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Abstract It is a remarkable fact that images are related to

objects constituting them. In this paper, we propose to rep-

resent images by using objects appearing in them. We intro-

duce the novel concept of object bank (OB), a high-level

image representation encoding object appearance and spa-

tial location information in images. OB represents an image

based on its response to a large number of pre-trained object

detectors, or ‘object filters’, blind to the testing dataset and

visual recognition task. Our OB representation demonstrates

promising potential in high level image recognition tasks.

It significantly outperforms traditional low level image rep-

resentations in image classification on various benchmark

image datasets by using simple, off-the-shelf classification

algorithms such as linear SVM and logistic regression. In this

paper, we analyze OB in detail, explaining our design choice

of OB for achieving its best potential on different types of

datasets. We demonstrate that object bank is a high level

representation, from which we can easily discover semantic

information of unknown images. We provide guidelines for

effectively applying OB to high level image recognition tasks

where it could be easily compressed for efficient computation

in practice and is very robust to various classifiers.
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1 Introduction

High-level image recognition is one of the the most chal-

lenging domains in the field of computer vision. Any high-

level image recognition task using computer vision algo-

rithms starts with image representation, the process of turning

pixels into a vector of numbers for further computation and

inference. Of all the modules for a robust high-level image

understanding system, the design of robust image represen-

tation is of fundamental importance and has been attracting

many vision researchers. Compared to other data modalities,

visual data is particularly challenging because of the extreme

richness and diversity of the contents being captured in real

world, and the large variability in photometric and geometric

changes the real world could map onto the 2D pixel world.

Pixels, unlike other information carriers such as words, carry

very little meaning themselves, and are extremely volatile to

noise. In the past decade, a great amount of research has

been conducted on developing robust image representation.

Among the image representations widely adopted so far,

most of them are low level image representations focusing

on describing images by using some variant of image gra-

dients, textures and/or colors [e.g. SIFT (Lowe 1999), filter-

banks (Freeman and Adelson 1991; Perona and Malik 1990),

GIST (Oliva and Torralba 2001), etc.]. However, there exists

a large discrepancy between these low level image represen-

tations and the ultimate high level image recognition goals,

which is the so called ‘Semantic gap’. One way to bridge

the semantic gap is by deploying increasingly sophisticated

models, such as the probabilistic grammar model (Zhu et al.

2007), compositional random fields (Jin and Geman 2006),
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and probabilistic models (Fei-Fei and Perona 2005; Sudderth

et al. 2005). While these approaches are based on rigorous

statistical formulation, good learning and inference are still

extremely difficult. Most of the papers have shown promising

results only on small scale datasets. It still remains a very

challenging task for the models to bridge the low level rep-

resentations and the high level visual recognition tasks.

One notable development in image representation is

the recent work that explores to build image representa-

tions using intermediate ‘attributes’ (Ferrari and Zisserman

2007; Lampert et al. 2009; Farhadi et al. 2010; Torresani

et al. 2010). Its success in recognition is largely accred-

ited to the introduction of ‘attribute’, a high-level semanti-

cally meaningful representation effectively summarizing the

low-level image properties. In attribute-based methods for

object recognition, an object is represented by using visual

attributes. For example, a polar bear can be described as

white, fluffy object with paws. Such visual attributes summa-

rize the low-level features into object parts and other proper-

ties, and then are used as the building blocks for recognizing

objects in test images. In the work of Ferrari and Zisserman

(2007), the authors developed a topic model to learn the map-

ping of low-level image properties to predefined color and

shape attributes. Similarly, Lampert et al. (2009) and (2010)

propose to detect and describe objects in unknown images

based on their correlation with a set of human-specified high-

level descriptions of the target objects. Attribute-based meth-

ods have demonstrated great potential in image classification

as well. For example, in Torresani et al. (2010), the authors

build a high-level image representation from a collection of

classifier results and achieved promising results.

On the other hand, using global/local structure informa-

tion has proved to be useful to increase the descriptive power

of a representation. For example, by applying spatial pyramid

structure to bag of words (BoW) representation, Lazebnik

et al. (2006) proposed the Spatial Pyramid Model that gives

superior performance compared to the original BoW features.

Image representations based on either attribute and spatial

location have demonstrated potential in visual recognition

tasks, which reminds us how human interprets an image.

What will pop up in your mind when imagining a sailing

scene? We often think of sailboat, ocean and blue sky, each

at some specific location. Objects are essential components

to interpret an image. As human, we start to learn numerous

objects from our childhood and memorize the appearance of

learned objects. Their appearance are then used to effectively

describe our visual world.

Therefore, we hypothesize that object appearance and

their spatial locations could be very useful for representing

and recognizing images. In this paper, we introduce object

bank (OB), a novel high level image feature to represent

complex real-world image by collecting the responses of

many object detectors at different spatial locations in the

image. Drawing an analogy to low-level image representa-

tion, instead of using image filters to represent local texture,

we introduce object filters to characterize local image prop-

erties related to the presence/absence of objects. By using

a large number of such object filters, our object filter bank

representation of the image can provide rich information of

the image that captures much of the high-level meaning. OB

is a compact structure to encode our knowledge of objects

for challenging high level visual tasks in real world problems

such as image classification. OB is a high level image rep-

resentation that provides probability of objects appearing in

images and their spatial locations as the signature of images.

As a proof of concept, we apply OB to high level image

classification tasks by using simple, off-the-shelf classifiers.

It delivers promising image recognition results on various

benchmark datasets and outperforms significantly over all

existing traditional low level features. In this paper, we pro-

vide in-depth analysis of each component in OB and sim-

ple guidelines on effectively applying OB representation to

image classification task. We show that, by encoding seman-

tic and spatial information of objects within an image, OB can

not only achieve state-of-the-art performance in high level

visual recognition tasks but also discover meaningful aspects

of objects in an image. To explore its potential in practice,

we analyze the robustness and efficiency of object bank. We

show that OB is robust to different off-the-shelf classifiers.

For large scale computation, OB can be easily compressed

to compact representation while preserving its robustness.

2 Related Work

A considerable body of research has been focusing on using

traditional low level image features for image classification,

such as filter banks (Leung and Malik June 2001; Perona

and Malik 1990; Freeman and Adelson 1991), GIST (Oliva

and Torralba 2001), and BoW of local features (Bosch et al.

2006; Fei-Fei and Perona 2005). Instead of using gradients

or colors in an image to represent it, OB characterizes local

image properties by using object filters related to the pres-

ence/absence of objects, adding more high level information

into the representation to bridge the semantic gap.

Object detection and recognition also entail a large body

of literature (Fei-Fei et al. 2007; Bourdev and Malik 2009).

Promising object detectors have been introduced by Felzen-

szwalb et al. (2007), as well as the geometric context classi-

fiers (‘stuff’ detectors) of Hoiem et al. (2006). These object

recognition approaches accelerate the advancement of new

state-of-the-art object detection and classification algorithms

such as Desai et al. (2009) and Song et al. (2011).

Visual attributes based research for image recognition

(Farhadi et al. 2010; Ferrari and Zisserman 2007; Lampert

et al. 2009; Torresani et al. 2010) has achieved substantial
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progress recently. These approaches focus on single object

classification based on visual attributes. The pre-defined con-

cepts used in Lampert et al. (2009), Farhadi et al. (2010) and

Torresani et al. (2010) are not necessarily directly related to

visual pattern in the images, e.g. ‘eats fish’ in Lampert et al.

(2009), ‘carnival’ in Farhadi et al. (2010) and ‘able-minded’

in Torresani et al. (2010). Different than these approaches,

OB representation encodes semantic and spatial information

of objects universally applicable for high level visual recog-

nition tasks. Among these approaches, the closest to object

bank is proposed by Torresani et al. (2010), where a compact

descriptor is learned from a set of pre-trained concept clas-

sifiers. While the classmes representation proposed by Tor-

resani et al. (2010) underscores the compactness of a feature

representation for large scale visual tasks, we advocate a rich

image representation encoding semantic and spatial informa-

tion for inferring semantic and structural relationship from.

The idea of using object detectors as the basic representa-

tion of images is related to work in multimedia by applying

a large number of ‘semantic concepts’ to video and image

annotation (Hauptmann et al. 2007). However, in Hauptmann

et al. (2007), each semantic concept is trained by using the

entire images or frames of video. Understanding cluttered

images composed of many objects will be challenging since

there is no localization of object concepts in images in this

approach.

In Vogel and Schiele (2004), a handful number of concepts

are learned for describing an image. For each location, only

the most probable concept is used to form the representation

based on binary classification result. Significant amount of

information is lost during their feature extraction process.

Our approach, on the other hand, encodes the probabilities of

all objects candidates appearing in all locations in the image

resulting in much richer image representation.

Recently, feature learning approaches have made great

progress in image classification by building advanced

machine learning models to learn from low level feature rep-

resentation (Dixit et al. 2011; Gao et al. 2010, 2011). Most

of these approaches learn useful feature representations from

low level image features such as visual code word of SIFT

(Lowe 1999). By encoding rich content of semantic and spa-

tial information, OB can serve as a potential complimen-

tary feature pool for these algorithms to learn more sophistic

image representation from.

3 The OB Representation of Images

In this section, we introduce the concept of high-level OB

representation (Li et al. 2010a,b). The ultimate goal of OB

representation is to capture as much objects information con-

tained in the images including their semantic meaning, spatial

locations, sizes and view points etc. as possible. We achieve

this by constructing OB, a collection of object filters trained

on multiple objects with different view points.

3.1 Construction of the OB

So what are the “objects” to use for constructing the OB?

And how many? An obvious answer to this question is to use

all objects. As the detectors become more robust, especially

with the emergence of large-scale datasets such as LabelMe

(Russell et al. 2005) and ImageNet (Deng et al. 2009), this

goal becomes more reachable.

But time is not fully ripe yet to consider using all objects

in, say, the ImageNet dataset. Not enough research has yet

gone into building robust object detector for tens of thousands

of generic objects. As we increase the number of objects, the

issue of semantic hierarchy becomes more prominent. Not

much is understood about what it means to detect a mam-

mal and a dog simultaneously. And even more importantly,

not all objects are of equal importance and prominence in

natural images. As Fig. 1 shows, the distribution of objects

follows Zipf’s Law, which implies that a small proportion of

object classes account for the majority of object instances.

Hauptmann and colleagues have postulated that using 3,000–

4,000 concepts should suffice to annotate most of the video

data (Hauptmann et al. 2007).

In this paper, we choose a few hundred most useful (or

popular) objects in images.1 An important practical consid-

eration for our study is to ensure the availability of enough

training images for each object detectors. We therefore focus

our attention on obtaining the objects from popular image

datasets such as ESP (Ahn 2006), LabelMe (Russell et al.

2005), ImageNet (Deng et al. 2009) and the Flickr! online

photo sharing community. After ranking the objects accord-

ing to their frequencies in each of these datasets, we take the

intersection set of the most frequent 1,000 objects, resulting

in 177 objects, where the identities and semantic relations

of some of them are illustrated in Fig. 2. To train each of

the 177 object detectors, we use 100∼200 images and their

object bounding box information from the ImageNet (Deng

et al. 2009) datasets.

To our knowledge, no previous work has applied more than

a handful of object detectors in scene recognition tasks (Desai

et al. 2009). But our initial object filter bank of 177 object

detectors is still of modest size. We show in Sect. 4 that even

with this relatively small number of objects we can achieve

promising recognition results (e.g., Fig. 5).

1 This criterion prevents us from using the Caltech101/256 datasets to

train our object detectors (Fei-Fei et al. 2006; Griffin et al. 2007) where

the objects are chosen without any particular considerations of their

relevance to daily life pictures.
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Fig. 1 (Best viewed in colors and magnification) The frequency (or

popularity) of objects in the world follows Zipf‘s law trend: a small

proportion of objects occurs much more frequently than the majority.

While there are many ways of measuring this, e.g., by ranking object

names in popular corpora such as the American National Corpora (2001)

and British National Corpus Edition and Sampler, we have taken a

web-based approach by counting the number of downloadable images

corresponding to object classes in WordNet on popular search engines

such as Google, Ask.com and Bing. We show here the distribution of

the top 2,000 objects

3.2 The OB Representation

Figure 3 illustrates our OB representation construction

process. Given an image, an object filter response can be

viewed as the response of a ‘generalized object convolution.’

We obtain object responses by running a bunch of object fil-

ters across an image at various locations and scales by using

the sliding window approach. Each filter is an object detec-

tor trained from images with similar view point. If not speci-

fied, we apply the deformable part based model from Felzen-

szwalb et al. (2007) as our object detector where six parts are

used. For each scale and each detector, we obtain an initial

response map, whose value at each location indicates the pos-

sibility of the occurrence of that object. To capture the spatial

location property of objects, we build a spatial pyramid for the

response map. At each layer of the spatial pyramid structure,

we extract the signal from all grids. Finally, we build the OB

representation by concatenating all the extracted responses.

Max Response Representation (OB-Max, Fig. 3). As

shown in Fig. 3, OB-Max encodes the strongest object filter

response at each grid and each level of the spatial pyramid

and detector scale. In our case, we have 177 objects, 12 scales

(six scales from each of the two components) and 21 spatial

pyramid grid (L = 2), which is in 44,604 dimension in total.

In the example image shown in Fig. 3, given the OB-Max

representation, the possibility of sailboat and water appear-

ing in that specific grid is higher than other objects. If not

specified, OB-Max is the default OB pooling method in our

following experiments.

Average Response Representation (OB-Avg in Fig. 3). OB-

Avg encodes the average object filter response at each grid

and each level of the spatial pyramid and detector scale. From

the responses to different object filters, we form the OB fea-

ture by representing the (scene/event) image as a vector of

average values from each spatial pyramid grid.

Histogram Response Representation (OB-Hist, Fig. 3).

OB-Hist captures more detailed information of the object

filters than OB-Max. Instead of using maximum response

value of each object detector in each grid of the spatial pyra-

mid representation of each of the response map, we construct

a histogram of the responses in each grid. The histogram

has a vector length of the number of objects, and the value

Fig. 2 (Best viewed in colors

and magnification) Rough

grouping of the chosen object

filters based loosely on the

WordNet hierarchy (Miller

1995). The size of each

unshaded node corresponds to

the number of images returned

by the search. The list of objects

used in object bank is available

at http://vision.stanford.edu/

projects/objectbank/objectlist.
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Fig. 3 (Best viewed in colors and magnification) Illustration of the

object filter representations. Given an input image, we first run a large

number of object detectors at multiple scales to obtain the object

responses, the probability of objects appearing at each pixel. For each

object at each scale, we apply a three-level spatial pyramid represen-

tation of the resulting object filter map, resulting in No.Objects ×

No.Scales×(12+22+42)grids. An OB representation of an image is

a concatenation of statistics of object responses in each of these grids.

We consider three ways of encoding the information. The first is the

max response representation (OB-Max), where we compute the max-

imum response value of each object, resulting in a feature vector of

No.Objects length for each grid. The second is the average response

representation (OB-Avg), where we extract the average response value

in each grid. The resulting feature vector has the same length as the max-

imum response. The third is the histogram representation (OB-Hist).

Here for each of the object detectors, we keep track of the percent of

pixels on a discretized number of response values, resulting in a vector

of No.BinnedResponseValues × No.Objects length for each

grid

Tower Sky

Object Filters

MountainTree

SIFT-SPM (L=2)Original Image GIST (filters)

Tower SkyMountainTree

Fig. 4 (Best viewed in colors and magnification) Comparison of object

bank representation with two low-level feature representations, GIST

and SIFT–SPM of two types of images, mountain versus city street. For

each input image, we first show the selected filter responses in the GIST

representation (Oliva and Torralba 2001). Then we show a histogram of

the SPM representation of SIFT patches (Lazebnik et al. 2006) at level

2 of the SPM representation where the codeword map is also shown as a

histogram. Finally, we show a selected number of object filter responses

of each bin is indicated by the number of pixels with the

response value within that bin. Four histogram bins in each

grid are used in the experiment. As the example in Fig. 3

illustrates, within that specific grid, most response values of

sailboat detector are high whereas most response values of

bear detector are low.

Before we apply OB representation for visual recogni-

tion tasks, we first ask whether this representation encodes

discriminative information of images. In Fig. 4, we com-

pare the OB image representation to two popular low-

level image representations: GIST (Oliva and Torralba

2001) and the spatial pyramid (SPM) representation of

SIFT (Lazebnik et al. 2006). The low-level feature responses

of the two images belonging to different semantic classes

are shown to be very similar to each other, whereas

the OB features can easily distinguish such scenes due

to the semantic information provided by the object fil-

ter responses. In Sect. 4, the discriminability of our OB

representation is further supported by a series of com-

parison to the state-of-the-art algorithms based upon low-

level image representation on high level visual recognition

tasks. In this series of comparison, if not specified, we use

the OB-Max representation with plain logistic regression

classifier.
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 Li

Fig. 5 (Best viewed in colors and magnification) Comparison of clas-

sification performance of different features (GIST vs. BOW vs. SPM

vs. object bank) and classifiers (SVM vs. LR) on (left to right) 15

scene, LabelMe, UIUC-Sports and MIT-Indoor datasets. In the LabelMe

dataset, the ‘ideal’ classification accuracy is 90 %, where we use the

human ground-truth object identities to predict the labels of the scene

classes. Performance of previous related algorithms of the original

dataset are displayed by using the green bars

4 High Level Visual Recognition by Using Different

Visual Representations

As we try to tackle the high level visual recognition tasks,

the semantic gap between low-level features and high-level

meanings becomes big. One solution to this is to use complex

models to pool in information (Sudderth et al. 2005; Li and

Fei-Fei 2007; Tu et al. 2005; Li et al. 2009). But the draw-

backs are clear. Researchers have to put large amount of effort

to design such complex models. Due to the complexity, they

might not scale well with large scale data or different datasets.

In addition, some models (Sudderth et al. 2005; Li and Fei-

Fei 2007) require extra amount of supervision, which causes

such models to be impractical. Can we leverage on relatively

simple statistical models and classifiers, but try to develop

descriptive image representation to narrow the semantic gap

better? We hypothesize that by introducing features that are

‘higher level’, such as OB, we could do this.

While it is good to see a clear advantage of discriminative

power of OB over the low level image representations visu-

ally, we want to further examine its potential in high level

visual recognition tasks on multiple benchmark datasets. In

our experiments, we use simple off-the-shelf classifiers to

dissect the contribution of the representations in classifica-

tion. We compare to related image representations as well as

the state-of-the-art approaches built upon them directly with

more complex models. Scene classification performance is

evaluated by average multi-way classification accuracy over

all scene classes.

4.1 OB on Scene Classification

Before we describe the experiment details, we first intro-

duce the four benchmark scene datasets used in our scene

classification experiment, ranging from generic natural scene

images [15-Scene (Lazebnik et al. 2006), LabelMe 9-class

scene dataset (Li et al. 2010a)], to cluttered indoor images

[(MIT Indoor Scene (Quattoni and Torralba 2009)], and to

complex event and activity images [UIUC-Sports (Li and

Fei-Fei 2007)]. For each dataset, we follow the settings in

the paper introduced it and train a multi-class linear SVM

and plain logistic regression classifiers.

Figure 5 summarizes the results on scene classification

based on OB and a set of well known low-level feature rep-

resentations: GIST (Oliva and Torralba 2001), BoW (Csurka

et al. 2004) and Spatial Pyramid Matching (SPM) (Lazeb-

nik et al. 2006) built upon the SIFT feature (Lowe 1999) on

four challenging scene datasets. We also compare the per-

formance of a simple linear SVM model and plain logis-

tic regression built upon OB representation to the related

algorithms on each benchmark datasets, demonstrating that

a semantically meaningful representation can help to reduce

the burden of sophisticated models for bridging the ‘seman-

tic gap’ between high level visual recognition tasks and

low level image representation.2 We achieve substantially

superior performances on three out of four datasets compar-

ing to the traditional feature representations and algorithms

built upon them directly, and are on par on the 15-Scene

dataset. By combining multiple features, Pandey and Lazeb-

nik (2011) recently proposes with classification accuracy of

43.1 % on the MIT-Indoor dataset which is slightly lower than

that obtained by the best performed OB representation OB-

Hist (47.1 % in Fig. 13). It is worth mentioning that recent

feature learning approaches have achieved superior perfor-

mance in image classification by building advanced machine

learning models to learn from low level feature represen-

tation (Dixit et al. 2011; Gao et al. 2010, 2011; Bo et al.

2011). For example, Gao et al. (2011), Dixit et al. (2011),

Gao et al. (2010) and Bo et al. (2011) achieved classifica-

tion accuracy of 79.37, 84.4, 84.92 and 85.7 % respectively

on the UIUC-Sports dataset.3 While these powerful machine

2 We also evaluate the classification performance of using the detected

object location and its detection score of each object detector as the

image representation. The classification performance of this represen-

tation is 62.0, 48.3, 25.1 and 54 % on the 15 scene, LabelMe, UIUC-

Sports and MIT-Indoor datasets respectively.

3 The results of these four algorithms are on par with our best result

84.54 % achieved by using customized OB (Fig. 19).
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learning approaches are built upon low level feature represen-

tations, OB can serve as a potential complimentary feature

source with rich content of semantic and spatial information

for them to learn more sophistic image representation from.

Ideally, better result could be achieved by combining multi-

ple types of features from previous successful examples such

as Varma and Zisserman (2003). However, it is beyond the

scope of this paper to discuss feature learning from OB and

other low level features.

The advantage of OB is especially obvious when the

images are highly cluttered by objects. Its substantial perfor-

mance gain on the UIUC-Sports and the MIT-Indoor scene

datasets illustrates the importance of using a semantically

meaningful representation for complex scenes cluttered with

objects. For example, the difference between a living room

and a bedroom is less obvious in the overall texture (eas-

ily captured by BoW or GIST), but more significant in the

different objects and their arrangements. This result under-

scores the effectiveness of OB, highlighting the fact that in

high-level visual tasks such as complex scene recognition, a

higher level image representation can be very useful.

4.2 OB on Object Recognition

A fundamental task in high level visual recognition is

object recognition, in particular, generic object categoriza-

tion. Generic object categorization is a challenging task

owing to the various appearance and locations of objects in

the images. OB is constructed from the responses of many

objects, which encodes the semantic and spatial informa-

tion of objects within images. It can be naturally applied to

object recognition task. We test its object recognition ability

on the Caltech 256 dataset (Griffin et al. 2007). We com-

pare to classemes (Torresani et al. 2010), an attribute based

representation obtained as the output of a large number of

weakly trained concept classifiers on the image without con-

sidering the spatial location and semantic meaning of objects.

As described in Torresani et al. (2010), classeme extractors

are 2,659 object classifiers learned from images retrieved by

Bing Image Search. Similar to our approach, classemes (Tor-

resani et al. 2010) consists of two distinct stages: a once-only

feature learning stage and a classifier learning stage. We fol-

low the training and test setting of the key comparison in

the classemes paper (Torresani et al. 2010) by using exact

the same set of 30 training images and 25 test images from

each of the 256 classes as Torresani et al. (2010) does. We

compare the reported result in Torresani et al. (2010) to ours

(Table 1).

By encoding the spatial locations of the objects within an

image, OB significantly outperforms (Torresani et al. 2010)

on the 256-way classification task, where performance is

measured as the average of the diagonal values of a 256×256

confusion matrix. Note that there are state-of-art algorithms

Table 1 Object classification performance by using different high level

representations

Object bank (%) Classemes (%)

39 36

perform better than both Object Bank and classemes by using

advanced machine learning techniques (Gehler and Nowozin

2009; Perronnin et al. 2010; Wang et al. 2010). However,

comparison to these algorithms is beyond the scope of this

paper since our focus here is to evaluate the representation

power of image features without using complex machine

learning techniques. The improvement of OB over classemes

demonstrates the importance of rich spatial information of

objects and semantic meaning of objects encoded in OB. On

the other hand, in the efficiency comparison, the computa-

tion cost of OB is between that of classemes’ and Gehler

and Nowozin (2009) where classemes is significantly more

efficient than OB and object bank is much more efficient

than Gehler and Nowozin (2009) in both training and test.4

This observation underscores the fact that OB advocates a

rich image representation encoding both spatial and semantic

properties whereas classemes focuses more on the compact,

efficient properties of an image representation. Therefore,

classemes has the advantage for large scale computation and

OB serves better as a representation resource for algorithms

to learn relationships or representative features. In Sect. 5.7,

we provide a simple example of learning object–object and

object–scene relationship from OB.

In Sect. 5, we analyze the effectiveness of both the seman-

tic and spatial properties in detail and demonstrate the advan-

tage of using rich spatial information and semantic meaning

of objects. We further illustrate interesting patterns of object

relationships discovered from our OB representation, which

can serve as potential contextual information for sophistic

models for high level visual tasks such as object detection,

segmentation and scene classification.

5 Analysis: Role of Each Ingredient

In this section, we thoroughly analyze the role of each impor-

tant component of our OB representation in a systematical

fashion. We demonstrate the designing rationale of OB repre-

sentation, the influence of detector quality and different com-

ponents of OB, and eventually provide a good understanding

of OB and how to construct a good OB representation.

4 Classification performance of Gehler and Nowozin (2009) is 42 %.

Training time of classemes, OB, and Gehler and Nowozin (2009) is

9 min, 5 h and over 23 h respectively. Test time is 0.18, 4.86 and 37 ms

respectively.
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Fig. 6 Left Detection

performance comparison of

different detection methods on

ImageNet objects. Right

Classification performance of

different detection methods on

the UIUC sports dataset and the

MIT Indoor dataset
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The ideal object filters is capable of capturing object

appearance accurately without losing significantly useful

information during the process of construction. Here, we

investigate the effectiveness of different designing choices.

Specifically, we evaluate the effectiveness of these designing

choices by measuring the classification performance of their

resulting representation on different datasets.

1. A robust object detector is able to produce accurate

responses of the object indicating the probability of its

appearance at each pixel in an image. We first examine

the quality of different object detection algorithms (Dalal

and Triggs 2005; Felzenszwalb et al. 2007) as the appear-

ance object filters.

2. Object view points vary over a wide range in different

images. Multiple view points are essential for training

our object filters to capture the multiple views of objects.

We evaluate the effectiveness of the filters trained from

different view points.

3. Object sizes could differ significantly in different images.

We run object filters at different scales to incorporate

responses of multiple object sizes. We examine the effec-

tiveness of different scales and the accumulated scales

with an emphasis on the importance of using multiple

scales.

4. To capture the various locations of objects in images,

we apply a spatial pyramid structure over the responses

generated by object filters. We analyze the necessity of

constructing the spatial pyramid structure.

5. Our OB representation is a collection of statistics based

upon responses to the object detectors. In addition, we

examine the influence of different pooling methods on

extracting the statistics from the response map.

6. Objects are the most critical designing component in our

OB representation. Finally, we analyze different schemes

for selecting objects for the OB construction.

In the following experiments, we measure the importance

of each component based on its contribution to recognition

of scene images in different benchmark datasets. If not spec-

ified, we employ simple plain logistic regression as the clas-

sifier. Classification performance is obtained from fivefold

random sampling of the training and testing examples. When

examining one aspect of the OB representation, other aspect

settings are fixed.

5.1 Comparison of Different Types of Detectors

The first question is what type of object detectors/filters we

should use in OB. We are interested in examining the dif-

ference between a more sophisticate object detector LSVM

(Felzenszwalb et al. 2007) and a simple object detector (Dalal

and Triggs 2005). We first compare how well the detectors

capture the object appearance based upon detection perfor-

mance of LSVM and Dalal and Triggs on object categories

from the ImageNet dataset. In the left panel of Fig. 6, we

show that LSVM outperforms Dalal and Triggs in detecting

objects in the ImageNet dataset.

As demonstrated in left panel of Fig. 6, the performance of

OB based on stronger object detectors (LSVM) is better than

that of OB representation based on Dalal anf Triggs. This

reflects that a strong object detector captures the object iden-

tity and location in an image more accurately, hence provides

better description of an image. This rule applies even though

the objects in the OB do not entirely overlap with those appear

in the scene images. In Fig. 6 (right), we envisage the OB will

become better as more accurate object detection algorithms

are developed. In the ideal case, if we use a perfect object

detector, we can achieve much better performance in seman-

tically separatable dataset. An interesting observation is that

if we use the names of objects appear in each image from the

UIUC sports dataset as the feature, we can achieve 100 % in

classification accuracy by using a simple linear SVM clas-

sifier. On the other hand, there are objects sharing common

properties such as the legs of a horse and a cow. Although

objects in the OB could be different than those appear in the

scene images, a better object detector can serve as a more

accurate generic parts describer to transfer the knowledge

learned from one object to another.

5.2 Role of View Points

The view points of objects in different images could vary

dramatically. For example, in Fig. 7, rowing boats appear in
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Fig. 7 Diverse views of rowing boats in different images. Images are randomly selected from the UIUC sports dataset

Fig. 8 Left Classification

performance of object bank

generated from detectors trained

on images with different view

points on the UIUC sports

dataset and the MIT Indoor

dataset. Right Classification

performance of object bank

generated from different views

on images with different view

points
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different view points depending on the sceneries the photog-

raphers want to snap.

In order to capture this property, we train the object detec-

tors by using object images with different view points. To

show our design rational on view points, we apply OB gen-

erated from objects with front view, side view and the com-

bination of both to a scene classification task.

Demonstrated in the comparison (left panel of Fig. 8),

front view contributes more in classification experiments

on both datasets than side view of objects. Combining the

two views further boosts classification performance on MIT

Indoor dataset,5 which shows that combining multiple view

points is useful.

To verify our assumption and further investigate the effec-

tiveness of combining multiple view points, we conduct a

control experiment by training and testing on different views

of one specific object. We select ‘rowing boat’ as an example

since it has diverse view points.

As the panel on the right of Fig. 8 demonstrated, represen-

tation generated from only front view or side view performs

reasonably well on test images with similar view points.

OB representation, by incorporating both views, significantly

outperforms these two baselines on all three types of testing

images with different view points.

5 The difference is not significant (1 %). One possible reason for this

is that there is not much view variance in most of the object detector

training data from ImageNet. Majority of the training images are front

shots of the objects.

5.3 Role of Scales

Object size in different images could be very different, we

therefore run object filter on different image scales to accu-

rately capture this. In this experiment, we evaluate the impor-

tance of generating responses of objects at multiple scales in

OB. We compare classification performance by using OB

representation corresponding to each individual scale and

multiple scales.

From Fig. 9, we observe that individual scales perform

similarly to each other with the medium size scale consis-

tently delivers the best result on both the UIUC sports and

the MIT Indoor datasets. Our observation reflects that our

object detector captures the medium size objects within these

two datasets the best. This observation aligns well with the

majority object sizes in ImageNet images. Each individual

scale cannot capture all the variances but can already perform

relatively well on this dataset. Same applies to MIT Indoor

dataset. We further show an accumulative concatenation of

scales. Figure 10 shows that incorporating multiple scales is

helpful since it captures the variance of object sizes in the

datasets. The classification accuracy keeps increasing when

different scales are incorporated in the OB representation.

Objects could have significantly different sizes even they

belong to the same object class. Here, we demonstrate that

OB is able to capture the scale variance. In this control exper-

iment, we assign the images in the ‘ball’ class into six scale

groups based on the object size within the image. Same

number of background images are randomly selected from
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Fig. 9 Classification

performance on the UIUC sports

event dataset (left) and the MIT

Indoor dataset (right) by using

object bank representation

corresponding to each single

scale. X axis is the index of the

scale from fine to coarse. Y axis

represents the average precision

of a 8-way classification
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Fig. 10 Classification

performance on the UIUC sports

event dataset (left) and the MIT

Indoor dataset (right) by using

object bank representation

corresponding to accumulated

scale. X axis is the index of the

scale from fine to coarse. Y axis

represents the average precision

of a 8-way classification
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the ImageNet object images. Representation generated from

each individual scale and the combined ones are tested on a

held out set of testing images with subgroups separated in a

similar fashion. In addition, we simulate the real-world sce-

nario by collecting a mixed test set of multiple object size

images. In a similar manner, we generate the OB representa-

tion based upon responses to combination of all scales. We

conduct binary classification by using the OB representation

from each size group versus those of the background image

group. Our experiment shows that the diagonal of Fig. 11

is much brighter than the off diagonal ones, which indicates

that OB representation generated from each individual scale

recognizes objects with similar size significantly better than

the one generated from different size. In addition, the last

row is much brighter than all the other grids, reflecting com-

bination of all scales performs the best on different types of

images. This again supports our design choice of incorporat-

ing multiple scales in OB representation.

5.4 Role of Spatial Location

Besides object semantic meaning, spatial locations of objects

are critical for describing an image too. For example, ‘sky’

always appears in the upper part of an image whereas ‘water’

is always at the bottom. If the response of ‘sky’ has higher

values in the upper part of an image, it adds more evidence

that there is ‘sky’ in the image. To capture the spatial prop-

erties of objects in an image, we apply the spatial pyramid

Fig. 11 Binary classification experiment for each individual scale and

the combination of them. Each grid is filled in with ‘ball’ in different

size. Each row represents a model trained on images with relatively sim-

ilar scale (from small to large horizontally. Last row is the combination

of all scales). Each column represents a test set with relatively similar

scale. The more transparent the mask is, the better the classification

accuracy is

structure on the response map. In this experiment, we analyze

the effectiveness of the spatial pyramid structure.

From the experiment, we observe similar pattern as

observed in Lazebnik et al. (2006) except for the good per-

formance by using level 0 on the UIUC sports dataset. In

Table 2, we show that by using the maximum response from
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Table 2 Classification performance by using different spatial location

structure

Index Single

UIUC (%)

Pyramid

UIUC (%)

Single

indoor (%)

Pyramid

indoor (%)

Level 0 81.1 – 36.2 –

Level 1 81.0 81.8 42.0 42.9

Level 2 81.4 82.0 42.2 42.6

only level 0 as object bank representation (1/21 of the origi-

nal dimension), we can achieve 81.1 % on the UIUC sports

dataset. This reflects that in the UIUC sports dataset, seman-

tic meaning alone is very discriminative. As long as we see

a horse, no matter where it appears, it is able to differentiate

polo scene from other scene types. On the other hand, adding

spatial information does improve the classification perfor-

mance with a small margin indicating the effectiveness of

spatial location information of object.

Spatial location is critical in separating different indoor

images. For example, computer room and office could

both have computers, desks and chairs. But the number of

instances and the spatial location arrangement of them could

be quite different. OB representation encoding spatial loca-

tion is able to capture such difference and hence generates

better performance in classification. Our classification exper-

iment on MIT Indoor dataset shows that by encoding spatial

location, OB representation significantly outperforms the one

only contains semantic information (level 0 result).

To further demonstrate the effectiveness of the spatial

location component in the OB representation, we conduct

a spatial location control experiment. In this experiment, we

select an object that always appear at the top of the image,

e.g. ‘cloud’ and an object that always appear at the bottom of

the image, e.g. ‘grass’. We use level 2 in the spatial pyramid

structure as an example, each time we preserve one of the spa-

tial location as the representation and perform classification

based on OB feature extracted from it alone. In Fig. 12, we

show the heat map generated by using the smoothed classifi-

cation score of the object at each spatial location.6 Red color

indicates high classification accuracy whereas blue repre-

sents low classification accuracy at that area. We observe that

the OB representation generated from regions with high per-

formance are also the locations where the object frequently

appears. For example, cloud usually appears in the upper

half of a scene in the beach class whereas grass appear at the

bottom.

5.5 Comparison of Different Pooling Methods

As described earlier, OB representation is summarized from

the responses of the image to different object filters. In order

6 We use Gaussian kernel for smoothing the score.

Fig. 12 Left Heat map of possible locations estimated from classifica-

tion performance of Object Bank representation generated from differ-

ent spatial locations. Right Example images with the possible location

map overlaid on the original image

to obtain the geometric locations and semantic meaning of

objects, we extract statistics of object appearance from dif-

ferent spatial locations by using pooling methods. The qual-

ity of pooling method influence the information that the OB

representation carries. In a similar vain, we analyze the effec-

tiveness of different pooling methods. Specifically, we focus

on the three types of OB representations introduced in Sect. 3

obtained by using different pooling methods: average pool-

ing (OB-Avg), max pooling (OB-Max) and histogram pooling

(OB-Hist). We fix other designing choices in our OB and use

the same classifier for different pooling methods.

One concern is that the richness of the representation could

be attributed to the high dimension of features. To investigate

this possibility, we compress the three representations to the

same dimension by using PCA and perform classification on

the compressed representation.

Figure 13 (left) shows that object bank representation gen-

erated from histogram pooling performs the best in classifi-

cation. Figure 13 (right) illustrates that OB-Hist performs the

best even when it is compressed to the same dimension as the

other two methods. It indeed carries more information that

is more descriptive of the images.

5.6 Role of Objects

We have introduced in Sect. 3 that object bank is built upon

image responses to a group of pre-trained object detectors.

Object candidates are very critical component in designing

the OB representation. In this subsection, we analyze the

effectiveness of different types of objects. Specifically, we

are interested in OB generated from a generic pool of objects,

a specific list of semantically related objects, a subgroup
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Fig. 13 Left Classification performance of different pooling methods.

Right Classification performance of PCA projected representations by

using different pooling methods. Dimension is fixed to the minimum

number of principal components to preserve 99 % of the unlabeled data

variance of the three representations. Average and maximum response

values within each spatial pyramid grid are extracted as the object bank

feature in average pooling and max pooling respectively. We discretize

values within each spatial pyramid to construct the histogram pooling

representation
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Fig. 14 Left Classification performance on the UIUC sports event

dataset by using object bank representation corresponding to each single

object. Right Classification performance on the MIT Indoor dataset by

using object bank representation corresponding to each single object.

X axis is the index of the object sorted by using the detection perfor-

mance on object datasets from ImageNet. Y axis represents the average

precision of a 8-way classification

of objects with good detection performance, and a small

group customized objects which are directly related to scene

images.

5.6.1 Generic OB

We first examine the generic OB representation constructed

from 177 most popular objects from ImageNet described in

Sect. 3. We first investigate how well each individual object is

able to capture the essential information within images, eval-

uated by the classification performance of object bank repre-

sentation generated from each individual object. In Fig. 14,

each dot represents the classification performance of a spe-

cific object. The first observation is that the classification

precisions across single objects are not necessarily corre-

lated with the detection performance (objects are sorted by

their detection performance from high to low). This can

be attributed to the fact that the objects with good detec-

tions might not have semantic relationship with the scene

types we test on. In general, the performance over a sin-

gle object falls in the 40–60 % range for the UIUC sports

dataset, which indicates that the information captured by a

single object is quite significant. However, it is still far from

explaining away the information provided by combination

of information from all objects, i.e., the full-dimensional OB

representation.

To investigate the effectiveness of using multiple object

candidates in OB, we vary the number of object candidates

and test the resulting representation on scene classification.

By plotting the average precision where an OB feature cor-

responding to a subsequent object is added one at a time in

Fig. 15, we observe that the classification accuracy increases

along with the increase of number of objects on both datasets.

We believe that future growth of OB will lead to stronger
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Fig. 15 Classification performance on the UIUC sports event dataset and the MIT Indoor dataset by using object bank representation corresponding

to accumulative object. X axis is the number of objects. Y axis represents the average precision of a 8-way classification

representation power and more discriminative images mod-

els build on OB.

5.6.2 How Much Semantic Meaning and Appearance

Helps: Customized OB

In the ideal case, if we know the identity of objects in each

image and use them directly as the image representation,

the classification performance on the UIUC sports event

dataset is 100 %. Models that accurately predict the seman-

tic meaning of objects can serve as critical prior knowledge

for describing an image. An important characteristics of OB

representation is that it encodes prior knowledge of objects.

Here, we analyze the influence of prior knowledge especially

the semantic meaning and appearance knowledge of objects

encoded in OB representation generated by using a group of

customized objects.

We begin with investigating the appearance models, i.e.

our object filters, trained from both the ImageNet and the

UIUC training images. We show below comparison of object

filters trained on two candidate objects, ‘sail boat’ and

‘human’. We illustrate the models visualization comparison

of these two objects.

As shown in Fig. 16, models trained on the UIUC training

images capture a clearer shape of the objects.

The model quality is also reflected by their object detec-

tion performance on objects within the the UIUC scene test

images.

In Fig. 17, we show that by clearly depicting the object

appearance, models trained on the UIUC detects the objects

in the object images in a held-out set accurately.

In addition, we compare the image classification perfor-

mance by using only these models.

Figure 18 illustrates that the customized object bank mod-

els captures the object property better, which leads to bet-

ter detection accuracy and better classification performance.

Individual customized object models exhibit great potential

in generating more descriptive image representation, we fur-

ther verify the potential of customized object models of all

semantically related objects in the the UIUC sports dataset.

We compare the overall classification performance by

using all semantically related models, where we train the cus-

tomized OB filters by using 25 object candidates 7 from the

UIUC training images. We construct the customized OB rep-

resentation based on these filters, called UIUC-25. UIUC-25

carries knowledge of object appearance from UIUC training

images whereas the generic OB representation (ImageNet-

177) encodes prior knowledge of object appearance from the

ImageNet object training images. We compare UIUC-25 to

ImageNet-177, Object Bank representation constructed from

a subset of randomly selected 25 objects (ImageNet-25) as

well as the ‘pseudo’ OB representation generated from a set

of synthesized models neglecting the semantic meaning of

objects.

In Fig. 19 (left), while the generic OB (ImageNet-177

and ImageNet-25) has very good generalizability, the cus-

tomized OB consistently delivers much better result. It not

only outperforms OB generated from equivalent number of

object candidates in ImageNet, but also outperforms full

dimensional OB. It is worth noticing that the dimension of

full dimensional OB is over seven times that of the cus-

tomized OB representation. Comparing to Li and Fei-Fei

(2007), which requires labels of each pixel within an image in

training, customized OB outperforms it significantly without

additional information required. In fact, obtaining bounding

box costs less labor than obtaining object contour required

in Li and Fei-Fei (2007). We further decompose the spa-

tial structure and semantic meaning encoded in OB by using

a ‘pseudo’ OB without semantic meaning. The significant

improvement of OB in classification performance over the

7 The candidates are ‘sky’, ‘snow’, ‘water’, ‘building’, ‘rock’, ‘moun-

tain’, ‘car’, ‘racquet’, ‘sail-boat’, ‘horse’, ‘human’, ‘boat’, ‘frame’,

‘snowboard’, ‘net’, ‘oar’, ‘wicket’, ‘helmet’, ‘mallet’, ‘window’,

‘cloud’, ‘court’, ‘tree’, ‘grass’, and ‘sand’.
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Fig. 16 Model comparison of

‘sail boat’ and ‘human’ models

trained on the UIUC training

images (left) and the ImageNet

images (right)

Trained on UIUC training images: Sailboat Trained on ImageNet images: Sailboat

Trained on UIUC training images: Human Trained on ImageNet images: Human

Fig. 17 Detection performance

comparison of models trained

on the UIUC training images

and ImageNet images
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Fig. 18 Classification

performance on the UIUC sports

event dataset by using object

bank representation generated

from sailboat and human models

trained on the UIUC training

images and the ImangeNet

images respectively. Y axis

represents the average precision

of a 8-way classification
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‘pseudo OB’ is largely attributed to the effectiveness of

using object detectors trained from image. On the other hand,

‘pseudo’ OB performs reasonably well indicating that it does

capture consistent structures in the images. To demonstrate

the capabilities of different models in encoding the struc-

tural information in images, we show the models and their

corresponding response maps in Fig. 20. As we can observe

from Fig. 20, while the OB models are capable of gener-

ating relatively accurate response maps corresponding to

the ‘sailboat’ locations in the images, randomly generated

‘pseudo’ Object Banks does reflect consistency in generat-

ing the response maps. The behavior of the randomly gener-

ated ‘pseudo’ Object Banks indicates that it captures some

structure of the images consistently but the structure does
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Fig. 19 Left Classification performance on UIUC sports event dataset

by using UIUC-25 (customized object bank), ImageNet-177 (generic

object bank), ImageNet-25 (25 objects randomly selected from Ima-

geNet object candidates), randomly generated filters (pseudo object

bank) and Li and Fei-Fei (2007) on UIUC sports dataset. The blue

bar in the last panel is the performance of ‘pseudo’ Object Bank repre-

sentation extracted from the same number of ‘pseudo’ object detectors.

The values of the parameters in these ‘pseudo’ detectors are generated

without altering the original detector structures. In the case of linear

classifier, the weights of the classifier are randomly generated from a

Gaussian distribution instead of learned. ‘Pseudo’ object bank is then

extracted with exactly the same setting as object bank. Right Classi-

fication performance on UIUC sports event dataset by using differ-

ent appearance models: UIUC-22 (customized object bank with worst

detectors removed), UIUC-25, and ImageNet-177. Numbers at the top

of each bar indicates the corresponding feature dimension

Fig. 20 Comparison of

different models and response

maps generated. Red color

indicates high response value to

the specific object model.

Column 1 Models visualized by

using learned weights of

histogram of oriented gradients.

Here, ‘Random Gaussian’

represents a randomly generated

model by using random numbers

sampled from a Gaussian

distribution. ‘Best Gaussian’

refers to the randomly generated

model which performs best in

classifying images containing

‘sailboat’ from other images in

the UIUC sports dataset.

Columns 2–4 Original images

and the corresponding response

maps. Each row corresponds to

the response maps of images in

the first row generated by the

model showed in the first

column (Color figure online)

Random_Gaussian

Best_Gaussian

Generic_OB

Customized_OB

not necessarily carry semantic meaning. It worths noticing

that the best performed random model in ‘sailboat’ classifi-

cation generates response maps which have high responses

in every pixels in the images except the ‘sailboat’ regions.

The observation indicates that the high responses in the ‘non-

sailboat’ regions are very discriminative too. Generic OB is

able to capture the ‘sailboat’ structure. However, due to the

appearance difference of the object model training images

from the ImageNet dataset and the scene images from the

UIUC sports dataset, the responses to the ‘sailboat’ are not

the most accurate. Among the response maps, those gen-

erated by customized OB locate the ground truth ‘sailboat’

most accurately. The significantly good performance of the

customized OB can be easily explained: it is trained on UIUC

scene images which generates object filters that are more

semantically related and accurate in appearance modeling.
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Fig. 21 Most related scene

type for each object. Rows are

objects and column represent

scene types. Classification

scores of individual objects are

used as the measurement of

relationship between objects and

scene types. Transparent level

increases with the classification

accuracy

Most Related Scene Classes for Sampled Objects

An important question is that given the objects are seman-

tically related, would better appearance models improve the

quality of OB representation? In Fig. 19 (right), we investi-

gate two possibilities for improving appearance models. A

few object candidates in the UIUC sports dataset has only a

couple of training images, which leads to deteriorated detec-

tion ability. Our first option to improve the appearance mod-

els is to evaluate the detection performance of object can-

didates and filter out three models8 with low detection per-

formance. We call the representation generated UIUC-22.

We can further improve our appearance models by increas-

ing the number of scales, i.e., the possibility of accurately

capturing more object sizes. Specifically, we increase the

number of scales for UIUC-22 and UIUC-25 from 6 to 43,

which makes the final dimension of both enriched represen-

tations approximately the same as the original OB repre-

sentation. We explore these two aspects as an example case

study.

With a small number of semantically related models

trained from the UIUC training images, the classification

8 racquet, helmet, window

is more accurate than that of all 177 object candidates in

the original OB representation. In addition, increasing the

number of scales leads to richer appearance model which

generates even better representation for classification.

5.7 Relationship of Objects and Scenes Reflected by OB

OB is built upon the idea of using objects to describe images.

It encodes rich semantic and spatial structural information,

from where we can discover interesting relationship of the

images that the OB is extracted from. Intuitively, objects are

closely related to scenes they often appear. In this experi-

ment, we aim to discover the interesting relationship between

objects and scene types from the OB representation. To dis-

sect the relationship of each individual objects to the scene

types, we perform classification on the UIUC sports dataset

based upon object bank feature dimensions corresponding

to individual object. A relationship map (Fig. 21) is gener-

ated based on how accurate the individual object captures the

discriminative information in a scene.

Figure 21 shows that objects that are ‘representative’ for

each scene are discovered by our simple method based upon
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Fig. 22 Relationship of

objects. Classification scores of

individual objects are used as

the feature to measure the

distance among objects
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OB. For example, ‘basketball frame’, ‘net’ and ‘window’ are

objects with very high weight in the ‘badminton’ scene class

whereas ‘horse’ has the highest score in ‘polo’ class.

5.8 Relationship of Different Objects Reflected by OB

Objects related to each other often exhibit similarity in

appearance or similar patten in classifying scene types. Such

relationship can again be reflected by our OB representation.

In a similar manner, we try to discover the relationship among

objects based on their classification behavior. We use predic-

tion probabilities of each scene class as the feature of the

objects and build the correlation map (Fig. 22) based upon

the distance between different objects.

We observe that the objects that are intuitively related to

each other are also those have strong correlations in Fig. 22.

For example, ‘row boat’ always co-occur with ‘water’, ‘oar’

and ‘cloud’. It is connected to ‘sailboat’ due to their similar

connection with ‘water’ and similarity structure in appear-

ance. This suggests that essential information from each

image has been successfully extracted and preserved in OB,

from which we can reconstruct the appearance similarity and

co-occurrence information. On the other hand, we examine

the similarity of the response maps generated by convolv-

ing each image with the trained object detectors, which is

dramatically different than what we discovered in Fig. 22

and does not have a clear pattern. This is largely attributed

to the fact that very few objects in the UIUC sports dataset

share appearance similarity. Our observation in this experi-

ment leads to a strong indication that the co-occurrence of

objects is the main factor to relate different objects to each

other here.

6 Analysis: Guideline of Using OB

We have demonstrated the effectiveness of OB in various high

level recognition tasks in Sect. 4. For practical systems, it is

critical for image representations to be robust and efficient.

In this analysis, we analyze the robustness of OB to differ-

ent classification methods and provide simple guidelines for

efficient computation.
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Table 3 Classification

performance of different

methods

Method UIUC sports (%) MIT indoor (%)

k-nearest neighbor, Euclidean metric 67.3 (k = 1) 25.4 (k = 29)

k-nearest neighbor, Gaussian Kernel 70.4 (k = 17) 28.1 (k = 20)

L2 regularized LR 80.2 45.5

L2 regularized L2 loss SVM 82.3 46.6

L2 regularized L1 loss SVM 82.3 46.6

L1 regularized L2 loss SVM 81.5 42.1

L1 regularized LR 82.0 42.6
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Fig. 23 Left Best classification performance of projected representa-

tions by using different pooling methods. All dimensions are below

150. Middle Classifier training time comparison of the original object

bank and the compressed object bank (0.13 s) using OB-Max on the

UIUC sports dataset as an example, where 100 components are used in

PCA. Feature extraction time is not included. Right Classifier testing

time comparison of the original object bank and the compressed object

bank (0.01 ms) for each image

6.1 Robustness: How Much Does a Classification Model

Make a Difference?

We have established a clear advantage of using OB repre-

sentation for the image classification task. We now exam-

ine whether OB features still maintains the same advantage

as different off-the-shelf classification methods are applied

upon it. In Table 3, we examine classification methods from

very simple nearest neighbor algorithm to more sophisticated

regularized SVM and logistic regression models.

With this very descriptive image representation, even sim-

ple method such as k-nearest neighbor can achieve compara-

ble performance to state-of-the-art methods with more com-

plicate models. More sophisticated models can further boost

the scene classification performance. We envisage that mod-

els customized to OB can maximize the potential of it on

various high level visual recognition tasks.

6.2 Dimension Reduction by Using PCA

OB representation is a robust representation with high dimen-

sion, which can be easily compressed to a low dimensional

representation for efficiency. Here, we demonstrated the

dimension reduction by using a simple projection method,

i.e. PCA.

As shown in Fig. 23, simple dimension reduction method

such as PCA can compress the OB representation to much

lower dimensions and still perform comparably well to the

original OB. The computation time also decreased dramat-

ically along with the image representation dimensions. In

addition, it performs much better than low level features with

the same dimension (SIFT) or significantly higher feature

dimensions (GIST and SPM).

6.3 Dimension Reduction by Combining Different Views

When we design OB, we incorporate multiple views of

objects for more accurate description. Since the view points

are complementary to each other, we show that simple meth-

ods for combining different views and reducing the dimen-

sions of the object bank representation can be effective.

An object within an image can either be front view or side

view, which is reflected by the statistics of the values in the

response map. In Fig. 24, we show that the high average value

of responses for one view of an object in an image is a strong

indicator of an object appears in that image. Therefore, the

classification performance is even higher than concatenat-

ing both views, where one of them might have low response

indicating the object does not present in the image. For the

same reason, selecting the view point by using maximum
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Fig. 24 Classification performance of different pooling methods for

dimension reduction. We select feature dimensions corresponding to

the view point with higher average value (Avg), maximum value (Max)

and maximum variance (Max Variance) respectively for classification.

This corresponds to 1/2 dimension reduction

variance is effective too. However, selection based on max-

imum response value of different view points deteriorates

the classification performance due to the sensitivity of this

selection method.

7 Conclusion

The OB representation described in this paper is a novel high

level image representation that can effectively narrow the

‘semantic gap’ between low level image representation and

the high level visual recognition tasks. It is particularly useful

given the semantic and spatial knowledge encoded in the rep-

resentation. The semantic information is obtained by running

object detectors over multiple scales of images to capture the

possibility of objects appear in the images. A spatial pyra-

mid structure is applied to the response map representing the

possibility of objects in an image to summarize the spatial

statistics of objects. We analyze in depth the effectiveness

of each component in our OB representation in this paper

and provide useful guidelines for usage of OB. The object

bank code is available online at http://vision.stanford.edu/

projects/objectbank/ with feature extraction, example train-

ing and test code for replicating our result and related future

research.9
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