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Abstract: Effective assessment of biodiversity in cities requires detailed vegetation maps. 

To date, most remote sensing of urban vegetation has focused on thematically coarse land 

cover products. Detailed habitat maps are created by manual interpretation of aerial 

photographs, but this is time consuming and costly at large scale. To address this issue, we 

tested the effectiveness of object-based classifications that use automated image 

segmentation to extract meaningful ground features from imagery. We applied these 

techniques to very high resolution multispectral Ikonos images to produce vegetation 

community maps in Dunedin City, New Zealand. An Ikonos image was orthorectified and a 

multi-scale segmentation algorithm used to produce a hierarchical network of image objects. 

The upper level included four coarse strata: industrial/commercial (commercial buildings), 

residential (houses and backyard private gardens), vegetation (vegetation patches larger than 

0.8/1ha), and water. We focused on the vegetation stratum that was segmented at more 

detailed level to extract and classify fifteen classes of vegetation communities. The first 

classification yielded a moderate overall classification accuracy (64%, κ = 0.52), which led 

us to consider a simplified classification with ten vegetation classes. The overall 

classification accuracy from the simplified classification was 77% with a κ value close to 

the excellent range (κ = 0.74). These results compared favourably with similar studies in 

other environments. We conclude that this approach does not provide maps as detailed as 
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those produced by manually interpreting aerial photographs, but it can still extract 

ecologically significant classes. It is an efficient way to generate accurate and detailed maps 

in significantly shorter time. The final map accuracy could be improved by integrating 

segmentation, automated and manual classification in the mapping process, especially when 

considering important vegetation classes with limited spectral contrast. 

Keywords: object-based classification; remote sensing; cities; New Zealand; biodiversity; 

habitat. 

 

1. Introduction 

Green space plays a major role in providing satisfactory environmental conditions for urban 

dwellers. Vegetation is a vital component as it affects key environmental processes: e.g. air filtering, 

micro climate regulation, and rainwater drainage (Bolund and Hunhammar 1999). In recent years there 

has been an increasing awareness both in the importance of urban ecosystems as a source of 

biodiversity (Cornelis and Hermy 2004; Sandstrom et al. 2006; Smith et al. 2006), and in the need to 

inventory, restore, or enhance biodiversity in cities (Savard et al. 2000). Changes of species 

arrangement may alter the capability of vegetated areas to provide ecosystem services (Andersson 

2006). Further, it is suggested that the future of global nature conservation may rely increasingly on 

conservation of biodiversity in cities. As more and more humans become city dwellers, their 

willingness to protect biodiversity may depend on their day to day experience of nature in cities 

(Savard et al. 2000; Dunn et al. 2006). 

The conservation and enhancement of vegetation communities by urban planners and ecologists 

requires a detailed and updated knowledge of their nature and distribution (Millington and Alexander 

2000; Breuste 2004). Aerial photographs are primary data sources for detailed mapping of urban 

vegetation (Seidling 1998; Freeman and Buck 2003). The mapping process is generally based on 

photo-interpretation and manual digitizing of thematic units using a combination of spatial image 

properties (size, shape, texture, pattern) and spectral properties (tone, colour). Heavy reliance on the 

interpreter’s expertise is both the strength and weakness of this approach; such maps are richly detailed 

but the process is time consuming (Freeman and Buck 2003). Automatic or semi-automatic delineation 

of vegetation units may provide an important time saving technique.  

Earlier satellite sensors (Landsat MSS, TM), having a spectral band in the near infrared part of the 

spectrum, had good spectral resolution however, they had too coarse a spatial resolution to produce 

detailed maps in urban areas. Today very high resolution (VHR) satellites are capable of providing 

spatial details compatible with urban mapping (Thomas et al. 2003; Nichol and Lee 2005). Ikonos or 

Quickbird images (4 to 2.5 meter pixel size) have been used for mapping urban impervious surfaces, 

roads, and buildings (Sawaya et al. 2003; Péteri et al. 2004). With regards to vegetation, some 

researchers have dealt with vegetation density and abundance (Small 2003; Nichol and Lee 2005), and 

others with vegetation condition (Stow et al. 2003). Still others focused on the production of land 

use/land cover maps, but these generally include only two or three vegetation classes (Herold et al. 

2003; Jain and Jain 2006; Carleer and Wolff 2006). Such data is very useful for understanding a wide 
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range of environmental and socio-economic issues such as urban micro-climate and heat island effects, 

air quality and human health, and housing values. However, the thematic precision of past studies is 

generally insufficient for studying urban ecological processes and assessing biodiversity resources. 

Habitat studies, for example, often require more detailed inventories due to the fact that differences in 

vegetative structure and species composition (e.g. native versus exotic), are often critical for wildlife 

(Hostetler 1999; Cunningham 2006; Johnson et al. 2007). 

Conventional classification methods use per pixel approaches (Bayesian theory or artificial neural 

networks) that rely only on the spectral information or colours contained in the image. As the spatial 

resolution increases, between-class spectral confusion and within-class spectral variation increases. 

This is especially true in urban environments that typically consist of mosaics of small features made 

up of different materials. Consequently, spatial information such as texture and context must receive 

greater attention in the classification process to produce more accurate maps (Blaschke and Strobl 

2001; Shackelford and Davis 2003). 

Different approaches have been developed to deal with the complexity of urban environments. 

These include: kernel based reclassification (Zhang and Wang 2003), texture analysis and expert 

systems (Stefanov et al. 2001; Herold et al. 2003), and lacunarity and fractal approaches (Myint and 

Lam 2005). Object-based classification techniques provide another alternative that have already 

demonstrated the potential for improving the automatic extraction of information from VHR imagery 

(Giada et al. 2003; Benz et al. 2004). Object-based techniques recognize that important semantic 

information is not always represented in single pixels but in meaningful image objects and in their 

contextual relations. For example, it is more likely that a pixel adjacent to a private garden should be 

classified house, road or private garden rather than forest. Object-based classification comprises two 

steps: image segmentation and object classification. Image segmentation subdivides the image into 

groups of contiguous pixels called objects or segments that correspond to meaningful features or 

targets in the field (Blaschke and Strobl 2001). These objects might be roads, houses, water bodies, 

pine plantation, native forest, and so on. The images are segmented into homogeneous objects based 

on the spectral information and local patterns or textural information that are included in groups of 

neighbouring pixels. Object-based classifications can consider a wide range of variables, e.g. 

reflectance, texture, shape, size of objects, and can potentially produce more accurate and detailed 

maps than conventional classification strategies. 

Urban ecosystems have received little attention in New Zealand compared to rural or protected 

ecosystems (Freeman 1999). The first detailed ecological map of a New Zealand city, Dunedin, was 

produced by manually digitizing and interpreting vegetation units from colour aerial photographs and 

field based ecological surveys (Freeman and Buck 2003). In their study, Freeman and Buck proposed 

an original habitat classification hierarchy applicable to New Zealand cities. The technique, useful for 

detailed mapping, has proven to be time consuming, thus introducing significant limitations for its 

future extension and development. In this paper we undertook to assess the suitability of an alternative 

method. This method combined very high resolution multispectral Ikonos images and object-based 

classifications in the automated production of large-scale maps of vegetation communities in urban 

environments. 
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2. Study Area 

The study area includes the core urban sector of Dunedin City and the immediate surrounding rural 

areas. Dunedin is located on the south-east coast of the South Island of New Zealand. It is a medium-

sized city by New Zealand standards with a population of approximately 114,000 people (Statistics 

New Zealand 2005). The Central Business District (CBD) is located on flat terrain near the harbour 

while the residential areas are distributed in the surrounding hills located north, west and south-east of 

the CBD. Situated at 170°30’ East and 45°52’ South, Dunedin has a cool temperate, sub-humid 

maritime climate. It harbours a wide range of vegetation types, including native remnants, exotic 

plantations, pasture lands, indigenous tussock, flax vegetation, and regenerating scrubs and bushes. It 

also includes recreation parks, sports pitches, three cemeteries, and a large Botanic Garden (Freeman 

and Buck 2003). The topography is gentle to moderately rolling (slopes between 8 and 25 degrees) 

with elevations ranging from sea level to approximately 400 metres. 

3. Data and Methods 

3.1. Ikonos images and preprocessing 

One in-track panchromatic Ikonos stereo pair (one meter spatial resolution) was acquired on the 

20th of February 2005 and used to generate an accurate Digital Surface Model (DSM). One 

multispectral Ikonos image (100 km
2
) was programmed on the same mid-summer day to map the 

vegetation communities. The multispectral image had a spatial resolution of four metres and included 

four spectral bands (blue, green, red, and near infra-red). The images were provided with rational 

polynomial coefficients to enable users to orthorectify the imagery (Dial et al. 2003). PCI Geomatica 

Orthoengine V9.0 was used with the DSM for orthorectifying the multispectral Ikonos image. The 

validation of the orthorectified product with sixteen independent and well distributed control points 

yielded an average and maximum geolocation error of 1.4 and 3.1 metres, respectively. 

3.2. Multi-scale image segmentation and classification 

3.2.1. Image segmentation 

The object-based classification software used in this research was eCognition Professional 4.0 

(Definiens). eCognition uses a multi-resolution segmentation approach which is a bottom-up region-

merging technique starting with one-pixel objects. In numerous iterative steps, smaller image objects 

are merged into bigger ones (Baatz et al. 2004). The outcome of the segmentation algorithm is 

controlled by a scale factor and a heterogeneity criterion. The scale factor is indirectly related to the 

average size of the objects to be detected (see example Figure 1). The heterogeneity criterion controls 

the merging decision process, and is computed using spectral layers (e.g. multispectral images) or non-

spectral layers (e.g. thematic data such as elevation). The heterogeneity criterion includes two mutually 

exclusive properties: colour and shape. Colour refers to the spectral homogeneity whereas shape 

considers the semantic characteristics of the objects. Shape is divided into two equally exclusive 

properties: smoothness and compactness (Baatz et al. 2004). 
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The optimum segmentation parameters depend on the scale and nature of the features to be 

detected. These were determined using a systematic trial and error approach validated by the visual 

inspection of the quality of the output image objects, i.e. how well the image objects matched feature 

boundaries in the image. Once an appropriate scale factor was identified, the colour and shape criterion 

were modified to refine the shape of the image objects. Most published works have found that more 

meaningful objects are extracted with a higher weight for the colour criterion (Herold et al. 2002; 

Laliberte et al. 2004). In this application the colour criterion was assigned a weight of 0.7, whereas the 

shape received the remaining weight of 0.3 (compactness 0.5 and smoothness 0.5). Two key 

hierarchical scale levels were identified. A first level was used to stratify the urban areas and a second, 

more detailed level, was created to map vegetation communities within the vegetation-dominated 

strata. 

 

  

 

 

Figure 1. Segmentation of the Ikonos image at the scale of 22 (upper left), 40 (upper right),  

125 (lower left), and colour aerial photograph (lower right). Yellow lines delineate the image 

objects. The Ikonos image is displayed as a false colour composite, red channel = near infrared, 

green channel = red, blue channel = green. The vegetated area shown in the image is the 

Dunedin Botanical Garden, one of the significant ecological entities located within the city. 

  



Sensors 2007, 7                            

 

 

2865

3.2.2. Stratification of urban areas 

A 125-scale segmentation layer was created to stratify the study area according to four broad classes 

or strata: industrial / commercial (low vegetation density), residential (intermediate vegetation 

density), vegetation (high vegetation density), and water (Figure 2). The four classes were classified 

with the nearest neighbour (NN) classifier. The NN classifier allows quick and straightforward 

classification and can use a variety of variables related to spectral, textural, shape and/or contextual 

properties of the image objects (Baatz et al. 2004). At this level we used the mean features of the four 

spectral bands, as these (especially the NIR) are good representations of the variation of vegetation 

density between classes. A few wrongly-classified image objects were reassigned manually to the 

correct classes based on local knowledge and the Ikonos image. A similar technique was used to refine 

some boundaries between strata. The industrial / commercial stratum consisted of the CBD and other 

significant peripheral industrial / commercial sectors. These included mainly commercial and 

industrial buildings with only few small vegetation patches such as amenity pastures and tree groups. 

Residential blocks consisted essentially of well structured patterns intermixing roads, single or double 

storey individual houses, and private backyard gardens of various size and density. The extraction of 

private gardens from the residential strata is detailed in Mathieu et al. (2007). Any vegetation 

communities or patches larger than 0.8/1 ha (e.g. plantation, native scrub, forest, dune grassland) were 

automatically classified into the vegetation stratum. In this paper, we focus on the vegetation stratum 

where the vegetation patches are believed to be of sufficient size to have functional ecological 

processes and to host some self-sustainable plant and animal populations.  

 

 

Figure 2. Vegetation, industrial / commercial, residential, and water strata of  

Dunedin City, New Zealand, extracted from the multispectral Ikonos image. 
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3.2.3. Fine scale vegetation mapping 

A smaller scale factor (40) was found appropriate to extract the vegetation communities from the 

vegetation stratum. We used a classification scheme adapted from the habitat classification systems 

developed by Freeman and Buck (2003) and adapted to the New Zealand urban environment (Table 1). 

This is a hierarchical system based on physiognomic vegetation units and derived from previous 

classification systems (Atkinson 1985). The first level starts with broad structural categories such as 

tree habitats or shrubland; the second level introduces finer categories where species arrangement and 

canopy cover are included. The third level (not shown) generally concerns more detailed species-based 

class differentiation, and is used especially for woody habitats. Native shrublands, for example, are 

classified as broadleaf shrublands, tea-tree shrublands, grey shrublands or mixed native shrublands. 

We restricted our classification to the first two levels of Freeman and Buck’s classification system. 

Some marginal classes (small and/or localized in the city or at close proximity) were not considered in 

our classification as it would have been impossible to collect appropriate samples to train the classifier 

and to assess the final map accuracy (e.g. saline wetland, indigenous fernland).  

 

Table 1. Classification scheme for the vegetation community classes and other habitats in Dunedin 

City, New Zealand (adapted and modified from Freeman and Buck, 2003). 

 

Level I - habitat type Level II - class Description 

Tree habitats Bush and forest Structure-rich tree stands, height > five meters 

(avg. stem dbh > 0.1 m) Plantation Exotic tree stands of uniform age, incl. shelterbelts 

 Park/woodland Scattered trees over grassland or scrub 

 Tree group Isolated group of trees, native and/or exotic, < one ha 

Scrub habitats Exotic scrub Closed canopy, non-native species 

(avg. stem dbh < 0.1 m) Mixed scrub Closed canopy, mixture of non-native & native species 

 Native scrub Closed canopy, native species 

 Vineland Scrub vegetation heavily covered by woody vines 

Shrubland Exotic shrub Open canopy, non-native species 

(avg. stem dbh < 0.1 m) Mixed shrub Open canopy, mixture of non-native & native species 

 Native shrub Open canopy, native species 

Grassland Amenity grassland Intensively managed and regularly mown pasture 

 Pasture grassland Intensively managed and regularly grazed pasture 

 Rough grassland Irregularly managed grassland, including tussocks 

 Dune grassland Grassland on consolidated dunes 

Non vegetation  House Including farms (> 0.25 ha) 

 Bare ground Inclusive bare soil, gravel, quarry, sand 

 Road, sealed surface Concrete (e.g. parking) 

 Coastal water  

 Standing water  
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A total of 280 image objects were selected and surveyed in the field to serve as training samples for 

the classification. The study area was divided into four quadrants of equal size. The number of training 

samples selected for each class was proportional to its importance in terms of area covered, with a 

minimum of one sample per quadrant for the smallest classes. The samples were originally selected 

using the earlier habitat map produced by Freeman and Buck (2003) and were checked in the field 

during the autumn 2005. A series of data was collected to assist the classification: site dimension, 

habitat type, land use type, slope, aspect, elevation, dominant species, and vegetation density and 

structure (tree, shrub, and grass). The habitat and land use classes of the surrounding image objects 

were also recorded when possible. The classification of the vegetation stratum was also performed 

using the nearest neighbour (NN) algorithm. Thirteen variables were considered to build the NN 

feature space: 

• Mean spectral value of image objects, 

• Standard deviation of spectral values of image objects, 

• Ratio of mean spectral value to sum of all spectral layer mean values of image objects, 

• Compactness of image objects (length x width / number of pixels). 

The three first above-mentioned variables were computed for each of the four spectral bands of the 

Ikonos image. An optimised feature space was finally selected by observing the best separation 

distance between vegetation communities. The classification output was refined by implementing 

simple expert rules. The rules were implemented by assigning crisp membership functions. The 

membership function receives a value 1 (yes) if the rule is observed (e.g. plantation larger than one ha) 

or a value 0 (no) if the rule is not observed (e.g. plantation smaller than one ha). If the rule is observed 

an action is undertaken. The following rules were applied: 

• If plantation smaller than one hectare then reclassify as tree group. 

• If forest smaller than one hectare then reclassify as tree group. 

• If tree group larger than one hectare then reclassify as second best class. 

3.3. Accuracy assessment 

The accuracy assessment focused on the vegetation communities within, or at close proximity, to the 

city. A total of 370 validation polygons were surveyed in the field to define their membership to one of 

the categories of vegetation communities. Sixteen validation polygons were discarded as they could 

not be accessed or were found to include two or more vegetation classes on the ground. The total 

sample consisted of 1.3% of the vegetation strata which is above the one percent generally 

recommended (Congalton 1991). Typical confusion matrices were built to assess the accuracy of the 

vegetation classifications (Congalton 1991). Classes predicted by the NN classifier were compared to 

classes observed in the field. The confusion matrices were built using the polygons as validation units. 

These are the basic spatial units of the vegetation maps, and thus are believed to be more appropriate to 

assess the classification than individual pixels. Although the polygons have various size (including 

many pixels) each of these is assumed to correspond to a single and coherent vegetation patch. In our 
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opinion, individual pixels cannot be considered as independent objects (because of autocorrelation 

effects) and could potentially bias the classification assessment. 

Descriptive statistics (user’s accuracy, producer’s accuracy, overall accuracy) as well as kappa 

statistics (κ) were computed and analyzed (Congalton 1991). The κ statistic measures the accuracy of 

the whole confusion matrix considering the actual agreement in relation with chance agreement. It 

provides an indicator showing whether the classification is better than a random classification. Test 

statistic values (Z-statistic) were compared with the critical value 2.57 (Zα/2) to determine the 

significance of the classification accuracies at 99% confidence interval (Congalton and Green 1999). 

We also used the categories proposed by Landis and Koch (1977) to assess the performance of the 

statistics: poor (< 0.41), moderate (0.41 to 0.61), good (0.61 to 0.81), and excellent (> 0.81). Although 

these categories are arbitrary they provide useful qualitative benchmarks. 

4. Results 

Table 2 presents the confusion matrix of the vegetation community map with fifteen classes. 

Confusion occurred between amenity grass (14%) and pasture grass (13%). Rough grass was confused 

mainly with exotic shrub (16%) and with mixed shrub (12%). Dune grass was confused with native 

shrub (33%) and rough grass (17%). Forest was mainly confused with vineland (14%) whereas 

park/woodland was confused with forest (33%) and tree group (17%). Tree group was confused with 

park/woodland (27%). Strong confusion occurred between the scrub and shrub vegetation 

communities, and also with vineland and park/woodland. The overall accuracy of the classification 

was a moderate 63.6% (Figure 3). Dune grass and plantation had 100% user’s accuracy. Pasture grass, 

rough grass, forest, and exotic scrub user’s accuracy were higher than 80%. Poor user’s accuracy was 

obtained for vineland (10%), park/woodland (15%), native shrub (21.7%), exotic shrub (32.5%), and 

mixed shrub (39.1%). Most vegetation community classes had higher user’s accuracy than producer’s 

accuracy. 
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Table 2. Confusion matrix of the classification of vegetation communities using fifteen classes, 

 Dunedin City, New Zealand (total number of validation objects = 354). 

 

Values are given in number of image objects, values in parenthesis are percentages given in relation to the column total. 

Ground references

 

 

Classification 

 

Tree habitats Scrub habitats Shrubland Grassland  

 F
o

r

P
ar

k
/

P
la

T
re

E
x
o

i M
ix d N
at

i V
in l E
x
o

i M
ix d N
at

i A
m

P
as

t

R
o

u

D
u R

 

Tree Habitats 

Forest 14 (50) 2 (33)              16 

Park/woodland 2 (7) 3 (50) 2 (7) 5 (27) 1 (5) 1 (6)  1 (17)  2 (10) 1 (5)   2 (8)  20 

Plantation   25 (83)             25 

 Tree group 3 (11) 1 (17)  13 (68)            17 

 

Scrub habitats 

Exotic scrub     13 (65)    2 (9) 1 (5)      16 

Mixed scrub      9 (53)    4 (20)      13 

Native scrub      2 (12) 10 (45) 1 (17)        13 

 Vineland 4 (14)    2 (10) 2 (12) 7 (33) 2 (33) 1 (4) 1 (5) 1 (5)     20 

 

Shrubland 

Exotic shrub 1 (4)  2 (7)  3 (15) 1 (6)  1 (17) 13 (57) 2 (10) 10 (52) 1 (2) 2 (3) 4 (16)  40 

Mixed shrub 3 (10)  1 (3)  1 (5)  1 (5)  2 (9) 9 (45) 2 (10) 1 (2)  3 (12)  23 

 Native shrub 1 (4)     2 (12) 3 (14) 1 (17) 5 (21) 1 (5) 5 (26)  1 (2) 2 (8) 2 (33) 23 

 

Grassland 

Amenity grass    1 (6)        42 (82) 8 (13)   51 

Pasture grass            7 (14) 52 (83) 2 (8)  61 

Rough grass              12 (48) 1 (17) 13 

Dune grass               3 (50) 3 

 Column Total 28 6 30 19 20 17 21 6 23 20 19 51 63 25 6 354 



S

 

v

s

v

s

r

m

c

d

m

m

e

(

c

g

(

h

th

 

Sensors 200

Figure 3

vegetation c

 

The conf

simplified c

vineland, pa

small perce

espectively

merged to 

classification

dune grass),

mixed scrub

map with ten

extent. Dun

17%). Fore

confused ma

grass (8%), 

9%). The o

had more th

hree had be

07, 7  

3. Producer

communities

accuracy

fusion in cl

lassification

ark/woodlan

ntage of th

y (Freeman 

create thre

n scheme c

 three tree c

b, and nativ

n rather tha

ne grass wa

est was mai

ainly with a

forest (8%

overall accu

han 60% us

etween 75%

5
0

0.00

20.00

40.00

60.00

80.00

100.00

Producer's

Tre

 

r’s accuracie

s using fifte

y (in parenth

lassification

n scheme. T

nd, scrub, a

he total lan

and Buck 

ee classes:

consisted of

classes (fore

ve scrub). T

an fifteen cla

as confused

inly confuse

amenity gra

%), and nativ

uracy of the

er’s accura

% and 85% u

 

5
0

8
3

8
8

1
5

1
0
0

s accuracy U

ee habitats (63%

         

es, user’s ac

een classes, 

hesis) are gi

n noted abo

The highest

and shrub c

nd area in 

2003), and

 exotic sc

f four grass

est, plantati

Table 3 pre

asses. Some

d with amen

ed with tre

ss (14%). T

ve scrub (8

e simplified 

cy. Out of 

user’s accura

6
8

6
5

5
3

7
6

8
1

User's accurac

Ov

Scrub hab

%, 70%)

 

ccuracies, an

Dunedin C

iven for lev

ove led to a

t levels of c

communitie

Dunedin C

d were disc

crub, mixed

s classes (a

ion, and tree

sents the co

e confusion

nity grass 

e group (17

The main co

8%). Native

classificati

ten classes 

acy. 

5
3

4
5

3
3

6
9

7
7

1
0

cy

verall  accurac

bitats (49%, 59

S

 

nd overall a

City, New Ze

vel 1 habitat

a regroupin

confusion w

es. Vineland

City, 0.1% 

arded. The 

d scrub, a

menity gra

e group), an

onfusion m

n persisted, a

(17%), rou

7%) and na

onfusion of 

e scrub was

ion was goo

five had m

5
7

4
5

1
0

3
3

3
9

cy = 63.6%

%)

Shrubland (43%

accuracy of 

ealand. Mea

t types (see 

ng of classe

were found i

d and park/

and 2.4% 

six scrub 

and native 

ss, pasture 

nd three scru

matrix of the

although ge

ugh grass (1

ative scrub 

mixed scru

s also confu

od at 77.1%

more than 85

2
6

8
2

8
3

2
2

8
2 8
5

%, 31%)

Grasslan

  

f the classifi

an producer

Table 1). 

es and the c

in the follow

/woodland o

of the veg

and shrub 

scrub. Th

grass, roug

ub classes (

e vegetation

enerally to a

17%), and 

(13%). Tre

ub was that w

fused with p

% (Figure 4)

5% user’s a

4
8 5
0

8
5

9
2

1
0
0

nd (66%, 90%)

        287

 

cation of 

r’s and user

creation of 

wing classe

only cover 

getated area

classes wer

he simplifie

gh grass, an

(exotic scrub

n communit

a much lesse

native scru

ee group wa

with amenit

pasture gras

). All classe

accuracy an

 

70

’s 

a 

es: 

a 

as 

re 

ed 

nd 

b, 

ty 

er 

ub 

as 

ty 

ss 

es 

nd 



S

 

 

 

Cl

 

Tr

Sc

ha

Gr

 

V

 

Sensors 200

Table 

 

Gr

lassification 

ree habitats 

crub & shrub 

abitats 

rassland 

Values are giv

 

Figure 4

vegetation

07, 7  

3. Confusio

Dunedi

round referen

Forest 

Plantation 

Tree group 

Exotic scrub

Mixed scrub

Native scrub

Amenity gra

Pasture gras

Rough grass

Dune grass 

Column Tot

en in number 

4. Producer

n communiti

accuracy

6
3

0.00

20.00

40.00

60.00

80.00

100.00

Producer'

Overall accu

Tr

 

on matrix of

in City, New

nces Tr

F
o
re

st
 

19 (63) 

 

5 (17) 

b  

b 2 (7) 

b 4 (13) 

ass  

ss  

s  

 

tal 30 

of image obje

r’s accuracie

ies using ten

y (in parenth

6
3

8
3

7
6

9
3

s accuracy

uracy =  77.1%

ee habitats (76

         

f the classif

w Zealand (

ree habitats 

P
la

n
ta

ti
o

n
 

T
re

e
g

ro
u

p

 1 (4

25 (83)  

 18 (

1 (3)  

1 (3)  

2 (7)  

 3 (1

1 (3)  

  

  

30 22

ects, values in

es, user’s ac

n classes, D

hesis) are gi

8
2

7
9

6
2

User's accur

%

6%, 77%)

Scub &

fication of v

(total numbe

Scrub &

T
re

e 
g

ro
u

p
 

E
x
o
ti

c 
sc

ru
b
 

4) 1 (2) 

2 (5) 

(82) 1 (2) 

34 (79) 

 

3 (7) 

4)  

2 (5) 

 

 

43 

n parenthesis a

ccuracies, an

Dunedin City

iven for lev

6
2

8
7

8
5

racy

& shrub habitats

 

vegetation c

er of validat

& shrub habita

M
ix

ed
 s

cr
u

b
 

N
at

iv
e

sc
ru

b

3 (8) 1 (2)

  

1 (3) 2 (4)

1 (3) 2 (4)

23 (62) 1 (2)

3 (8) 36 (7

3 (8) 1 (2)

2 (5) 4 (9)

1 (3)  

  

37 47 

are percentage

nd overall a

y, New Zea

vel 1 habitat

7
7

8
8

7
1

7
0

s (73%, 81%)

ommunities

tion objects

ats 

N
at

iv
e 

sc
ru

b
 

A
m

en
it

y
 g

ra
ss

 

)  

 

)  

)  

)  

77)  

) 45 (88) 

) 6 (12) 

 

 

51 

es given in rela

accuracy of 

aland. Mean

t types (see 

8
3

7
27
5

Grassland (73

  

s using ten c

s = 354). 

Grassland 

P
as

tu
re

 g
ra

ss
 

R
o

u
g
h

 g
ra

ss
 

  

  

 2 (8) 

1 (2)  

  

 2 (8) 

10 (16) 1 (4) 

52 (83) 2 (8) 

 18 (72

  

63 25 

ation to the co

f the classifi

n producer’s

Table 1). 

7
2

5
0

9
0

1
0
0

3%, 84%)

        287

classes,  

D
u
n

e 
g
ra

ss
 

 2

 2

 2

 3

 2

1 (17) 5

1 (17) 6

 6

2) 1 (17) 2

3 (50) 3

6 3

olumn total.  

 

cation of 

s and user’s 

 

71

R
o

w
 T

o
ta

l 

25 

27 

29 

39 

27 

51 

64 

69 

20 

3 

354 



Sensors 2007, 7                            

 

 

2872

Both classifications were found to be statistically significant and better than random classifications:  

• Classification fifteen classes: κ = 0.52, Z-statistic = 17.5 

• Classification ten classes: κ = 0.74, Z-statistics = 25.2 

The κ value of the original classification (15 classes) was in the mid section of the “moderate” 

range while the κ value of the simplified classification (10 classes) was close to the “excellent” range. 

Conditional κ values were also computed for each vegetation class of the simplified classification 

(Congalton and Green 1999). Excellent agreement or good agreement was found for five and four 

classes respectively. Only the tree group class had a moderate agreement, although very close to the 

good range (Table 4). The classification results were considered satisfactory for the classes having a 

good or excellent agreement to their reference category. 

 

Table 4. Conditional kappa value (κ) for the ten vegetation communities classes  

of the simplified classification (computed after Congalton and Green 1999). 

 

Level I – habitat type Level II - class Conditional κ value Range 
*
 

Tree habitats Forest 0.74 good 

 Plantation 0.92 excellent 

 Tree group 0.6 moderate 

Scrub & shrub habitats Exotic scrub 0.85 excellent 

 Mixed scrub 0.83 excellent 

 Native scrub 0.66 good 

Grassland Amenity grass 0.65 good 

 Pasture grass 0.70 good 

 Rough grass 0.89 excellent 

 Dune grass 1 excellent 

* Classification after Landis & Koch (1977) 

 

The areas of the vegetation communities and other habitat types (built-up areas, bare ground, water, 

and sand) were computed for the whole city (Table 5). The urban area was delineated by creating a 

buffer of 200 meters outside the main settlements (including the residential stratum and the industrial / 

commercial stratum). The city included 1884 ha (57.8%) of vegetation communities (excluding the 

private gardens within the residential area), while 1385 ha (42.2%) consisted of non-vegetated habitat 

types. The most represented vegetation class was amenity grass with 502 ha (15.4%) and the least 

represented class was dune grass at 7 ha (0.2%). 
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Table 5. Areas of vegetation communities and other habitat types Dunedin City, New Zealand. 

 

Level I – habitat type Level II - class Area (ha) Percent (%) 

Tree habitats Forest 77.5 2.4 

 Plantation 40.0 1.2 

 Tree group 281.1 8.6 

Scrub & shrub habitats Exotic scrub 57.8 1.8 

 Mixed scrub 112.6 3.5 

 Native scrub 385.2 11.8 

Grassland Amenity grass 502.2 15.4 

 Pasture grass 390.4 11.9 

 Rough grass 31.2 1.0 

 Dune grass 6.6 0.2 

Total area vegetation (a)  1884.6 57.6 

Non vegetation Built 1,204.8 36.8 

 Bare ground (Bare soil) 3.6 0.1 

 Bare ground (Quarry, Gravel) 43.7 1.3 

 Water 131.8 4.0 

 Sand 1.1 0.0 

Total area other habitats (b)  1385.0 42.4 

TOTAL AREA (a) + (b)  3269.6 100.0 

 

5. Discussion 

5.1. Classification accuracy 

Vegetation communities found in urban areas share many similarities with the communities of more 

natural or agricultural environments, but they also present some substantial differences. Vegetation 

fragmentation is high in cities, and can be extreme, with patches of various sizes, generally fairly 

small, isolated within a harsh matrix of mostly impervious materials. In this highly modified and 

landscaped environment vegetation associations tend to be complex and heterogeneous, from a point 

of view of structure (e.g. mixes of trees, shrubs, and lawn patches in recreational parks) or of species 

association (e.g. various mixes of indigenous and exotic vegetation). Finally, some communities are 

more typically associated with the built environments and are essential components of urban ecology 

(Meurk and Hall 2000), for instance amenity pastures (e.g. sports fields), recreational parks (e.g. 

botanical gardens), or private gardens. The high heterogeneity and small patch size of urban vegetation 

has limited the earlier use of satellite imagery for detailed ecological mapping in cities. This has 

become technically feasible in the recent years with the availability of very high resolution satellite 

imagery (Nichol al. 2007), although the data processing is not fundamentally different from what 

would be implemented in a more natural setting. The availability of appropriate datasets has matched 



Sensors 2007, 7                            

 

 

2874

an increase of interest in urban ecology as well as an increase of attention given to the quality of life in 

cities. Emerging techniques such as object-based classification techniques are also well suited to urban 

mapping in their capacity of handling higher level of data heterogeneity and more complex spatial 

patterns. While examples of thematically detailed vegetation mapping using satellite imagery are 

numerous at medium and fine scales in natural environments (Rutchey and Vilcheck 1994; Mickelson 

et al. 1998; Thenkabail et al. 2004; Bock et al. 2005; Yu et al. 2006), few examples have been reported 

in urban areas. This research intended to contribute to fill this gap. 

The two classifications of urban vegetation presented in this research have overall accuracies 

ranging from 63.6% to 77.1% (κ value from 0.52 to 0.74) for fifteen and ten classes, respectively. 

Classification accuracy is largely dependent on the number of classes considered, i.e. the accuracy 

generally increases when the number of classes decreases. However, the spectral contrast between 

classes, class heterogeneity, and the purity of collected samples (both for training and validation), play 

a vital role in increasing or decreasing the overall accuracy. Similar accuracy results were reported in 

fine-scale habitat mapping with very high resolution satellite imagery. Keramitsoglou et al. (2005), for 

example, used a kernel based re-classification method for mapping five habitat classes (Lake Kerkini, 

Greece) and obtained 71% overall accuracy. Bock et al. (2005) using an object-based classification 

system extracted eight vegetation classes with 81% overall accuracy from a Quickbird image (Wye 

Downs, UK). Thenkabail et al. (2004) reported an overall accuracy of 48% for nine vegetation classes 

in tropical rainforests (Akok, Cameroon). Yu et al. (2006) implemented an ambitious species-based 

vegetation classification of very high resolution airborne imagery. They obtained an average accuracy 

of 48.2% for 43 vegetation classes with a large variation between classes (from 4 to 100%, standard 

deviation = 21.2%). Most of these projects dealt with protected or rural environments. In urban areas 

Zhang and Feng (2005) achieved 97% overall accuracy, but only considered two vegetation classes, 

i.e. tree and grass. 

The accuracy assessment of the original classification (fifteen classes) showed that classes such as 

vineland; park/woodland; scrub communities, and shrub communities yielded low user’s and 

producer’s accuracies. The discrimination of urban vegetation communities at such a detailed level 

produced a map with limited reliability. Difficulty arises from similarities in spectral reflectance and 

hence in spectral signatures among some classes. Vineland is a scrubby habitat heavily covered by 

woody vines and was confused with other scrub and shrub classes. Although ecologically significant, 

vineland is also one of the least represented habitats in the city. Similarly, it was difficult to 

automatically classify park/woodland as this class appears to lack a unique character. Park/woodland is 

an anthropogenic habitat characterized by clumped trees/shrubs scattered over exotic grassland. The 

heterogeneous nature of park/woodland makes it often difficult for the segmentation process to identify 

the boundaries of this vegetation community. A high level of confusion also occurred between native, 

exotic, and mixed shrublands and scrub habitats. This confusion occurred for several reasons. 

Shrublands differ from scrubs by having a lower density of woody materials and generally being more 

open vegetation communities. The change from scrub to shrubland is a natural continuum, thus a 

subjective decision is required to establish the boundary. The decision whether an object is in one class 

or another can be based on small density differences. Further, mixtures of native and/or exotic plant 

species often produce canopies with very close structure and colour. However, scrub habitats 

dominated by a single species were an exception in the sense that they tended to be easier to detect; for 
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example, gorse-dominated (Ulex europaeus) vegetation communities exhibit typical canopies with 

yellow flowers. For similar reasons complex arrangements of native and exotic species were also not 

easily recognizable from detailed colour aerial photographs in Freeman and Buck’s project (Claire 

Freeman, Pers. Comm.). A high accuracy in the classification of these complex habitats was found to 

require intensive field checks. This relied upon experienced field ecologists capable of identifying a 

large number of plant species. Moreover, boundaries between natural (e.g. native habitat) and semi-

natural plant communities (e.g. mixed habitats) are typically gradual and diffuse as compared to the 

sharp boundaries of anthropogenic habitats such as pine plantation or amenity grass. This creates 

subjectivity or uncertainty in boundary detection, which in turn generates classification inaccuracies. 

5.2. Object-based approach and urban ecological mapping 

Classifications produced with object-based techniques are readily available in vector format and can 

be directly imported and analyzed in a vector-based GIS package (e.g. ArcGIS). This is a significant 

advantage over traditional per-pixel classification techniques which produce raster-based maps. No 

post processing operation is required to clean up individual misclassified pixels, i.e. salt and pepper 

effect. Object-based classifications use a segmentation process to identify and delineate meaningful 

targets in digital images. An important point is that the segmentation process can be seen as an 

automated digitizing of target boundaries. Figure 1 shows that the scale 40 delineates vegetation units 

such as amenity grass, tree groups, park/woodland, bush and forest quite well in the Botanical Garden 

of Dunedin. This automated extraction of objects is by itself very cost-effective as it reduces the 

necessity for laborious on-screen digitizing, which is by far the most time-consuming task of the 

standard photo-interpretation process (Freeman and Buck 2003). More research is required to assess or 

validate the quality or geometric accuracy of the objects generated by the segmentation. For instance, 

Moller et al. (2007) proposed a comparison index to support the selection of an optimal segmentation 

scale. However, Baatz et al. (2004) suggested that beyond quantitative evaluation of segmentation 

procedures, no segmentation result is fully convincing if it does not satisfy the human eye. 

In contrast to pixel-based classification, the manual reclassification of wrongly classified objects or 

polygons is technically feasible, although it may be time consuming, thus cancelling the relative 

advantages of the exercise. In this research, manual reclassification was successfully used to correct 

some obvious confusion, such as the confusion of plantation or amenity grass with other classes. The 

decision to reclassify an object was only based on the photo-interpretation of the Ikonos image which 

is the main source of decision support for the classification. Further, we believe that a combination of 

strategies, including automated segmentation and classification, as well as manual classification, could 

be the most appropriate approach when a large amount of thematic and geometric details are required 

to map vegetation communities or habitats in urban environment. 

The manual digitising and photo-interpretation of vegetation units from colour aerial photographs 

produced semantically more detailed vegetation maps than those we produced (Freeman and Buck 

2003). However, in Freeman and Buck’s study a significant fieldwork component was still required to 

ensure the most accurate distinction between some vegetation communities (e.g. mixes of native and 

exotic habitats). Manual digitising of vegetation units is a valid option in the case of small- and 

medium-sized cities, although cost issues may limit the mapping exercise to large vegetation patches 
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such as remnants and indigenous habitats. For a city the size of Dunedin, a vegetation community map 

took a single researcher approximately a year to complete (Claire Freeman, Pers. Comm.). The manual 

approach becomes more difficult in large cities, especially if smaller vegetation patches have to be 

extracted. In this case, automated segmentation and object-based classification with Ikonos imagery is 

more cost effective, but has the semantic limitations shown in this research. To cater for these 

deficiencies a third option would be to make greater use of manual classification and to undertake 

more systematic field checks, both for the most difficult classes (e.g. scrub and shrublands), and also in 

areas where there is a high diversity of habitats. The discrimination of certain vegetation communities, 

e.g. dense vs. more open habitats, may be improved by applying object-based techniques to higher 

multi-resolution image products such as fused panchromatic and multispectral images. Fusion 

techniques are available, which merge into one unique dataset the high spectral quality of multispectral 

images and the high spatial quality of their panchromatic counterparts, e.g. Ikonos, multispectral 4 

meters and panchromatic 1 meter (Ranchin et al., 2000). A third level of scale could be investigated by 

applying object-based classification techniques to digital aerial photographs. This could include the 

near infrared band which is the most sensitive part of the spectrum to vegetation types and density 

(Guyot, 1990). With a potential ground pixel size anywhere between 5 and 50 centimetres, micro-scale 

vegetation or biodiversity features, such as individual trees in the streets or small shrubs and ponds in 

private gardens, could be correctly identified and inventoried using these methods. 

Dunedin City is a medium-sized city by New Zealand standards (fifth city in term of population 

after Auckland, Wellington, Christchurch, and Hamilton), and a small city by international standards; 

similar cities are ranked around 200 in the USA and above 500 in Europe (City Mayors Statistics, 

2007). The replication of this work in larger cities of New Zealand would most likely require minor 

adaptation as vegetation communities and city structure (CBD, residential areas) are quite similar to 

Dunedin, although the size of the city may induce some limitations such as those discussed above. 

However, the mapping of vegetation community in other world cities would require at least the 

modification of the classification scheme as to reflect the local topo-climatic conditions and urban eco-

history. Although the highest hierarchical levels are likely to be quite similar to the one found in New 

Zealand, many local differences and specificities may be required at the lowest hierarchical levels (e.g. 

species associations). Further, the stratification process may need to be adapted in areas where urban 

development is less planned and formal (e.g. developing countries) and / or where the boundaries 

between built-up and vegetated areas are less defined. 

6. Conclusion 

Detailed urban habitat maps are usually created by manual interpretation of aerial photographs, but 

this is time-consuming at large scales. To address this issue, we applied object-based classification 

techniques to very high resolution multispectral Ikonos images to produce a map of vegetation 

communities in Dunedin City, New Zealand. A vegetation stratum (including vegetation patches larger 

than 0.8/1ha) was segmented at a detailed scale to extract and classify fifteen classes of vegetation 

community. The first classification yielded a moderate overall classification accuracy (64%, κ= 0.52), 

mainly because of confusion between scrub habitats, shrublands, vineland and park/woodland. This led 

us to consider a simplified classification with ten vegetation classes. The overall classification was 
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77% with a κ value close to the excellent range (κ= 0.74). This approach did not provide maps at the 

same level of semantic detail as those produced by manually interpreting aerial photographs, but it was 

still possible to extract a number of ecologically significant vegetation classes. Object-based 

classification of Ikonos imagery was found to be an efficient way to generate accurate and detailed 

vegetation maps in significantly shorter time than with previous methods. The final map accuracy 

could be improved by integrating segmentation, automated and manual classification in the mapping 

process, especially when considering important vegetation classes with limited spectral contrast. 

Ultimately the application of either of these techniques, manual photo-interpretation vs. object-based 

classification, or a combination of both, to other cities will provide enhanced biodiversity 

understanding in the urban environment. However, the final choice of mapping technique will depend 

on the objectives (e.g. identifying minimum patch size, thematic accuracy) and the resources available. 
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