of cows and
horses, respectively.

The eight cow images and five horse images were
manually segmented to obtain ground truth for comparison.
For the cow images, out of the 125,362 foreground pixels
and 472,670 background pixels present in the ground truth,
120,127 (95.82 percent) and 466,611 (98.72 percent) were
present in the segmentations obtained. Similarly, for the
horse images, out of the 79,860 foreground pixels and
151,908 background pixels present in the ground truth,
71,397 (89.39 percent) and 151,185 (99.52 percent) were
obtained in the segmentations computed by our approach.
In the case of horses, most errors are due to unmodeled
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4. The images and their ground truth, together with the segmentations
obtained by OBJCUT, are available at http://www.robots.ox.ac.uk/~vgg/
research/objcut/index.html.

Fig. 15. Each row shows three samples obtained by matching the LPS

model of a cow to an image. Beliefs over the putative poses of parts are
calculated using sum-product BP. The resulting posterior probability is
then sampled to obtain instances of the object (see Section 5.2.3). Note
that different half limbs are detected correctly in different samples.

Fig. 16. Samples found in the second iteration of the generalized EM

algorithm. The samples were obtained using the method described
above, where the features Z were computed using foreground (i.e.,
nonblack) pixels only. Note that the samples are the same as those
shown in Fig. 15. This implies that the same segmentation will be
obtained in the second iteration. Hence, we stop the generalized EM

algorithm after one iteration for computational efficiency.

Fig. 17. Image segmentation results 1. The SOE model for oranges was
used to obtain segmentations of previously unseen images. (a) and
(b) show some of the samples of the SOE model. The segmentation
obtained without using the shape potential is shown in (c) and is clearly
inferior to the results obtained by the OBJCUT algorithm (d). In particular,
the segmentation of the top image is highly speckled since the
background also contains orange-colored pixels. In contrast, the
OBJCUT algorithm segments both the images accurately by also using
shape information.
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mane and tail parts.4 Results indicate that, by considering
both modeled and unmodeled deformations, excellent
segmentations were obtained by OBJCUT.

Fig. 20a shows a comparison of the segmentation
results obtained when using OBJCUT with a state-of-the-
art method for object category specific segmentation
proposed by Leibe and Schiele [26]. Note that a similar
approach was described in [4]. The OBJCUT algorithm
provides better segmentations using a significantly smaller
number of exemplars. It achieves this by exploiting the
ability of st-MINCUT for providing excellent segmentations
using a good initialization obtained by the object category
model. Fig. 20b shows a comparison of our results for a
nonarticulated object (hand) with the global optimum
found using the method described in [35]. We use the
same shape template for the hand as in [35]. The possible
poses of the hand are detected in an image by matching a
set of exemplars obtained by applying slight deformation
on the shape template. These poses are then provided as
input to the OBJCUT algorithm to obtain the pixelwise
segmentation. Note that we are able to accurately detect
and segment the object. Furthermore, unlike [35], our
method is also applicable to parts based models and can
therefore easily handle articulated object categories.

Fig. 21 shows the effects of using only the shape
potential �Sa;fðaÞ and only the appearance potential �Aa;fðaÞ by
discarding the other completely. Results indicate that good
segmentations depend on combining both the potentials, as
is the case with the OBJCUT algorithm.

7 DISCUSSION

The approach presented in this work overcomes the
problems of previous methods. Specifically, it efficiently
provides accurate segmentation which resembles the object.
The accuracy of the segmentation can be attributed to the
novel probabilistic model, i.e., Object Category Specific
CDRF. Object Category Specific CDRF combines the grid
CDRF models previously used with an object category
model. While the grid CDRF provides bottom-up informa-
tion, the object category model incorporates top-down
information about the shape of the object.

The efficiency of the method is due to two reasons: 1) We
showed how the samples of the object category models of
our choice can be quickly obtained using a tree cascade of
classifiers and efficient sum-product BP. However, we
would again like to emphasize that the techniques devel-
oped in this paper are general, i.e., they are equally
applicable to other object category models such as those
described in [26], [29]; and 2) our observation that, within
the generalized EM framework, a sampling-based approx-
imation of the complete-data log-likelihood can be opti-
mized using a single st-MINCUT.

However, our method may not scale well when the
number of exemplars is huge, e.g., when we want to handle
multiple object categories simultaneously. In such cases, the
advantage of using feature sharing methods such as [41]
within our approach needs to be explored.
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Fig. 18. Image segmentation results 2. The first two images in each column show some of the samples of the LPS model. The segmentation obtained
using the Object Category Specific CDRF is shown in the last row. Most of the errors were caused by the tail (which was not a part of the LPS model)
and parts of the background which were similar in color to the object.

Fig. 19. Image segmentation results 3. The LPS model for the horse learned using manually segmented images was used to obtain the labeling of
previously unseen images. Most of the errors were caused by unmodeled parts, i.e., the mane and the tail.
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Currently, the shape potential provided by the object

category model � is incorporated as a unary term in the

Object Category Specific CDRF. An interesting direction for

future work would be to use higher order clique potentials

provided by �. Some promising work in this area [20]

already seems to indicate that vast improvements are

possible by using more complex potentials.

APPENDIX

EFFICIENT BELIEF PROPAGATION

Themessage that part pi passes to its neighbor pj at iteration t

is a vector of length equal to the number of discrete part

labels nL of pj and is given by

mt
ijðtjÞ  

X

ti

pðZiÞ expð��ðti; tjÞÞ
Y

s6¼i;s 6¼j

mt�1
si ðtiÞ: ð30Þ

The beliefs (posteriors) after T iterations are calculated as

bTi ðtiÞ ¼ pðZiÞ
Y

s6¼i

mT
siðtiÞ;

bTijðti; tjÞ ¼ pðZiÞpðZjÞ
Y

s6¼i;s 6¼j

mT
siðtiÞm

T
sjðtjÞ:

ð31Þ

All messages are initialized to 1. The algorithm is said to

have converged when the rate of change of all beliefs falls

below a certain threshold. The messages can be computed

efficiently as follows: Let CiðtjÞ be the set of part labels of pi

which form a valid pairwise configuration with tj. We

define T ði; jÞ ¼
P

ti
pðZiÞ

Q

s6¼i;s 6¼j m
t�1
si ðtiÞ, which is inde-

pendent of the part label tj of pj and needs to be calculated

only once before pi passes a message to pj. We also define

Sði; tjÞ ¼
P

ti2CiðtjÞ
pðZiÞ

Q

s6¼i;s 6¼j m
t�1
si ðtiÞ, which is compu-

tationally inexpensive to calculate since CiðtjÞ consists of

very few part labels. The message mt
ijðtjÞ is calculated as

mt
ijðtjÞ  expð�d1ÞSði; tjÞ þ expð�d2ÞðT ði; jÞ � Sði; tjÞÞ:

ð32Þ

Clearly, the above message passing equation is equivalent

to that shown in (30).
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Fig. 20. Comparison with other methods. (a) The first image of each row shows a sample obtained by matching the LPS model to the image. The

second image is the segmentation obtained using the OBJCUT algorithm. The third image shows the result obtained using [26] which detects extra

half limbs (input and output images were provided by the authors). (b) The first image in each row shows the input and the outline of one of the

samples. The second image shows the results of our approach. The third image is the global optimum obtained by the method described in [35]

(provided by the authors).

Fig. 21. Effects of shape and appearance potentials. (a) An image
containing a cow. The segmentation results obtained by using only the
RGB histograms for the foreground and the background provided by
the LPS model are shown in (b). The results obtained by using only the
shape potential provided by the LPS model are shown in (c). (d) The
segmentations we get using the OBJCUT algorithm. Results indicate
that good segmentation is obtained only when both shape and
appearance potentials are used.
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