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Abstract

In this paper we propose a generic framework to incorporate unobserved auxiliary

information for classifying objects and actions. This framework allows us to explicitly

account for localisation and alignment of representations for generic object and action

classes as latent variables. We approach this problem in the discriminative setting as

learning a max-margin classifier that infers the class label along with the latent variables.

Through this paper we make the following contributions a) We provide a method for

incorporating latent variables into object and action classification b) We specifically ac-

count for the presence of an explicit class related subregion which can include foreground

and/or background. c) We explore a way to learn a better classifier by iterative expansion

of the latent parameter space.

We demonstrate the performance of our approach by rigorous experimental evalua-

tion on a number of standard object and action recognition datasets.

1 Introduction

In object detection, which includes the localisation of object classes, people have trained

their systems by giving bounding boxes around exemplars of a given class label. Here we

show that the classification of object classes, i.e. the flagging of their presence without their

localisation, also benefits from the estimation of bounding boxes, even when these are not

supplied as part of the training. The approach can also be interpreted as exploiting non-

uniform pyramidal schemes. As a matter of fact, we demonstrate that similar schemes are

also helpful for action class recognition.

In this paper we address the problem of classification for objects (e.g. person or car)

and actions (e.g. hugging or eating) [13] in sense of Pascal VOC [4], i.e. indicating the

presence but not spatial/temporal localisation (the latter is referred to as detection in VOC

parlance). The more successful methods are based on a uniform pyramidal representation

built on a visual word vocabulary [3, 10, 20]. In this paper, we augment the classification by

adding more flexible spatial information. This will be formulated more generally as inferring

additional unobserved or ‘latent’ dependent parameters. In particular, we focus on two such

types of parameters:
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• The first type specifies a cropping operation. This determines a bounding box in the

image. This box serves to eliminate non-representative object parts and background.

• The second type specifies a splitting operation. It corresponds to a non-uniform im-

age decomposition into 4 quadrants or temporal decomposition of a spatio-temporal

volume into 2 video sequences.

Apart from using these operations separately, we also study the effect of applying and

jointly learning both these types of latent parameters, resulting in a bounding box which is

also split. In any case, uniform grid subdivisions are replaced by more flexible operations.

While it is possible to learn the latent variables by using a separate routine [14], we adopt

a principled max-margin method that jointly infers latent variables and class label. This we

solve using a latent structured support vector machine (LSVM) [21]. We also explore an

extension of the LSVM by initially limiting the latent variable parameter space and iteratively

growing it. Those measures were observed to improve the classification results.

Our work can be seen as complementary to several alternative refinements to the bag-of-

words principle. As a matter of fact, it could be combined with such work. For instance,

improvements have also been obtained by considering multiple kernels of different features

[6, 18]. Another refinement has been based on varying the pyramidal representation step by

considering maximal pooling over sparse continuous features [3, 20].

The research related to action classification has mainly followed a bag of words approach

as well. Early work towards classification of actions using space-time interest points (STIP)

[8] was proposed by Schüldt et al. [15]. A detailed evaluation of various features was carried

out lately by Wang et al. [19].

In this paper we use the latent variable estimation proposed by Yu and Joachims [21].

Self-paced learning has recently been proposed as a further extension for the improved learn-

ing of latent SVMs [7], but was not used here.

Related recent work uses latent variables for object detection [2, 17]. In object detection,

the loss function differs from the zero/one classification loss. Moreover, in our classification

framework, the delineation of objects or actions need not be as strict. Thus, the typical

overlap criterion of detection is not valid.

The main contributions of this paper are threefold, a) the introduction of latent variables

for enhanced classification and the identification of relevant such parameters, b) a princi-

pled technique for estimating them in the case of object and action classification, and c) the

avoidance of local optima through an iteratively widened parameter space.

The remainder of the paper is structured as follows. Section 2 introduces some general

concepts and methods which we use. Section 3 describes the latent parameter operations

and how they are included in the overall classification framework. Section 4 introduces

an iterative learning approach for these latent variables. Section 5 describes the results on

standard object and action classification benchmarks. Section 6 concludes the paper.

2 Background to the Method

2.1 Feature Representation

Let P be a set of M D-dimensional descriptors [p1, ..., pM]T ∈ R
M×D extracted from an im-

age/video. We apply the K-means clustering algorithm to the extracted descriptors from the
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training samples to form a codebook V = [v1, ...,vK ]T with K cluster centres. There are dif-

ferent ways of coding each descriptor pi into a K dimensional vector qi to generate the final

image/video representation. We denote the set of codes as Q = [q1, ...,qM]T for the input

P. The traditional method is the hard vector coding (VQ) for the image/video classification

datasets. It assigns each descriptor to the nearest neighbour in V and leads up to a q vector

with a single 1 and 0s otherwise. We denote the set of codes computed with VQ by QV Q.

A recent coding scheme [20] which significantly improves the image representation for im-

age classification applications is the locally linear coding (LLC). It relaxes the cardinality

restriction on q and generates a locally smooth sparse representation by incorporating the

locality constraint. We denote the LLC code set by QLLC.

Given the coding for the descriptors, we can have different image/video representations.

One of the widely used representations is bag-of-features (BoF) which represents an im-

age/video with a histogram of local features. A histogram with VQ coding and BoF repre-

sentation is

z =
1

M

M

∑
m=1

qV Q
m . (1)

On the other hand, one uses maximal pooling to compute histograms for LLC coding [20].

z = max{qLLC
1 ,qLLC

2 , . . . ,qLLC
m } (2)

where the max operator selects the maximum value for each component among the different

vectors. We denote the final image/video representations computed with the BoF method for

the VQ and LLC schemes by Φ
V Q
BoF and ΦLLC

BoF resp. The BoF representation discards the spa-

tial/temporal layout of the image/video structure since it uses an unordered set of descriptors.

A more extensive representation is spatial pyramidal matching (SPM) [10] which incorpo-

rates spatial information into the features by using a pyramidal representation. The method

partitions the image into 2l ×2l equal sized subregions at different scales l and computes the

individual histograms for each subregion and generates the final representation by concate-

nating them. Similarly to the BoF method, individual histograms within each subregion can

be computed by using Eq.(1,2) for the VQ and LLC coding. We present the feature vector

represented with the SPM method for the VQ and LLC schemes by Φ
V Q
SPM and ΦLLC

SPM resp.

2.2 Structured Learning with Latent Parameters

Suppose we are given a training set S = {(x1,y1), ...,(xn,yn)} where xi ∈ X are the input

images/videos and yi ∈ Y are their class labels. We want to learn a discriminant function

g : X → Y which predicts the class label of unseen examples. In our applications input-

output pairs also depend on unobserved latent variables h ∈ H . Therefore we learn the

mapping in the structured learning framework of [21],

g(x) = argmax(y,h)∈Y ×H f (x,y,h) . (3)

where f (x,y,h) is a discriminative function that measures the matching quality between

input x and output y.

For training the discriminant function, we follow the generalized support vector machine
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(a) crop (b) split (c) crop-uniform split (d) crop-split

Figure 1: Illustrative Figure for Latent Models - Images

in margin rescaling formulation [21],

min
ω,εi≥0

1

2
‖ω‖2 +C

n

∑
i=1

ξi,

subject to max
hi∈H

ω ·
(

Φ(xi,yi,hi)−Φ
(

xi, ŷi, ĥi

))

≥ ∆(yi, ŷi)−ξi,

∀ŷi ∈ Y ,∀ĥi ∈ H , i = 1, . . . ,n

(4)

where f (xi, ŷi, ĥi) = ω ·Φ
(

xi, ŷi, ĥi

)

, ω is a parameter vector and Φ
(

xi, ŷi, ĥi

)

is a joint feature

vector. ∆(yi, ŷ) is the loss function that penalizes misclassification. Since our applications

require multiclass classification, we design our loss function as

∆(yi, ŷ) = 100 [y 6= ŷ], with [ ] the Iverson brackets and our feature vector as

Φmulti (x,y,h) =
(

0 . . . 0 Φ(x,y,h) 0 . . . 0
)T

(5)

where the feature vector Φ(x,y,h) is concatenated into position y. It should be noted that the

problem reduces to the Standard Structural SVM formulation [16] in the absence of latent

variables. It is used as the learning tool for the baseline approach.

The solution to the optimisation problem in Eq.(4) cannot be posed as a convex energy

function due to the dependency of hi on ω . However, Yu et al. [21] adopted an alternating

optimisation scheme, the Concave-Convex Procedure (CCCP) for the LSVM to find a local

minimum. In section 4 we suggest an iterative method for improving the exploration of the

latent space of variables.

3 Latent Models

In this section we explain the use of different selections of latent parameters to explore the

spatial and temporal decomposition of images and video sequences resp. We show illustra-

tive figures for our latent models in Fig.1 and Fig.2 and some representative classification

examples from the Graz-02 dataset in Fig.3-6. We now discuss the two basic operators rep-

resented by our latent variables, cropping and splitting, in turn.

3.1 Crop

Our first latent model is motivated by the consideration that including the class related con-

tent and discarding the irrelevant and confusing parts should provide a better discriminant

function for classification. Therefore we use a rectangular bounding box to separate two
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(a) crop (b) split (c) crop-uniform split (d) crop-split

Figure 2: Illustrative Figure for Latent Models - Videos

(a) (b) (c) (d) (e)

Figure 3: Representative crop examples from the Graz-02 dataset

parts. The bounding box is represented by two points for both spatial and temporal crop-

ping. We denote the latent parameter set with hcrop = {x1,y1,x2,y2} and hcrop = {t1, t2} for

images and video sequences resp. An illustrative figure for each latent model is shown in

Fig.1.(a) and Fig.2.(a).

We illustrate cropping samples with blue drawn bounding boxes for the object classes

from the Graz-02 dataset in Fig.3. Differently from object detection methods, our method

does not require to localize objects accurately. Instead it can discard non-representative

object parts like the handlebar or the seat of bikes, which may not be quite representative

for their class due to variations in their appearance (Fig.3(a)). It can also include more

than one object in a bounding box (Fig.3.(b-c)). Moreover, it can include additional context

information related to the object, for instance a car extended with some road background

(Fig.3.(d)).

3.2 Split

It is known that using pyramidal subdivisions of images or videos improves the classification

of objects and actions [9, 10]. Therefore, it stands to reason to consider a pyramid-type

subdivision, but with added flexibility. Rather than splitting an image uniformly into equal

quadrants, we consider splitting operations that divide into unequal quadrants. In the same

vein, we allow a video fragment to be temporally split into two parts, which are not halves.

Indeed, a uniform split would probably not keep all object or action evidence within the same

subdivision.

Note that in this paper we only consider a single layer of subdivision of the pyramid,

the extension to full multi-layers pyramids is not covered yet. Hence, such split is fully

characterised by one point. We denote the latent variable set with hsplit = {x0,y0} (Fig.1.(b))

and hsplit = {t0} (Fig.2.(b)) for images and videos resp.

We show splitting samples for bikes with green crossing lines in Fig.4. We observe that

bikes are often located in the left and right bottom cells, but also that they are not purely

segregated into a single ‘quadrant’. This is not crucial for our classification task, however.

Cropping can do a better job at object or action segmentation, as it has more degrees of



6 BILEN ET AL.: OBJECT AND ACTION CLASSIFICATION WITH LATENT VARIABLES

(a) (b) (c) (d) (e)

Figure 4: Representative split examples for the bike class from the Graz-02 dataset

(a) (b) (c) (d) (e)

Figure 5: Representative crop-uniform split examples from the Graz-02 dataset

freedom at its disposal, yet this very aspect renders good croppings more difficult to learn.

Thus, it is not a foregone conclusion that cropping will perform better than splitting.

3.3 Crop - Uniform Split

Our Crop - Uniform Split model learns a cropped region, which is subdivided further into

equal parts, in order to enrich the representation in pyramid-style. The latent parameter set

is that of the cropping. The model is illustrated in Fig.1.(c) and Fig.2.(c). We illustrate

crop-uniform splitting examples with blue cropping boxes and green uniform splits in Fig.5.

Fig.5 heralds more effective model learning than through uniform splitting only. The richer

representation of cropping and uniform splitting will in section 5 be seen to outperform pure

cropping.

3.4 Crop-Split

The Crop-Split model comes with the highest dimensional latent parameter set. It learns a

cropping box and non-uniform subdivision thereof. Its latent parameter set is a combination

of the Crop and Split models, hcrop+split = {x0,y0,x1,y1,x2,y2} for images and hcrop+split =
{t0, t1, t2}. The latent models are illustrated in Fig.1.(d) and Fig.2.(d) resp. We illustrate

crop-split examples with blue cropping boxes and green splits in Fig.6. This figure already

suggests that the crop-split model is able to locate objects, although we do not use any ground

truth bounding box locations in training.

4 Iterative Learning of Latent Parameters

Learning the parameters of an LSVM model often requires solving a non-convex optimi-

sation problem. Like every such problem, LSVM is also prone to getting stuck in local

minima. Recent work [1] proposes an iterative approach to find better local minima within

shorter convergence times for non-convex optimisation problems. It suggests to first train
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(a) (b) (c) (d) (e)

Figure 6: Representative crop-split examples from the Graz-02 dataset

the learning algorithm with easy examples and to then gradually feed in more complex ex-

amples. This procedure is called curriculum learning. The main challenge of curriculum

learning is to find a good measure to quantify the difficulty of samples. In this paper, we

take the size of the parameter space as another indication of the complexity of the learning

problem. Therefore, we run our learning algorithm within a limited latent subspace initially

and gradually increase the latent parameter space rather than providing examples that get

gradually harder.

5 Experiments

We evaluate our system on four publicly available computer vision benchmarks, the Graz-

02, the PASCAL VOC 2006 and the Caltech 101 datasets for object classification, and the

activities of daily living life dataset for action classification.

For the object classification experiments, we extract dense SIFT features [11]. These

are then used to obtain feature representations using regular grids over images as described

in 2.1. We use discretisations of 4× 4 and 8× 8 regular grids. The video sequences we

subdivide into temporal cells with a step size of 5 frames. Each temporal cell is described by

a set of the HoF descriptors [9] located at the detected Harris3D interest points [8]. We apply

K-means to the randomly sampled 100,000 descriptors from the training images/videos to

form the visual codebook. The dimension of the visual codebook for the images and videos

are chosen as 1024 and 1000 resp.

We compare the performance of the proposed latent models, ‘crop’, ‘split’, ‘crop-uni-

split’, ‘crop-split’ to the standard BoF and one level SPM representations. We provide the

performances of those representations with different grid sizes and coding methods. Our

implementation of the proposed latent learning makes use of the Latent SVM-Struct [21]

algorithm. To obtain a fair comparison, we use the most compatible learning approach pro-

vided in the Multiclass SVM-Struct package [16] to get the baseline results. It should be

noted that the performance criterion in the experiments is the average multiclass classifica-

tion accuracy.

5.1 Graz-02 Dataset

The Graz-02 dataset contains 1096 natural real-world images in three object classes, bikes,

cars and people. This database includes considerable amount of intra-class variation, vary-

ing illumination, occlusion, and clutter. We form 10 training and testing sets by randomly

sampling 150 images from each object class for training and use the rest for testing. Note

that we use the mean of classification accuracy from the 10 experiments for our evaluation.

Table 1 shows the multiclass classification results. The crop latent model improves the

classification performance over the BoF representation around 4-5 percent for all the dif-
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Grid Size Coding BoF crop SPM split crop-uni-split crop-split

4x4 VQ 81.08 86.32 78.62 82.11 85.65 85.67

8x8 VQ 80.40 86.80 81.47 81.67 86.89 86.59

4x4 LLC 84.09 87.51 87.23 88.36 89.04 89.07

8x8 LLC 85.22 89.74 87.74 89.31 90.39 90.74

Table 1: Classification Accuracy for the Graz-02 Dataset

Grid Size Coding BoF crop SPM split crop-uni-split crop-split

4x4 VQ 55.07 56.36 57.89 57.94 57.70 57.51

8x8 VQ 55.07 58.09 57.89 57.27 59.38 59.23

4x4 LLC 54.93 55.74 61.10 61.05 61.53 61.63

8x8 LLC 54.93 55.98 61.10 62.30 60.54 61.87

Table 2: Classification Accuracy for the VOC2006

ferent settings. The non-uniform split model also achieves better classification performance

than the uniform split. The crop-split model has more degree of freedom than the crop-

uni-split model. Therefore it usually outperforms the crop-uni-split. Moreover, the best

classification, indicated by bold characters, is always performed by one of the proposed la-

tent models. We also show that finer grid discretisation (8×8) enables the learning of more

effective latent models.

5.2 PASCAL VOC 2006

The PASCAL VOC 2006 dataset consists of 5,304 images for 10 object classes and provides

a train/validation and a test set. We refer to [4] for details. The dataset is mostly collected

from the internet and poses a challenging test bed for detection and classification. It includes

images with multiple object labels. Since we focus on classification rather than detection,

we modify the dataset by removing 702 multi-labelled examples.

Table 2 shows the multiclass classification results for the dataset. This dataset has more

variance in object and background appearance as well as pose than the Graz-02 dataset. The

crop model is more consistently useful for this dataset than the split model. A case where

splitting does work is for the 8×8 setting for LLC codebook representation where the latent

variable was learnt more accurately.

5.3 Caltech-101 Dataset

The Caltech-101 dataset [5] contains images from 101 object classes and an additional back-

ground class, i.e. 102 classes in total. The number of images per class varies from 31 to 800.

The dataset does not provide sufficient examples for some of the object classes to learn the

enriched object models. Thus we sort the object classes in terms of their number of exam-

ples and pick the top 15 classes with the most images. Subsequently we form 10 training

and testing sets by randomly sampling 50 images from each class of the reduced dataset.

Table 3 depicts the classification results for the Reduced Caltech 101 dataset. This dataset

is clean. The objects are placed in the image centre. Therefore, the classification accuracy

itself is quite high. We still obtain an improvement by the use of latent variables as the crop-

split models achieve the highest performance. In this case, the non-uniform split operation
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Grid Size Coding BoF crop SPM split crop-uni-split crop-split

4x4 VQ 81.04 83.22 85.02 83.70 87.38 86.31

8x8 VQ 80.77 85.25 85.42 83.84 87.35 88.25

4x4 LLC 89.70 89.53 95.41 95.18 95.48 95.50

8x8 LLC 89.58 89.60 95.64 95.33 95.82 95.76

Table 3: Classification Accuracy for the Caltech 101 Reduced

coding BoF crop SPM split crop-uni-split crop-split

VQ 82.67 84.00 84.67 86.00 86.67 86.00

LLC 79.33 72.00 88.00 88.00 90.67 88.67

Table 4: Classification Accuracy for the Everyday Actions

does not serve classification as well as the uniform splitting because of the special nature of

the dataset. The latent parameters for the non-uniform split yield over-fitting.

5.4 Everyday Actions Dataset

The activities of daily living dataset [12] contains ten different types of complex actions like

answering a phone, writing a phone number on a whiteboard and eating food with silverware.

These activities are performed three times by five people with different heights, genders,

shapes and ethnicities. Videos are taken at high resolution (1280×720 pixels). A leave-one-

out strategy is used for all subjects and the results are averaged as in [12].

Table 4 shows the results for action classification on this dataset. Satkin and Herbert [14]

have recently explored cropping for classification of this dataset. They used BoF as well

and reported an improvement of 0.67% (from 79.33 to 80). In comparison we obtain an

improvement of 1.33% from cropping. As can be seen, the best results are obtained with the

crop-uni-split model. We see a rare drop in performance for crop in LLC. We surmise that

this is due to the small cluster vocabulary size and intend to explore this further. However,

the method retains its performance for crop-split and crop-uni-split settings.

5.5 Iterative Learning

We show preliminary results for the iterative learning of latent models. We perform the

iterative learning algorithm for the splitting operation. The settings used are LLC coding

over an 8× 8 grid. We initially constrain the latent search space for the split model to the

centre of the images and expand it along the x and y directions by a step size 2 on the 8×8

grid at each iteration. Once the CCCP algorithm converges within the given latent space

in the one iteration, we expand the latent search space again at the start of the next. The

algorithm terminates when the entire search space is covered.

Graz-02 VOC 2006 Caltech 101 (R)

LSVM 89.31 62.30 95.33

Iterative LSVM 89.72 62.53 95.40

Table 5: LLC 8x8 Split for LSVM and Iterative LSVM
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Table 5 depicts the performance of the iterative splitting operation on the three object

classification datasets. We show that the iterative method for LSVM consistently improves

the classification accuracy over the original formulation of the LSVM. The preliminary re-

sults obtained here are encouraging.

6 Conclusion and future work

We have developed a method for classifying objects and actions with latent variables. We

have specifically shown that learning latent variables for flexible spatial operations like ‘crop’

and ‘split’ are useful for inferring the class label. We have adopted the latent SVM method

to jointly learn the latent variables and the class label. The evaluation of our principled ap-

proach yielded consistently good results on several standard object and action classification

datasets. We have further improved the latent SVM by iteratively growing the latent parame-

ter space to avoid local optima. In future, we are interested in extending the set of operations

that may aid classification and in improving the learning of multiple parameters.
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