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a b s t r a c t

Accurate mapping of benthic habitats in the Florida Keys is essential in developing effective management

strategies for this unique coastal ecosystem. In this study, we evaluated the applicability of hyperspectral

imagery collected from Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) for benthic habitat

mapping in the Florida Keys. An overall accuracy of 84.3% and 86.7% was achieved respectively for a

group-level (3-class) and code-level (12-class) classification by integrating object-based image analysis

(OBIA), hyperspectral image processing methods, and machine learning algorithms. Accurate and

informative object-based benthic habitat maps were produced. Three commonly used image correction

procedures (atmospheric, sun-glint, and water-column corrections) were proved unnecessary for small

area mapping in the Florida Keys. Inclusion of bathymetry data in the mapping procedure did not in-

crease the classification accuracy. This study indicates that hyperspectral systems are promising in ac-

curate benthic habitat mapping at a fine detail level.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

1.1. Importance of coral reefs and benthic habitat mapping

Coral reef ecosystems worldwide are in crisis due to anthropo-

genic activities (e.g., fishing, mining, and pollution) and global

climate change (e.g., ocean warming) (Baker et al., 2008). As the

“rain forests of the sea”, coral reefs are the most diverse ecosystem

with a variety of marine species and millions of undiscovered or-

ganisms. Their rich biodiversity is considered a living museum and

key to finding new medicines in the 21st century. Reefs also offer

valuable socio-economic resources to human societies worth bil-

lions of dollars each year (NOAA, 2000). Benthic habitats are places

on or near the sea floor where aquatic organisms live. These beds of

seagrass, coral reef, areas of mud, and sand provide shelter to a rich

array of animals. There is a growing need tomap benthic habitats of

the reef environment in order to provide rapid assessment of health

and stress response of these vulnerable ecosystems.

The Florida Keys are the third largest barrier reef ecosystem in

the world. They are not only threatened by global climate change

and human activities, but also frequently damaged by hurricanes

and tropical storms (Rohmann and Monaco, 2005). A range of

research projects have been conducted for the conservation and

management of the Florida Keys (Florida Keys National Marine

Sanctuary, 2013), many of which need the benthic habitat infor-

mation of this area. Precise mapping of benthic habitats in the

Florida Keys is critical for developing management strategies that

balance the protection of these habitats with their use (Rohmann

and Monaco, 2005).

1.2. Application of remote sensing in benthic habitat mapping

Previous mapping efforts of benthic habitats in the Florida Keys

have focused on the visual interpretation of aerial photographs,

leading to a map product released in 1998 (Benthic Habitats of the

Florida Keys, 2013). Updating this product is difficult because the

manual interpretation procedure is labor-intensive and time-

consuming.

Researchers have applied remote sensing data for automated

benthic habitat mapping in shallow coastal waters (i.e. <20 m

water depth) (Mumby et al., 2004; Andréfouët, 2008). Such

research can be grouped into three categories. The first is the

application of multispectral sensors with a coarse spatial resolution

(i.e. 20e30 m or larger), such as Landsat data (e.g., Purkis and

Pasterkamp, 2004). This type of data may have limited effective-

ness in mapping heterogeneous benthos due to its relatively coarse

spatial resolution. In addition, multispectral data are unable to
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discriminate more than seven different habitat classes because of

their poor spectral resolution (Benfield et al., 2007). The second is

the employment of multispectral data with a fine spatial resolution

(i.e. 4 m or smaller), such as imagery collected from IKONOS and

QuickBird (e.g., Maeder et al., 2002; Mumby and Edwards, 2002;

Andréfouët et al., 2003; Mishra et al., 2006; Phinn et al., 2012;

Zapata-Ramírez et al., 2013). This type of data is able to produce

higher accuracies than Landsat data for regions with low to inter-

mediate numbers of habitat classes, but again cannot be used

reliably for mapping fine descriptive detail (e.g., more than 10

classes) (Mumby and Edwards, 2002). The third is the utilization of

hyperspectral data, such as imagery collected from Earth

Observation-1 (EO-1)/Hyperion, Compact Airborne Spectrographic

Imager (CASI), and HyMap (e.g., Mishra et al., 2007; Lesser and

Mobley, 2007; Phinn et al., 2008; Bertels et al., 2008; Fearns

et al., 2011; Pu et al., 2012; Botha et al., 2013). Studies have illus-

trated that this type of data yields higher accuracies than multi-

spectral data in mapping areas with low to intermediate numbers

of habitats, but evaluation of their potential in mapping fine

descriptive habitats is limited (Lesser and Mobley, 2007).

1.3. Mapping methods

Most researchers conduct the pixel-based classification in

mapping benthos. This may lead to a “salt-and pepper” effect if the

mapping area has a diversity of habitats with a high spatial het-

erogeneity. Object-Based Image Analysis (OBIA) can remove this

effect. These techniques first decompose an image scene into

relatively homogeneous objects or areas and then classify these

areas instead of pixels. OBIA has been well developed and applied

in terrestrial studies in the past decade, as evidenced by a review

paper from Blaschke (2010). However, such methods have not been

utilized sufficiently in benthic habitat mapping. Benfield et al.

(2007) compared the object- and pixel-based methods in map-

ping coral reefs and associated sublittoral habitats in Pacific Pan-

ama using multispectral imagery. They found that object-based

classifications can produce more accurate results than pixel-based

approaches. Phinn et al. (2012) applied the OBIA techniques for

mapping geomorphic and ecological zones on coral reefs from

QuickBird data. They found that OBIA is effective to explicitly map

regional scale benthic community composition from fine spatial

resolution satellite imagery.

1.4. Classification algorithms in benthic habitat mapping

Image classification is a crucial stage in remote sensing image

analysis and the selection of classifiers may largely impact the final

result (Benfield et al., 2007). Previous benthic habitat mapping

studies commonly applied the traditional image classifiers such as

Maximum Likelihood (ML) (e.g., Mumby and Edwards, 2002;

Andréfouët et al., 2003; Benfield et al., 2007; Pu et al., 2012;

Zapata-Ramírez et al., 2013). The ML method requires the spectral

response of each class to follow a Gaussian distribution, which is

not guaranteed for hyperspectral data. Contemporary machine

learning techniques have received little attention in benthic habitat

mapping, although they can produce higher accuracies than ML

classifier especially in classifying hyperspectral data (Zhang and

Xie, 2012, 2013a,b). There is a need to expand machine leaning

techniques into benthic habitat mapping as an alternative to ML

algorithm.

1.5. Objectives

For this study, we explored the performance of a machine

learning algorithm, Random Forest (RF), for object-based benthic

habitat mapping at two levels (group- and code- level) in the

Florida Keys using hyperspectral imagery. Most previous

studies applied traditional classifiers and mapped the benthos at

the pixel level. Few studies mapped benthic habitats through a

combination of OBIA, machine learning classifiers, and hyper-

spectral image analysis. Moreover, few researchers examined the

applicability of hyperspectral sensors in mapping a larger number

of benthos (e.g. more than 10 types) to investigate their potential

for fine descriptive habitat mapping. To this end, the main

objective of this study is to effectively integrate OBIA, machine

learning techniques, and hyperspectral analysis into the auto-

mated benthic habitat mapping procedure; and secondarily to

explore the capability of hyperspectral systems in habitat map-

ping at a coarse detail level (3-class, group-level) and a fine detail

level (12-class, code-level).

Researchers most commonly conducted three image calibra-

tion procedures known as atmospheric correction, sun-glint

correction, and water-column correction in benthic habitat

mapping. Detailed descriptions of these three corrections are

presented in Section 2.4. Few studies systematically evaluated the

Fig. 1. Map of the Florida Keys and study area shown as a false color composite generated from AVIRIS hyperspectral data.
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impacts of these three corrections on the accuracy of classifying

benthos. We therefore additionally investigated whether these

three corrections are mandatory in benthic habitat mapping over

the Florida Keys. Water depth is believed to be an important

factor that influences benthic covers in a reef environment

(Bertels et al., 2008) and has been frequently included in the

manual mapping procedure (e.g., Rohmann and Monaco, 2005;

Walker, 2009). However, little work has explored the contribu-

tion of bathymetry data to benthic habitat mapping in an auto-

mated procedure. Thus we also examined whether the

bathymetry data can benefit the benthic habitat mapping using

data fusion techniques. It is expected that the bathymetry data

can complement the spectral information of optical imagery to

improve the benthic habitat classification.

2. Material and methods

2.1. Study area

The study area, with an approximate size of 92 km2, is located in

the lower Florida Keys (Fig. 1). The Florida Keys are a coral cay ar-

chipelago beginning at the southeastern tip of the Florida peninsula

and extending in a gentle arc southesouthwest and thenwestward

to the inhabited islands known as Key West. The study site has a

tropical climate and its environment is similar to the Caribbean.

This area is characterized by spectacular coral reefs, extensive

seagrass beds, andmangrove-fringed islands. It is one of theworld’s

most productive ecosystems with more than 6000 species of ma-

rine life and 250 species of birds nesting in this region. The sub-

strate consists of hardbottom, continuous seagrass, and patch

seagrass for the selected region. The water depth varies from 0 to

3.5 m, a typical shallow water body. Here shallow water is char-

acterized with a water depth less than 20 m to be consistent with

the project “Mapping Southern Florida’s Shallow-water Coral Eco-

systems: An Implementation Plan” directed by National Oceanic

and Atmospheric Administration (NOAA) (Rohmann and Monaco,

2005). Note that NOAA’s plan still focuses on in-situ campaigns

and manual interpretation procedure.

2.2. Data

Data sources used in this study include hyperspectral imagery

collected by Airborne Visible/Infrared Imaging Spectrometer (AVI-

RIS), bathymetry data, and benthic habitat reference maps. AVIRIS

collects calibrated hyperspectral data in 224 contiguous spectral

channels with wavelengths from 0.4 mm to 2.5 mm. AVIRIS data over

the study area were collected on November 19, 1992 with a spatial

resolution of 17 m. The bathymetry data are from the National

Geophysical Data Center (NGDC) of NOAA. The NGDC produced a

Digital Elevation Model (DEM) with a spatial resolution of 1/3 arc-

second (w10 m) for the Florida Keys by combining many available

elevation data sources (Grothe et al., 2011). The benthic habitat

reference data were produced through a seven-year project coop-

eratively conducted by the National Ocean Service of NOAA and the

Florida Fish and Wildlife Research Institute. In this project benthic

habitats were visually interpreted from a series of aerial photo-

graphs collected between December 1991 and April 1992. Habitats

were classified into 4 major categories (referred to as the group-

level classes) and 24 subcategories (referred to as the code-level

classes) based on a classification scheme developed in the project

Fig. 2. The energyematter interactions over a water body (after Bukata et al., 1995).

Fig. 3. Group-level benthic habitat maps from (a) reference data and (b) classification

result.
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(Benthic Habitats of the Florida Keys, 2013). This dataset is

currently serving as the baseline in the management of Florida

Keys. All these data sources are available in digital format to the

public at no cost.

We extracted the group- and code-level reference data for our

study site, as shown in Figs. 3a and 4a, respectively. Three group-

level communities were found: hardbottom, continuous seagrass,

and patchy seagrass. Seven code-level habitats were observed: HC

(soft coral, hard coral, sponge, and algae hardbottom), HS (hard-

bottom with perceptible seagrass (<50%)), SD (moderate to dense,

continuous beds of seagrass), SDB (moderate to dense nearly

continuous beds (seagrass>50%), with blowouts and/or sand or mud

patches), SS (sparse continuous beds of seagrass), SPH (dense patches

of seagrass (>50%) in a matrix of hardbottom), and SPS (dense

patches of seagrass in a matrix of sparse seagrass). The code-level

habitats located over the banks have distinctive signatures on

the aerial photographs, thus they have been separately labeled,

resulting in five extra codes: HCb, HSb, SDb, SDBb, and SPHb (b

represents banks). These habitats need to be identified and map-

ped from the hyperspectral imagery. Descriptions of these habitats

are listed in the Appendix Table. We spatially randomly selected

498 group-level and 2254 code-level sample objects respectively

from the reference data. The sample collection followed a strati-

fied random sampling strategy in which a fixed percentage of

samples are selected for each class. The number of samples for

each class was roughly estimated based on the image segmenta-

tion results and reference maps. The image segmentation proce-

dure is detailed in Subsection 2.5. The selected sample data at the

group-level and code-level were split into two halves with one

used for calibration (training) and the other used for validation

(testing).

2.3. Data preprocessing

Spectral channels with a low signal-to-noise ratio were drop-

ped from the AVIRIS imagery, leading to 30 visible bands and 86

near-infrared (NIR) and shortwave infrared (SWIR) bands for

further analysis. An image to image rectification was employed to

georeference the AVIRIS data with the use of the U.S. Geological

Survey (USGS)’s Digital Orthophoto Quadrangles (DOQs). Note that

the same DOQs were also utilized in the production of the benthic

habitat reference data. In this way the hyperspectral imagery was

geographically aligned with the reference data. Non-water areas

were masked out using the bathymetry data. Hyperspectral data

contains a tremendous amount of redundant spectral information.

The Minimum Noise Fraction (MNF) method (Green et al., 1988) is

commonly used to reduce the high dimensionality and inherent

noise of hyperspectral data. We conducted the MNF trans-

formation in ENVI 4.7 and selected the most useful and spatially

coherent eigenimages for the classification. To examine the impact

of MNF transformation on the classification, the original AVIRIS

imagery with 30 visible bands was also classified for comparison

purpose.

2.4. Three image corrections

The total radiance, (Lt) recorded by a remote sensor above the

water surface is a function of the electromagnetic energy from four

sources identified in Fig. 2 (Bukata et al., 1995):

Lt ¼ Lp þ Ls þ Lv þ Lb (1)

where Lp is the radiance recoded by a sensor from the down-

welling solar (Esun) and sky radiation (Esky) that never actually

reaches the water surface; and Ls, Lv, and Lb are the radiances

from the airewater surface, water column, and bottom

respectively.

To map the benthic habitats, the radiance from the bottom (Lb)

has been commonly separated or predicted first, which involves

three corrections: radiometric correction to remove atmospheric

attenuation (Lp), sun-glint correction to remove the specular

reflectance fromwater surface (Ls), and water-column correction to

remove the effects of water attenuation (Lv). Many algorithms have

been developed for the above three corrections. The most

frequently adopted ones, as briefly described below, were exam-

ined in this study.

2.4.1. Atmospheric correction

The Fast Line-of-Sight Atmospheric Analysis of Spectral Hy-

percubes (FLAASH) algorithm is an atmospheric correction

module that has been widely used for hyperspectral data cali-

bration. It corrects images for atmospheric water vapor, oxygen,

carbon dioxide, methane, ozone, and molecular and aerosol

Fig. 4. Code-level benthic habitat maps from (a) reference data and (b) classification

result.

C. Zhang et al. / Estuarine, Coastal and Shelf Science 134 (2013) 88e97 91



Author's personal copy

scattering using a MODTRAN 4 þ radiation transfer code solution

computed from each image and each pixel in the image (Exelis

Visual Information Solutions, Inc., 2009). FLAASH typically con-

sists of three steps in the correction (Matthew et al., 2003): the

retrieval of atmospheric parameters, the solution of radiative

transfer equation, and the optional post-processing to remove

artifacts remaining from the correction process. Evaluation of the

FLAASH algorithm for AVIRIS data illustrates that this algorithm

is capable of generating accurate surface reflectance spectra from

hyperspectral imagery, at least under conditions of clear to

moderate aerosol/haze, low to moderate water vapor, and nadir

viewing from any altitude between the ground and the top of the

atmosphere (Matthew et al., 2003). For this study, we applied the

FLAASH algorithm in ENVI to calibrate the hyperspectral imagery.

The detailed implementation of FLAASH for AVIRIS data can be

found in the manual of the Exelis Visual Information Solutions

(2009).

2.4.2. Sun glint correction

Sun glint is a serious confounding factor for remote sensing of

water column properties and benthos. A range of sun-glint

correction models was proposed, as reviewed by Kay et al.

(2009). For shallow waters researchers commonly use the

method developed by Hedley et al. (2005) for sun-glint correction.

In this algorithm, regression analysis is performed between

NIR and visible bands first using a sample set of pixels to derive

a series of regression slopes. The sun-glint corrected pixel

brightness value is then calculated using the equation

R0 ¼ Ri � bi � (RNIR �MINNIR), where R0 is the corrected brightness

values; Ri and RNIR are the original pixel visible and NIR brightness

values respectively; MINNIR is the ambient NIR level which is the

minimum NIR brightness value in the selected samples; and bi is

the regressed slope between visible band i and NIR band. There

are two assumptions in this algorithm: the brightness in the NIR is

composed only of sun glint and a spatially constant “ambient” NIR

component, and the amount of sun glint in the visible bands is

linearly related to the brightness in the NIR band. For this study,

we derived the RNIR using the average of the brightness values

covering NIR and SWIR in the AVIRIS data, which should be more

robust than that of using one selected NIR channel. Similarly, the

average value was used in the regression analysis to produce the

regression slopes bi.

Kutser et al. (2009) developed a sun glint correction method to

process hyperspectral imagery. There are two assumptions in their

method: 1) there is no spectral feature in a remote sensing reflec-

tance spectrum at 760 nm; and 2) the depth of the oxygen ab-

sorption feature at 760 nm is proportional to the amount of glint in

this pixel. The depth of absorption feature is calculated by

D ¼ [R(739) þ R(860)]/2 � R(760), where D is the depth of oxygen

absorption and R(739), R(760), and R(860) are reflectances at these

particular wavelengths. D is then normalized by taking all negative

D values equal to zero and dividing the results with themaximumD

value. The new water reflectance Rw is then calculated by

Rw ¼ R � G(l) � Dnorm(x, y), where R is the unglinted image, G(l) is

the glint spectrum and Dnorm(x, y) is the normalized D image. We

tested the algorithms developed by Hedley et al. (2005) and Kutser

et al. (2009) respectively.

2.4.3. Water-column correction

Water-column correction, a process to remove the influence of

water depth on bottom reflectance, is also one of the most

commonly cited difficulties for remote sensing of benthos. Theo-

retically developed analytical models usually require many pa-

rameters such as absorption and backscattering coefficients for

each channel in order to effectively simulate the attenuation of

water. Application of these analytical models is very challenging

for hyperspectral data since there are more parameters to be

specified. Thus, an image-based approach developed by Lyzenga

(1981) is often used to compensate for the effect of variable

depth when mapping benthos for clear water (e.g., Mumby et al.,

1998; Mumby and Edwards, 2002; Andréfouët et al., 2003;

Benfield et al., 2007; Pu et al., 2012). Rather than directly pre-

dicting the radiance from the bottom, this method calculates a

depth invariant bottom index Bij from each pair of visible bands i

and j by:

Bij ¼ lnðLiÞ � Ki=Kj � ln
�

Lj
�

(2)

where Li and Lj are the radiance of band i and band j respec-

tively; Ki/Kj is the ratio of water attenuation coefficients of

bands i and j, and it is determined from a bi-plot transformed

radiance in the two bands Li and Lj using samples selected from

a bottom of uniform substratum but at variable depths. The

model assumes that light attenuation follows an exponential

decay curve with increasing depth. Two visible bands produce

one index. Thus for our case, 30 visible bands can produce 435

indices by permutation. Based on Hamylton (2011), for optimal

performance of water-column correction using this method,

bands selected for the index calculation must be at least 90 nm

apart. This will lead to 30 indices from our hyperspectral data if

bands are at a distance of around 100 nm. We tested one

image with 435 indices and the other image with 30 derived

indices.

2.5. Hierarchical image segmentation

We applied the hierarchical segmentation to generate image

objects for two habitat levels. Hierarchical segmentation is

defined as a set of segmentations of the same image at different

levels of spatial resolution in which coarser levels can be pro-

duced by merging regions at finer levels (Beaulieu and Goldberg,

1989). We produced image objects using the Multiresolution

Segmentation algorithm in eCognition Developer 8.64.1 (Trimble,

2011). The algorithm starts with single pixel image segments,

and merges neighboring segments until a heterogeneity

threshold is reached (Benz et al., 2004). The heterogeneity

threshold is determined by a user-defined scale parameter, as

well as color/shape and smoothness/compactness weights. Image

segmentation is scale-dependent and the quality of segmenta-

tion and overall object-based classification are heavily dependent

on the scale. In order to find the optimal scale for image seg-

mentation we used an unsupervised image segmentation eval-

uation approach (Johnson and Xie, 2011). This approach conducts

a series of segmentations using different scale parameters to

identify the optimal scale using an unsupervised evaluation

method that takes into account global intra-segment and inter-

segment heterogeneity measures. A global score combining a

normalized weighted variance and Moran’s I value was used to

determine the optimal scale for the segmentation. We thus car-

ried out a series of segmentations with the scale parameter

ranging from 2 to 20, at an interval of 2. A scale parameter of 12

was found to be optimal for the group-level segmentation. The

weights of the MNF layers were set based on their eigenvalues.

Equal weights were set for the original imagery in the segmen-

tation. Note that only 30 visible bands were used in the classi-

fication because of strong water absorption over the NIR and

SWIR region. Color and shape weights were set to 0.9 and 1.0 so

that spectral information would be considered more heavily for

segmentation. Smoothness and compactness weights were set to

C. Zhang et al. / Estuarine, Coastal and Shelf Science 134 (2013) 88e9792
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0.5 and 0.5 so as to not favor either compact or non-compact

segments.

Code-level image objects were produced using a finer scale

based on the result of group-level segmentation. A heuristic

method was used to find the optimal scale for the code-level

segmentation (Zhang and Xie, 2013b). We randomly selected

10% of the group-level segments and handled each segment as an

individual image. We then conducted a series of multiresolution

segmentations using six different scale parameters (1e6 at an

interval of 1) for each selected segment. Global scores were

calculated and the optimal scale was determined as the one with

the highest frequency to generate the lowest global score among

these selected segments. For this case, a scale parameter of 3 was

found to be the optimal scale for code-level segmentation. The

other parameters were the same as those used for the group-level

segmentation.

2.6. Classification

For this study, we examined a machine learning algorithm

Random Forest (RF) for benthic habitat classification. RF is a

decision tree based ensemble classifier. Decision trees split the

training samples into smaller subdivisions at “nodes” based on

decision rules. For each node, tests are performed on the training

data to find the most useful variables and variable values for the

split. The RF consists of a combination of decision trees where

each decision tree contributes a single vote for assigning the

most frequent class to an input vector. RF increases the diversity

of decision trees by changing the training set using the bagging

aggregating method (Breiman, 2001). Bagging creates training

data by randomly resampling the original dataset with replace-

ment. A key feature of RF is that the computational complexity is

simplified by reducing the number of input features at each

node. Different algorithms can be used to generate the decision

trees. The RF often adopts the Gini Index (Breiman, 2001) to

measure the best split selection. A more detailed description of

RF can be found in Breiman (2001) or in a remote sensing

context in Chan and Paelinckx (2008). We implemented the RF

algorithm using Weka 3.7, an open-source data mining program

(Hall et al., 2009). Two parameters must be defined in this

method: the number of decision trees to create (k) and the

number of randomly selected variables (m) considered for

splitting each node in a tree. The computational complexity of

the algorithm can be reduced by selecting a smaller m, and k is

often set based on trial and error. For our dataset, m was set to

10 and 3 for original data and MNF transformed data respec-

tively. Trials using different number of trees (50e500 at an in-

terval of 50) revealed that k ¼ 150 produced the highest

accuracy.

2.7. Accuracy assessment

Weproduced the accuracies of the object-based habitat maps by

constructing an error matrix and calculating the Kappa statistics

(Congalton and Mead, 1983). Overall accuracy or total accuracy is

defined as the ratio of the number of validation samples that are

classified correctly to the total number of validation samples irre-

spective of the class. The Kappa value describes the proportion of

correctly classified validation samples after random agreement is

removed. We used the nonparametric McNemar test (Foody, 2004)

to evaluate the statistical significance of differences in accuracy

between different classifications. The difference in accuracy be-

tween a pair of classifications is viewed as being statistically sig-

nificant at a confidence of 95% if the calculated z-score in McNemar

test is larger than 1.96.

3. Results and discussion

3.1. Impact of MNF transformation on the classification

We classified both original data (i.e. 30 visible bands) and MNF

transformed data (i.e. 10 MNF layers) to examine the impact of

MNF transformation on benthic habitat classifications. The results

are displayed in Table 1 with experiments 1 and 2 representing

the application of original and MNF transformed data, respec-

tively. The original data generated a lower accuracy. MNF trans-

formation increased the accuracy from 71.5% with a Kappa value

of 0.61 to 84.3% with a Kappa value of 0.76 for the group-level

classification. To examine the significance of the result, the

Kappa z-score statistical test based on the error matrix was

conducted. The Kappa z-score values for experiments 1 and 2 are

8.1 and 21.4 respectively (Table 1), which suggests both experi-

ments are significantly better than a random classification at the

95% statistical confidence level. Similarly, for the code-level

classification the MNF technique improved the accuracy from

80.8% with a Kappa value of 0.77 to 86.7% with a Kappa value of

0.84. Again, Kappa tests showed that these two classifications are

significantly better than random classifications. McNemar tests

for both group- and code-level classification illustrated that the

improvements from MNF transformed data are statistically

significant.

In benthic habitat mapping studies using hyperspectral data,

some researchers applied the MNF transformation before clas-

sification (e.g., Mishra et al., 2007; Bertels et al., 2008), while

others worked directly from the non-transformed data (e.g.,

Phinn et al., 2008; Pu et al., 2012). Few studies have investigated

the impact of MNF transformation on the classification. Our

study illustrates that the MNF transformation can significantly

improve classification accuracy of the non-MNF transformed

data by removing the inherent noise in hyperspectral data.

This indicates that the MNF transformation is necessary to

Table 1

Classification results from different experiments.

Experiment# Total accuracy

(%)

Kappa

value

Kappa test

(z-score)

McNemar test

(z-score)

Group-level classification

1 75.1 0.61 8.1* NA

2 84.3 0.76 21.4* 2.8* (1/2)

3 86.3 0.78 22.1* 1.2 (2/3)

4 83.9 0.75 21.1* 0.1.(2/4)

5 78.7 0.67 16.6* 1.8 (2/5)

6 85.5 0.77 22.6* 1.1 (2/6)

7 69.5 0.53 12.1* 4.6*(2/7)

Code-level classification

1 80.8 0.77 54.5* NA

2 86.7 0.84 69.2* 4.2* (1/2)

3 87.9 0.85 72.9* 0.5 (2/3)

4 86.9 0.84 69.5* 0.1 (2/4)

5 85.9 0.83 66.3* 0.6 (2/5)

6 87.4 0.85 71.5* 1.5 (2/6)

7 60.1 0.53 30.9* 14.3* (2/7)

Experiment 1 used original imagery with 30 visible bands.

Experiment 2 used MNF transformed imagery.

Experiment 3 used atmospherically corrected imagery.

Experiment 4 used sun-glint corrected imagery.

Experiment 5 used water-column corrected imagery.

Experiment 6 used a fused dataset from MNF transformed imagery and bathymetry

data.

Experiment 7 used the Maximum Likelihood classifier.

Experiments 1e6 used the Random Forest classifier.

For the McNemar test, 1/2, 2/3.2/7 refers to the significant test between experi-

ments 1 and 2, 2 and 3.2 and 7.

* Significant at 95% confidence.
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effectively apply the hyperspectral data for benthic habitat

mapping.

3.2. Impact of atmospheric correction on the classification

To examine the impact of atmospheric correction on the final

classification, we applied the FLAASH module first to the original

imagery and then conducted the MNF transformation on the cor-

rected imagery. The classification results from the MNF trans-

formed data are also shown in Table 1 as experiment 3. Compared

with experiment 2, the total accuracies and Kappa values increased

for both group- and code-level classifications, but McNemar tests

show that these improvements are not statistically significant. This

suggests the atmospheric correction is not essential for this study

area.

Atmospheric correction is not always necessary for certain types

of classifications, especially in the terrestrial studies. But for benthic

habitat remote sensing, this procedure is generally believed

mandatory. For example, Mishra et al. (2007) and Pu et al. (2012)

also applied FLAASH atmospheric correction in their hyper-

spectral benthic habitat mapping studies. Again, few studies have

examinedwhether this correction can impact the classification. Our

study demonstrates that it is possible to ignore the atmospheric

effects for remote sensing of benthos if the data are not extended

through space and/or time for cross-calibration purpose. Most at-

mospheric correction models assume the distribution of the at-

mosphere in the entire scene is homogeneous. This indicates that

the primary effect from the atmospheric correctionwill be a simple

bias adjustment applied to each band, which has little effect in the

final classification accuracy.

3.3. Impact of sun-glint correction on the classification

We applied the sun-glint correction method developed by

Hedley et al. (2005) to our data, and then similarly transformed

the data using MNF technique to remove the inherent noise. The

classification result is shown in Table 1 as experiment 4. The

overall accuracy is 83.9% with a Kappa value of 0.75 and 86.9%

with a Kappa value of 0.84 for group- and code-level classifications

respectively. Kappa statistical tests show that they are significantly

better than random classifications, but again, McNemar tests

illustrate that there is no significant difference between experi-

ments 2 and 4. We also applied the sun-glint correction algorithm

developed by Kutser et al. (2009). The results also show no sig-

nificant difference between before and after sun-glint corrected

data.

Previous studies either applied sun-glint correction or ignored

this procedure in multispectral and hyperspectral benthic habitat

mapping. No attempts have been made to examine whether the

sun-glint correction can impact the final classification. Our study

suggests that it is feasible to ignore this procedure when the

object-based classification is carried out. Sun glint over an image

usually displays a wave like pattern with alternative dark and

bright pixels. Directly conducting a pixel-based classification for

the uncorrected imagery may strongly impact the accuracy.

Conversely, the object-based classification adopts the mean spec-

tral and/or spatial information of a segmented object, which can

effectively “smooth” the glint effect over the segmented region,

leading to a relatively homogeneous glint across the entire scene.

In this way the impact of sun-glint effects can be reduced. In

addition, here the hyperspectral imagery has a relative coarse

spatial resolution (17 m), which can help smooth out small scale

glint effects over the coastal areas, therefore correction is unnec-

essary. For fine spatial resolution imagery such as IKONOS with

severe sun-glint contamination, further tests are needed to

investigate the benefit of object-based classification in the

procedure.

3.4. Impact of water-column correction on the classification

Similarly, we applied the MNF transformation to the water-

column corrected imagery, i.e. the depth invariant bottom in-

dex data (495 layers), and selected the useful MNF layers for

classification. The results are displayed in Table 1 as experiment

5. A lower accuracy was obtained and no significant difference

was revealed between experiments 5 and 2. We also examined

the corrected imagery with 30 depth invariant indices which

were produced by setting the selected bands 100 nm apart. The

classification results are similar to experiment 5 (not shown

here).

A few studies have shown that the classification accuracy of

coral reefs can be increased significantly after water-column

correction by using the same water depth invariant index strat-

egy (Mumby et al., 1998; Nurlidiasari and Budhiman, 2005),

while a majority of studies ignored this procedure or simply

applied the correction without checking its impact on the final

classification. Our results show that this depth correction for

accounting for light attenuation did not improve the classifica-

tion accuracy. The algorithm adopted in this study for water-

column correction requires the same bottom type occur over a

wide range of depth, which is poorly suited for the shallow

waters in the Florida Keys. For mapping small areas with low

bathymetric variability, this correction procedure can be ignored.

Also note that for implementation of this algorithm, it relies on

subtracting a deep-water value from each pixel regardless of

substrate type. This is difficult to implement if the deepest region

is only several meters.

3.5. Contribution of bathymetry data to benthic habitat mapping

We combined the MNF transformed imagery and bathymetry

data using a pixel level fusion strategy and then conducted an

object-based classification. The results are shown as experiment 6

in Table 1. A total accuracy of 85.5% with a Kappa value of 0.77 was

obtained for the group-level classification; and for the code-level

classification, a total accuracy of 87.4% with a Kappa value of

0.85 was produced. Again, we carried out the Kappa statistical

tests and McNemar tests for the classifications. The results illus-

trated that they are significantly better than a random classifica-

tion, but not significantly different from experiment 2 which used

the MNF transformed data alone. This confirms that depth

compensation in the classification procedure is unnecessary. A

variety of terrestrial studies have demonstrated that the elevation

information is useful in land cover mapping (Lu and Weng, 2007),

but in an aquatic environment, no benefits of bathymetry infor-

mation have been revealed in benthic habitat classification, at least

in our study area.

3.6. Comparison of Maximum Likelihood and Random Forest

classifiers

Selection of classifiers is an important factor in the classifi-

cation. For comparison purpose, we applied the commonly used

Maximum Likelihood (ML) classifier to the MNF transformed

imagery and the object-based classification results are shown as

experiment 7 in Table 1. The ML method presented a poor result

with a total accuracy of 69.5% and Kappa value of 0.53 for the

group-level classification. For the code-level classification, the

total accuracy is 60.1% with a Kappa value of 0.53. Random Forest

achieved a significantly better result than ML classifier with a z-
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score value of 4.6 and 14.3 for group- and code- level classifi-

cations respectively from the McNemar tests (Table 1). Both

classifiers produced significantly better results than a random

classification (Table 1). ML classifier may yield an accurate clas-

sification result if the feature of habitats in the dataset is nor-

mally distributed. But if the data are anomalously distributed,

non-parametric classifiers may demonstrate a better classifica-

tion result (Lu and Weng, 2007). Hyperspectral data and their

corresponding transformed imagery usually do not follow a

normal distribution, thus a non-parametric algorithm is desir-

able. Our study reveals that the Random Forest method had a

good performance for habitat classification. Other contemporary

machine learning classifiers such as Support Vector Machines

(SVMs) and neural networks also have good performances in

classifying hyperspectral imagery (Zhang and Xie, 2012, 2013a,b).

Combining the outcomes from this type of classifier using a de-

cision fusion procedure (known as classifier ensemble techniques

in remote sensing) may have potential to improve the classifi-

cation accuracy (Zhang and Xie, 2013a). This should be examined

in the future.

3.7. Object-based benthic habitat mapping

According to Fleiss (1981), Kappa values larger than 0.75 sug-

gest strong agreement. Landis and Koch (1977) suggest that Kappa

values larger than 0.81 indicate an almost perfect agreement. By

using the MNF transformed data and Random Forest classifier, a

Kappa value of 0.76 and 0.84 have been achieved for group- and

code-level classification respectively in experiment 2. This in-

dicates that benthic habitats can be effectively mapped by

combining OBIA, hyperspectral systems, and machine learning

techniques. Object-based benthic habitat maps were thus pro-

duced for two levels, as shown in Figs. 3b and 4b. The object-based

habitat map is more informative and useful than a traditional

pixel-based one that may be noisy if the study area has a high

degree of spatial and spectral heterogeneity. For comparison, the

group- and code-level referencemaps are shown in Figs. 3a and 4a

respectively. There is a general agreement on the spatial distri-

bution of habitat types between the reference and classification

maps, with most regions occupied by continuous seagrass and

hardbottom communities. Further examination revealed that

some small patches and strips were misclassified in the classified

maps, which is mainly caused by the relatively poor spatial res-

olution of the hyperspectral data (17 m). Application of fine spatial

resolution hyperspectral data may solve this problem, but data

collection is costly. A recent work from Zhang (2013) examined

the potential of data fusion techniques to solve this problem for

benthic habitat mapping. In Zhang (2013)’s study, the fine spatial

resolution aerial photography is segmented first to generate im-

age objects and extract object features (i.e. textures). The extrac-

ted features are then combined with pixel-level values of

hyperspectral data to generate a fused dataset. The fused dataset

produced a higher accuracy than using each individual data alone.

Small patches and linear/narrow features were well mapped due

to the fine spatial resolution aerial photography. Thus data fusion

techniques can be used as an alternative to reduce the misclassi-

fication of small patches and strips in the benthic habitat

mapping.

The generated error matrixes for two classified maps are listed

in Tables 2 and 3. For the group-level classification, the producer’s

accuracies varied from 64.3% to 94.3% and the user’s accuracies

varied from 76.6% to 87.6%. For the code-level classification, the

producer’s accuracy was in the range of 57.1%e95.7%, and the user’s

accuracy was in the range of 75.9%e100.0%. As expected patchy

seagrass and code-level communities present as strips had a rela-

tively lower accuracy. Note that a lower accuracy (84.3%) was ob-

tained for the simple classification (group-level, 3-class) and a

higher accuracy (86.7%) was produced for the complex classifica-

tion (code-level, 12-class). This is different from the results re-

ported in previous studies which found a trend of decreasing

accuracy with increasing habitat complexity (e.g., Andréfouët et al.,

2003; Pu et al., 2012). As discussed in the Introduction, application

of multispectral data may have problems in complex classifications

due to their poor spectral resolution; but for the application of

hyperspectral data in benthic habitat mapping, the accuracy may

largely depend on the degree of complexity of the representative

Table 2

Error matrix for the group-level classification.

Group# 1 2 3 Row total PA (%)

1 79 4 9 92 86.0

2 4 99 2 105 94.3

3 10 10 36 56 64.3

Col. total 93 113 47 Total accuracy: 84.3%

Kappa value: 0.76UA (%) 84.9 87.6 76.6

UA: User’s Accuracy; PA: Producer’s Accuracy.

Classification result is displayed in row, and the reference data is displayed in col-

umn.

Groups 1e3 represent for continuous seagrass, hardbottom, and patchy seagrass

respectively.

Table 3

Error matrix for the code-level classification.

Code HC HCb HS HSb SD SDB SDBb SDb SPH SPHb SPS SS Row total PA (%)

HC 24 1 5 1 1 32 75.0

HCb 12 1 1 14 85.7

HS 1 313 2 4 1 6 327 95.7

HSb 2 1 11 70 4 1 4 93 75.3

SD 8 198 3 6 215 92.1

SDB 1 16 5 6 28 57.1

SDBb 1 2 40 4 1 48 83.3

SDb 4 5 1 101 1 1 113 89.4

SPH 12 2 15 4 140 173 80.9

SPHb 1 3 6 10 60.0

SPS 1 1 4 16 2 24 66.7

SS 2 3 2 2 41 50 82.0

Col. Total 28 14 353 82 226 19 45 133 155 6 18 48 Total accuracy: 86.7%

Kappa value: 0.84UA (%) 85.7 85.7 88.7 85.4 87.6 84.2 88.9 75.9 90.3 100.0 88.9 85.4

UA: User’s accuracy; PA: Producer’s accuracy.

Classification result is displayed in row, and the reference data is displayed in column.
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spectral signature for each class. For a simple level classification

with a small number of classes, each class has several sub-

categories, leading to multiple spectral signatures across the scene.

Thus the training samples for each class are more heterogeneous,

which will add spectral variation within a class and spectral

confusion between classes. Consequently, a lower accuracy can

occur. In contrast for a more detailed level classification, each in-

dividual class can have relatively homogeneous training samples

which will result in higher classification accuracy. This indicates

that hyperspectral systems are not only able to map a fine level of

benthic habitats, but also promising to achieve higher classification

accuracy than a coarse level mapping.

4. Conclusions

For this study we evaluated the applicability of AVIRIS hyper-

spectral imagery with an intermediate spatial resolution (i.e. 17 m)

for benthic habitat mapping in the Florida Keys. We combined the

object-based image analysis (OBIA), hyperspectral image process-

ing methods, and machine learning techniques in the mapping

procedure. We also examined the impacts of three image correc-

tions on the classification accuracy.

Our study reveals that hyperspectral data are promising for

automated benthic habitat mapping in the Florida Keys. Accurate

and informative habitat maps were produced. A total accuracy of

84.3% was obtained for the group-level classification, and a total

accuracy of 86.7% was achieved for a code-level classification with

12 code communities. Hyperspectral systems have the capability to

produce higher classification accuracy in discriminating fine

descriptive benthos than coarse level mapping. However, hyper-

spectral data with a relatively coarse spatial resolution are prob-

lematic to mapping small patches and linear/narrow features,

which can be mitigated by combining fine spatial resolution mul-

tispectral datawith hyperspectral data using data fusion techniques.

Minimum Noise Fraction (MNF) data transformation is an

important step in benthic habitat mapping when hyperspectral

data are applied. This preprocess removes the inherent noise in the

hyperspectral data, improves the classification accuracy, and re-

duces the data dimensionality to decrease the computational cost.

Three commonly used image processing procedures in benthic

habitat mapping (atmospheric correction, sun-glint correction, and

water-column correction) had no impacts on the classification ac-

curacy. These three calibrations are unnecessary, at least for small

area mapping. Bathymetry data have not shown contribution to the

classification accuracy in this study.

Benthic habitat mapping is important in the conservation and

management of the world’s coral reef ecosystems. It provides an

inventory of habitat types and their statistics, and the location of

environmentally sensitive areas, as well as the hot spots of habitat

diversity. An accurate and informativemap can guide themanagers

to effectively plan the networks of protected areas and monitor the

degree of habitat fragmentation. An integration of hyperspectral

systems, OBIA, and machine learning techniques had a good per-

formance for habitat mapping in the Florida Keys. Considerable

additional work is needed to investigate whether such procedures

are useful in other coral reefs with different assemblages of

benthos. With the increasing availability of hyperspectral data, it is

anticipated that this study will stimulate further hyperspectral

remote sensing research and applications in many other marine

ecosystems of the world.
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