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Abstract

Robust low-level image features have been proven to be effective representations
for a variety of visual recognition tasks such as object recognition and scene clas-
sification; but pixels, or even local image patches, carry little semantic meanings.
For high level visual tasks, such low-level image representations are potentially
not enough. In this paper, we propose a high-level image representation, called the
Object Bank, where an image is represented as a scale-invariant response map of a
large number of pre-trained generic object detectors, blind to the testing dataset or
visual task. Leveraging on the Object Bank representation, superior performances
on high level visual recognition tasks can be achieved with simple off-the-shelf
classifiers such as logistic regression and linear SVM. Sparsity algorithms make
our representation more efficient and scalable for large scene datasets, and reveal
semantically meaningful feature patterns.

1 Introduction

Understanding the meanings and contents of images remains one of the most challenging problems
in machine intelligence and statistical learning. Contrast to inference tasks in other domains, such
as NLP, where the basic feature space in which the data lie usually bears explicit human perceivable
meaning, e.g., each dimension of a document embedding space could correspond to a word [21], or
a topic, common representations of visual data seem to primarily build on raw physical metrics of
the pixels such as color and intensity, or their mathematical transformations such as various filters,
or simple image statistics such as shape, edges orientations etc. Depending on the specific visual
inference task, such as classification, a predictive method is deployed to pool together and model the
statistics of the image features, and make use of them to build some hypothesis for the predictor. For
example, Fig.1 illustrates the gradient-based GIST features [25] and texture-based Spatial Pyramid
representation [19] of two different scenes (foresty mountain vs. street). But such schemes often
fail to offer sufficient discriminative power, as one can see from the very similar image statistics in
the examples in Fig.1.

Tower Sky

Object Filters in OB
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Gist (filters) SIFT-SPM (L=2)Original Image

Tower SkyMountainTree

Figure 1: (Best viewed in colors and magnification.) Comparison of object bank (OB) representation with
two low-level feature representations, GIST and SIFT-SPM of two types of images, mountain vs. city street.
From left to right, for each input image, we show the selected filter responses in the GIST representation [25],
a histogram of the SPM representation of SIFT patches [19], and a selected number of OB responses.

*indicates equal contributions.

1



While more sophisticated low-level feature engineering and recognition model design remain impor-
tant sources of future developments, we argue that the use of semantically more meaningful feature
space, such as one that is directly based on the content (e.g., objects) of the images, as words for tex-
tual documents, may offer another promising venue to empower a computational visual recognizer
to potentially handle arbitrary natural images, especially in our current era where visual knowledge
of millions of common objects are readily available from various easy sources on the Internet.

In this paper, we propose “Object Bank” (OB), a new representation of natural images based on
objects, or more rigorously, a collection of object sensing filters built on a generic collection of la-
beled objects. We explore how a simple linear hypothesis classifier, combined with a sparse-coding
scheme, can leverage on this representation, despite its extreme high-dimensionality, to achieve
superior predictive power over similar linear prediction models trained on conventional representa-
tions. We show that an image representation based on objects can be very useful in high-level visual
recognition tasks for scenes cluttered with objects. It provides complementary information to that of
the low-level features. As illustrated in Fig.1, these two different scenes show very different image
responses to objects such as tree, street, water, sky, etc. Given the availability of large-scale image
datasets such as LabelMe [30] and ImageNet [5], it is no longer inconceivable to obtain trained ob-
ject detectors for a large number of visual concepts. In fact we envision the usage of thousands if
not millions of these available object detectors as the building block of such image representation in
the future.

While the OB representation offers a rich, high-level description of images, a key technical chal-
lenge due to this representation is the “curse of dimensionality”, which is severe because of the size
(i.e., number of objects) of the object bank and the dimensionality of the response vector for each
object. Typically, for a modest sized picture, even hundreds of object detectors would result into a
representation of tens of thousands of dimensions. Therefore to achieve robust predictor on practi-
cal dataset with typically only dozens or a couple of hundreds of instances per class, structural risk
minimization via appropriate regularization of the predictive model is essential.

In this paper, we propose a regularized logistic regression method, akin to the group lasso approach
for structured sparsity, to explore both feature sparsity and object sparsity in the Object Bank repre-
sentation for learning and classifying complex scenes. We show that by using this high-level image
representation and a simple sparse coding regularization, our algorithm not only achieves superior
image classification results in a number of challenging scene datasets, but also can discover seman-
tically meaningful descriptions of the learned scene classes.

2 Related Work

A plethora of image descriptors have been developed for object recognition and image classifica-
tion [25, 1, 23]. We particularly draw the analogy between our object bank and the texture filter
banks [26, 10].

Object detection and recognition also entail a large body of literature [7]. In this work, we mainly
use the current state-of-the-art object detectors of Felzenszwalb et. al. [9], as well as the geometric
context classifiers (“stuff” detectors) of Hoeim et. al. [13] for pre-training the object detectors.

The idea of using object detectors as the basic representation of images is analogous [12, 33, 35]. In
contrast to our work, in [12] and [33] each semantic concept is trained by using the entire images or
frames of video. As there is no localization of object concepts in scenes, understanding cluttered im-
ages composed of many objects will be challenging. In [35], a small number of concepts are trained
and only the most probable concept is used to form the representation for each region, whereas in
our approach all the detector responses are used to encode richer semantic information.

The idea of using many object detectors as the basic representation of images is analogous to ap-
proaches applying a large number of “semantic concepts” to video and image annotation and re-
trieval [12, 33, 35]. In contrast to our work, in [12, 33, 35] each semantic concept is trained by using
entire images or frames of videos. There is no sense of localized representation of meaningful object
concepts in scenes. As a result, this approach is difficult to use for understanding cluttered images
composed of many objects.

Combinations of small set of (∼ a dozen of) off-the-shelf object detectors with global scene context
have been used to improve object detection [14, 28, 29]. Also related to our work is a very recent
exploration of using attributes for recognition [17, 8, 16]. But we emphasize such usage is not a
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Figure 2: (Best viewed in colors and magnification.) Illustration of OB. A large number of object detectors
are first applied to an input image at multiple scales. For each object at each scale, a three-level spatial pyramid
representation of the resulting object filter map is used, resulting in No.Objects×No.Scales× (12 +22 +42)
grids; the maximum response for each object in each grid is then computed, resulting in a No.Objects length
feature vector for each grid. A concatenation of features in all grids leads to an OB descriptor for the image.

universal representation of images as we have proposed. To our knowledge, this is the first work that
use such high-level image features at different image location and scale.

3 The Object Bank Representation of Images

Object Bank (OB) is an image representation constructed from the responses of many object de-
tectors, which can be viewed as the response of a “generalized object convolution.” We use two
state-of-the-art detectors for this operation: the latent SVM object detectors [9] for most of the
blobby objects such as tables, cars, humans, etc, and a texture classifier by Hoiem [13] for more
texture- and material-based objects such as sky, road, sand, etc. We point out here that we use the
word “object” in its very general form – while cars and dogs are objects, so are sky and water. Our
image representation is agnostic to any specific type of object detector; we take the “outsourcing”
approach and assume the availability of these pre-trained detectors.

Fig. 2 illustrates the general setup for obtaining the OB representation. A large number of object
detectors are run across an image at different scales. For each scale and each detector, we obtain an
initial response map of the image (see Appendix for more details of using the object detectors [9,
13]). In this paper, we use 200 object detectors at 12 detection scales and 3 spatial pyramid levels
(L=0,1,2) [19]. We note that this is a universal representation of any images for any tasks. We use
the same set of object detectors regardless of the scenes or the testing dataset.

3.1 Implementation Details of Object Bank

So what are the “objects” to use in the object bank? And how many? An obvious answer to this
question is to use all objects. As the detectors become more robust, especially with the emergence
of large-scale datasets such as LabelMe [30] and ImageNet [5], this goal becomes more reachable.

But time is not fully ripe yet to consider using all objects in, say, the LabelMe dataset. Not enough
research has yet gone into building robust object detector for tens of thousands of generic objects.
And even more importantly, not all objects are of equal importance and prominence in natural im-
ages. As Fig.1 in Appendix shows, the distribution of objects follows Zipf’s Law, which implies
that a small proportion of object classes account for the majority of object instances.

For this paper, we will choose a few hundred most useful (or popular) objects in images1. An impor-
tant practical consideration for our study is to ensure the availability of enough training images for
each object detectors. We therefore focus our attention on obtaining the objects from popular image
datasets such as ESP [31], LabelMe [30], ImageNet [5] and the Flickr online photo sharing com-
munity. After ranking the objects according to their frequencies in each of these datasets, we take
the intersection set of the most frequent 1000 objects, resulting in 200 objects, where the identities
and semantic relations of some of them are illustrated in Fig.2 in the Appendix. To train each of the
200 object detectors, we use 100∼200 images and their object bounding box information from the
LabelMe [30] (86 objects) and ImageNet [5] datasets (177 objects). We use a subset of LabelMe
scene dataset to evaluate the object detector performance. Final object detectors are selected based
on their performance on the validation set from LabelMe (see Appendix for more details).

1This criterion prevents us from using the Caltech101/256 datasets to train our object detectors [6, 11] where
the objects are chosen without any particular considerations of their relevance to daily life pictures.
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4 Scene Classification and Feature/Object Compression via Structured

Regularized Learning

We envisage that with the avalanche of annotated objects on the web, the number of object detec-
tors in our object bank will increase quickly from hundreds to thousands or even millions, offering
increasingly rich signatures for each images based on the identity, location, and scale of the object-
based content of the scene. However, from a learning point of view, it also poses a challenge on how
to train predictive models built on such high-dimensional representation with limited number of ex-
amples. We argue that, with an “overcomplete” OB representation, it is possible to compress ultra-
high dimensional image vector without losing semantic saliency. We refer this semantic-preserving
compression as content-based compression to contrast the conventional information-theoretic com-
pression that aims at lossless reconstruction of the data.

In this paper, we intend to explore the power of OB representation in the context of Scene Clas-
sification, and we are also interested in discovering meaningful (possibly small subset of) dimen-
sions during regularized learning for different classes of scenes. For simplicity, here we present our
model in the context of linear binary classier in a 1-versus-all classification scheme for K classes.
Generalization to a multiway softmax classifier is slightly more involved under structured regu-
larization and thus deferred to future work. Let X = [xT

1 ;xT
2 ; . . . ;xT

N ] ∈ R
N×J , an N × J

matrix, represent the design built on the J-dimensional object bank representation of N images;
and let Y = (y1, . . . , yN ) ∈ {0, 1}N denote the binary classification labels of N samples. A

linear classifier is a function hβ : R
J → {0, 1} defined as hβ(x) , arg maxy∈{0,1} xβ, where

β = (β1, . . . , βJ) ∈ R
J is a vector of parameters to be estimated. This leads to the following

learning problem minβ∈RJ λR(β) + 1

m

∑m

i=1
L(β;xi, yi), where L(β;x, y) is some non-negative,

convex loss, m is the number of training images, R(β) is a regularizer that avoids overfitting, and
λ ∈ R is the regularization coefficient, whose value can be determined by cross validation.

A common choice of L is the Log loss, L = log(1/P (yi|xi, β)), where P (yi|xi, β)) is the logis-
tic function P (y|x, β)) = 1

Z
exp(1

2
y(x · β)). This leads to the popular logistic regression (LR)

classifier2. Structural risk minimization schemes over LR via various forms of regularizations have
been widely studied and understood in the literature. In particular, recent asymptotic analysis of the
ℓ1 norm and ℓ1/ℓ2 mixed norm regularized LR proved that under certain conditions the estimated
sparse coefficient vector β enjoys a property called sparsistency [34], suggesting their applicabil-
ity for meaningful variable selection in high-dimensional feature space. In this paper, we employ
an LR classifier for our scene classification problem. We investigate content-based compression
of the high-dimensional OB representation that exploits raw feature-, object-, and (feature+object)-
sparsity, respectively, using LR with appropriate regularization.

Feature sparsity via ℓ1 regularized LR (LR1) By letting R(β) , ‖β‖1 =
∑J

j=1
|βj |, we

obtain an estimator of β that is sparse. The shrinkage function on β is applied indistinguishably
to all dimensions in the OB representation, and it does not have a mechanism to incorporate any
potential coupling of multiple features that are possibly synergistic, e.g., features induced by the
same object detector. We call such a sparsity pattern feature sparsity, and denote the resultant
coefficient estimator by βF.

Object sparsity via ℓ1/ℓ2 (group) regularized LR (LRG) Recently, a mixed-norm (e.g., ℓ1/ℓ2)
regularization [36] has been used for recovery of joint sparsity across input dimensions. By letting

R(β) , ‖β‖1,2 =
∑J

j=1
‖βj‖2, where βj is the j-th group (i.e., features grouped by an object j),

and ‖ · ‖2 is the vector ℓ2-norm, we set the feature group to be corresponding to that of all features
induced by the same object in the OB. This shrinkage tends to encourage features in the same group
to be jointly zero. Therefore, the sparsity is now imposed on object level, rather than merely on raw
feature level. Such structured sparsity is often desired because it is expected to generate semantically
more meaningful lossless compression, that is, out of all the objects in the OB, only a few are needed
to represent any given natural image. We call such a sparsity pattern object sparsity, and denote the
resultant coefficient estimator by βO.

2We choose not to use the popular SVM which correspond to L being a hinge loss and R(β) being a
ℓ2-regularizer, because under SVM, content-based compression via structured regularization is much harder.
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Figure 3: (Best viewed in colors and magnification.) Comparison of classification performance of different
features (GIST vs. BOW vs. SPM vs. OB) and classifiers (SVM vs. LR) on (top to down) 15 scene, LabelMe,
UIUC-Sports and MIT-Indoor datasets. In the LabelMe dataset, the “ideal” classification accuracy is 90%,
where we use the human ground-truth object identities to predict the labels of the scene classes. The blue bar
in the last panel is the performance of “pseudo” object bank representation extracted from the same number
of “pseudo” object detectors. The values of the parameters in these “pseudo” detectors are generated without
altering the original detector structures. In the case of linear classifier, the weights of the classifier are randomly
generated from a uniform distribution instead of learned. “Pseudo” OB is then extracted with exactly the same
setting as OB.

Joint object/feature sparsity via ℓ1/ℓ2 + ℓ1 (sparse group) regularized LR (LRG1) The group-
regularized LR does not, however, yield sparsity within a group (object) for those groups with non-
zero total weights. That is, if a group of parameters is non-zero, they will all be non-zero. Translating
to the OB representation, this means there is no scale or spatial location selection for an object. To

remedy this, we proposed a composite regularizer, R(β) , λ1‖β‖1,2 + λ2‖β‖1, which conjoin the
sparsification effects of both shrinkage functions, and yields sparsity at both the group and individual
feature levels. This regularizer necessitates determination of two regularization parameters λ1 and
λ2, and therefore is more difficult to optimize. Furthermore, although the optimization problem for
ℓ1/ℓ2 + ℓ1 regularized LR is convex, the non-smooth penalty function makes the optimization highly
nontrivial. In the Appendix, we derive a coordinate descent algorithm for solving this problem. To
conclude, we call the sparse group shrinkage patten object/feature sparsity, and denote the resultant
coefficient estimator by βOF.

5 Experiments and Results

Dataset We evaluate the OB representation on 4 scene datasets, ranging from generic natural scene

images (15-Scene, LabelMe 9-class scene dataset3), to cluttered indoor images (MIT Indoor Scene),
and to complex event and activity images (UIUC-Sports). Scene classification performance is eval-
uated by average multi-way classification accuracy over all scene classes in each dataset. We list
below the experiment setting for each dataset:

• 15-Scene: This is a dataset of 15 natural scene classes. We use 100 images in each class for training
and rest for testing following [19].

• LabelMe: This is a dataset of 9 classes. 50 images randomly drawn images from each scene classes
are used for training and 50 for testing.

• MIT Indoor: This is a dataset of 15620 images over 67 indoor scenes assembled by [27]. We follow
their experimental setting in [27] by using 80 images from each class for training and 20 for testing.

• UIUC-Sports: This is a dataset of 8 complex event classes. 70 randomly drawn images from each
classes are used for training and 60 for testing following [22].

Experiment Setup We compare OB in scene classification tasks with different types of conven-
tional image features, such as SIFT-BoW [23, 3], GIST [25] and SPM [19]. An off-the-shelf SVM
classifier, and an in-house implementation of the logistic regression (LR) classifier were used on
all feature representations being compared. We investigate the behaviors of different structural risk
minimization schemes over LR on the OB representation. As introduced in Sec 4, we experimented
ℓ1 regularized LR (LR1), ℓ1/ℓ2 regularized LR (LRG) and ℓ1/ℓ2 + ℓ1 regularized LR (LRG1).

5.1 Scene Classification

Fig.3 summarizes the results on scene classification based on OB and a set of well known low-
level feature representations: GIST [25], Bag of Words (BOW) [3] and Spatial Pyramid Matching

3From 100 popular scene names, we obtained 9 classes from the LabelMe dataset in which there are more
than 100 images: beach, mountain, bathroom, church, garage, office, sail, street, forest. The maximum number
of images in those classes is 1000.
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(SPM) [19] on four challenging scene datasets. We show the results of OB using both an LR classi-
fier and a linear SVM 4 We achieve substantially superior performances on three out of four datasets,
and are on par with the 15-Scene dataset. The substantial performance gain on the UIUC-Sports
and the MIT-Indoor scene datasets illustrates the importance of using a semantically meaningful
representation for complex scenes cluttered with objects. For example, the difference between a liv-
ingroom and a bedroom is less so in the overall texture (easily captured by BoW or GIST), but more
so in the different objects and their arrangements. This result underscores the effectiveness of OB,
highlighting the fact that in high-level visual tasks such as complex scene recognition, a higher level
image representation can be very useful. We further decompose the spatial structure and semantic
meaning encoded in OB by using a “pseudo” OB without semantic meaning. The significant im-
provement of OB in classification performance over the “pseudo object bank” is largely attributed
to the effectiveness of using object detectors trained from image. For each of the existing scene
datasets (UIUC-Sports, 15-Scene and MIT-Indoor), we also compare the reported state of the arts
performances to our OB algorithm (using a standard LR classifier). This result is shown in Tab.15

5.2 Control Experiment: Object Recognition by OB vs. Classemes [33]

15-Scene UIUC-

Sports

MIT-

Indoor

state-of 72.2%[19] 66.0% [32] 26% [27]

-the-art 81.1%[19] 73.4% [22]

OB 80.9% 76.3% 37.6%

Table 1: Comparison of classification re-
sults using OB with reported state-of-the-
art algorithms. Many of the algorithms use
more complex model and supervised infor-
mation, whereas our results are obtained by
applying simple logistic regression.

OB is constructed from the responses of many objects,
which encodes the semantic and spatial information of
objects within images. It can be naturally applied to ob-
ject recognition task. We compare the object recognition
performance on the Caltech 256 dataset to [33], a high
level image representation obtained as the output of a
large number of weakly trained object classifiers on the
image. By encoding the spatial locations of the objects
within an image, OB (39%) significantly outperforms
[33] (36%) on the 256-way classification task, where per-
formance is measured as the average of the diagonal values of a 256×256 confusion matrix.

5.3 Semantic Feature Sparsification Over OB

In this subsection, we systematically investigate semantic feature sparsification of the OB represen-
tation. We focus on the practical issues directly relevant to the effectiveness of OB representation
and quality of feature sparsification, and study the following three aspects of the scene classifier:
1) robustness, 2) feasibility of lossless content-based compression, 3) profitability over growing
OB.interpretability of predictive features.

5.3.1 Robustness with Respect to Training Sample Size
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Figure 4: (a) Classification performance (and s.t.d.) w.r.t number of training images. Each pair represents per-
formances of LR1 and LRG respectively. X-axis is the ratio of the training images over the full training dataset
(70 images/class). (b) Classification performance w.r.t feature dimension. X-axis is the size of compressed
feature dimension, represented as the ratio of the compressed feature dimension over the full OB representation
dimension (44604). (c) Same as (b), represented in Log Scale to contrast the performances of different algo-
rithms. (d) Classification performance w.r.t number of object filters. X-axis is the number of object filters. 3
rounds of randomized sampling is performed to choose the object filters from all the object detectors.

The intrinsic high-dimensionness of the OB representation raises a legitimate concern on its demand
on training sample size. We investigate the robustness of the logistic regression classifier built on

4We also evaluate the classification performance of using the detected object location and its detection score
of each object detector as the image representation. The classification performance of this representation is
62.0%, 48.3%, 25.1% and 54% on the 15 scene, LabelMe, UIUC-Sports and MIT-Indoor datasets respectively.

5We refer to the Appendix for a further discussion of the issue of comparing different algorithms based on
different training strategies.
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features selected by LR1 and LRG in this experiment. We train LR1 and LRG on the UIUC-Sports
dataset by using multiple sizes of training examples, ranging from 25%, 50%, 75% to 100% of the
full training data.

As shown in Fig. 4(a), we observe only moderate drop of performance when the number of training
samples decreases from 100% to 25% of the training examples, suggesting that the OB representa-
tion is a rich representation where discriminating information residing in a lower dimensional “in-
formative” feature space, which are likely to be retained during feature sparsification, and thereby
ensuring robustness under small training data. We explore this issue further in the next experiment.

5.3.2 Near Losslessness of Content-based Compression via Regularized Learning

We believe that the OB can offer an over complete representation of any natural image. Therefore,
there is great room for possibly (near) lossless content-based compression of the image features into
a much lower-dimensional, but equally discriminative subspace where key semantic information of
the images are preserved, and the quality of inference on images such as scene classification are not
compromised significantly. Such compression can be attractive in reducing representation cost of
image query, and improving the speed of query inference.

In this experiment, we use the classification performance as a measurement to show how different
regularization schemes over LR can preserve the discriminative power. For LR1, LRG and LRG1,
cross-validation is used to decide the best regularization parameters. To study the extend of infor-
mation loss as a function of different number of features being retained in the classifier, we re-train
an LR classifier using features from the top x% percentile of the rank list, where x is a compression
scale ranging from 0.05% to 100%. One might think that LR itself when fitted on full input dimen-
sional can also produce a rank list of features for subsequent selection. For comparison purpose, we
also include results from the LR-ranked features, as can be seen in Fig.4(b,c), indeed its performance
drops faster than all the regularization methods.

In Fig.4 (b), we observe that the classification accuracy drops very slowly as the number of selected
features decreases. By excluding 75% feature dimensions, classification performance of each algo-
rithm decreases less than 3%. One point to notice here is that, the non-zero entries only appear in
dimensions corresponding to no more than 45 objects for LRG at this point. Even more surprisingly,
LR1 and LRG preserve accuracies above 70% when 99% of the feature dimensions are excluded.

Fig. 4 (c) shows more detailed information in the low feature dimension range, which corresponds
to a high compression ratio. We observe that algorithms imposing sparsity in features (LR1, LRG,
and LRG1) outperform unregularized algorithm (LR) with a larger margin when the compression
ratio becomes higher. This reflects that the sparsity learning algorithms are capable of learning the
much lower-dimensional, but highly discriminative subspace.

5.3.3 Profitability Over Growing OB

We envisage the Object Bank will grow rapidly and constantly as more and more labeled web images
become available. This will naturally lead to increasingly richer and higher-dimensional representa-
tion of images. We ask, are image inference tasks such as scene classification going to benefit from
this trend?

As group regularized LR imposes sparsity on object level, we choose to use it to investigate how the
number of objects will affect the discriminative power of OB representation. To simulate what hap-
pens when the size of OB grows, we randomly sample subsets of object detectors at 1%, 5%, 10%,
25%, 50% and 75% of total number of objects for multiple rounds. As in Fig.4(d), the classification
performance of LRG continuously increases when more objects are incorporated in the OB repre-
sentation. We conjecture that this is due to the accumulation of discriminative object features, and
we believe that future growth of OB will lead to stronger representation power and discriminability
of images models build on OB.

5.4 Interpretability of the Compressed Representation

Intuitively, a few key objects can discriminate a scene class from another. In this experiment, we aim
to discover the object sparsity and investigate its interpretability. Again, we use group regularized
LR (LRG) since the sparsity is imposed on object level and hence generates a more semantically
meaningful compression.
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the learned feature weights back to the image by reverting the
OB extraction procedure. The purple bounding box shows the
size of the object filter at this scale, centered at the peak of
the heat map. Bottom: example scene images masked by the
feature weights in image space (at the highest weighted scale),
highlighting the most relevant object dimension.
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Figure 5: Object-wise coefficients given
scene class. Selected objects correspond to
non-zero β values learned by LRG.

We show in Fig.5 the object-wise coefficients of the com-
pression results for 4 sample scene classes. The object
weight is obtained by accumulating the coefficient of βO

from the feature dimensions of each object (at different
scales and spatial locations) learned by LRG. Objects
with all zero coefficients in the resultant coefficient esti-
mator are not displayed. Fig.5 shows that objects that are
“representative” for each scene are retained by LRG. For
example, “sailboat”, “boat”, and “sky” are objects with
very high weight in the “sailing” scene class. This sug-
gests that the representation compression via LRG is vir-
tually based upon the image content and is semantically
meaningful; therefore, it is nearly “semantically lossless”.

Knowing the important objects learned by the compres-
sion algorithm, we further investigate the discriminative
dimensions within the object level. We use LRG1 to examine the learned weights within an ob-
ject. In Sec.3, we introduce that each feature dimension in the OB representation is directly related
to a specific scale, geometric location and object identity. Hence, the weights in βOF reflects the
importance of an object at a certain scale and location. To verify the hypothesis, we examine the im-
portance of objects across scales by summing up the weights of related spatial locations and pyramid
resolutions. We show one representative object in a scene and visualize the feature patterns within
the object group. As it is shown in Fig.6(Top), LRG1 has achieved joint object/feature sparsification
by zero-out less relevant scales, thus only the most discriminative scales are retained. To analyze
how βOF reflects the geometric location, we further project the learned coefficient back to the im-
age space by reversing the OB representation extraction procedure. In Fig.6(Middle), we observe
that the regions with high intensities are also the locations where the object frequently appears. For
example, cloud usually appears in the upper half of a scene in the beach class.

6 Conclusion
As we try to tackle higher level visual recognition problems, we show that Object Bank representa-
tion is powerful on scene classification tasks because it carries rich semantic level image informa-
tion. We also apply structured regularization schemes on the OB representation, and achieve nearly
lossless semantic-preserving compression. In the future, we will further test OB representation in
other useful vision applications, as well as other interesting structural regularization schemes.
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