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Object-Based Pose Graph for Dynamic Indoor

Environments
Clara Gomez1, Alejandra C. Hernandez1, Erik Derner2,3, Ramon Barber1, and Robert Babuška2,4

Abstract—Relying on static representations of the environment
limits the use of mapping methods in most real-world tasks. Real-
world environments are dynamic and undergo changes that need
to be handled through map adaptation.

In this work, an object-based pose graph is proposed to solve
the problem of mapping in indoor dynamic environments with
mobile robots. In contrast to state-of-the art methods where
binary classifications between movable and static objects are
used, we propose a new method to capture the probability of
different objects over time. Object probability represents how
likely it is to find a specific object in its previous location and
it gives a quantification of how movable specific objects are. In
addition, grouping object probabilities according to object class
allows us to evaluate the movability of different object classes.

We validate our object-based pose graph in real-world dy-
namic environments. Results in mapping and map adaptation
with a real robot show efficient map maintenance through
several mapping sessions and results in object classification
according to movability show an improvement compared to
binary classification.

Index Terms—Mapping, Dynamics, Service Robots.

I. INTRODUCTION

REAL-WORLD dynamic environments undergo huge

changes in short periods of time. Changes present a

major challenge for mobile robots as maps rapidly become

outdated. This is a problem that needs to be solved in order to

enable mobile robots to autonomously operate in real-world

environments. Our goal is to solve this problem by building

a map that adapts during subsequent mapping sessions and

classifies the elements of the environment according to their

movability.

The dynamics of an environment can be classified as high

dynamics, changes that occur while the robot is present in the

environment (i.e. a person walking or a car driving through

a road), or low dynamics, changes that happen while the

robot is elsewhere or not sensing (i.e. returning to a room

after any rearrangement of the furniture or daily register

of cars in a car park). We propose a solution for the low
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Fig. 1. Proof of concept of the dynamic mapping method in an indoor
environment. First, the original object-based pose graph is built (7 chairs, 1
computer and 1 backpack were mapped). For the adaptation of the map, one
chair was moved and a bottle and a screen were added. The map adapted to the
changes adding the new objects and increasing or decreasing the probabilities
of the old ones.

dynamics in which the robot will register the changes between

different mapping sessions using an object-based pose graph.

Object-based pose graphs have been extensively used in recent

years obtaining very good results for static environments [1],

[2]. Low-dynamic environments have been mainly addressed

through feature-based representations [3], [4], [5] and less

research has focused on object-based approaches.

In this paper, we propose to build an object-based pose

graph and maintain it during several mapping sessions. The

probability of an object being present in the environment will

be calculated for each session. To the best of our knowledge,

probability-based approaches have been used to model the

dynamics when maps are created from features but not from

objects. Object probability allows us to infer the movability

and classify different objects based on the long-term experi-

ence of the robot.

The proposed mapping method involves object detection and

representation, building the initial pose graph and adapting

© 2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/
republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted 
component of this work in other works. 
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the pose graph to the changes in the environment. The main

pipeline and an operation example is shown in Figure 1, where

two mapping sessions are included and the map reflects the

changes as inclusion of new objects and variation of the object

probabilities. Our main contributions are:

• The design of a novel method to maintain object-based

pose graphs in dynamic environments.

• A function to capture how static or movable an object is

according to the experience of the robot.

• A fully autonomous dynamic-environment mapping sys-

tem that infers the movability of different object classes

and improves object classification according to their

movability.

This paper is organized as follows: Section 2 surveys the rel-

evant related work on mapping in low-dynamic environments.

Section 3 presents the building stones of the method proposed,

namely object detection and cuboid generation. Sections 4 and

5 describe the proposed mapping method and the adaptation

of the map to changes, respectively. Finally, an experimental

evaluation of the method and the conclusions drawn from this

work are presented in Sections 6 and 7.

II. RELATED WORK

Methods that adapt to the changes occurring in real-world

dynamic environments have received much attention from the

robotics community. Most low-dynamics approaches are based

on features extracted from laser scans, images or point cloud

information. Some authors propose a binary classification of

these features just considering if they are stable or not. In [6],

a pose graph is updated to remove the scans that no longer

match the environment. In such a way, the resulting map is

built with the scans that belong to static objects. Similarly,

in [7], a grid map, initialized with the architectonic map, is

augmented with the features that persist in time.

Other authors found binary classification very limited and

defined methods to measure the object movability or stability

of the features. The Feature Stability Histogram (FSH) was

proposed in [3], where image features are gathered for each

node of a topological map. Over time, a voting scheme is

used to register the local feature stability and the resulting

map is built with the most stable features. Along the same

line, the work presented in [4] applies a ranking function

that estimates how likely a landmark is observable under the

current situation. Top-ranked landmarks are stored for the

resulting map. A method for grid maps in which the belief

about the occupancy of a cell is represented with Hidden

Markov Models is presented in [5]. The resulting map includes

the change probability for each cell, which is a novelty in

contrast to the aforementioned works. In [6], [7], [3], mapping

is only carried out for the most stable features, which is

a limitation as the information that could be inferred from

the dynamic objects is overlooked. In [8], another solution

is proposed based on maintaining different representations

following a memory model. The sensory memory stores the

most current information. An attention mechanism selects

which information is moved to the Short term memory. And

finally, through rehearsal, static information can be committed

to the Long term memory.

Other works focus on maintaining the most updated version

of the environment by having a record of the static and current

dynamic elements. In [9], a pose graph based on point clouds

uses matching techniques to accumulate the aligned data and

remove the outdated ones. A more sophisticated approach is

introduced in [10], where a pose graph is maintained using

the belief of scan matches given a certain robot position and

observations. A pose is removed if its belief drops below a

tolerance value. These approaches, although being a solution

for localization, neglect prior situations and forget about the

former presence of elements and their locations. Some works

solve such issues by maintaining multiple representations. The

work presented in [11] keeps maps from different experiences

that are evaluated simultaneously selecting the most adequate

one for the current situation or creating a new one. Similarly,

in [12], several representations are maintained simultaneously

from multiple timescales, allowing the robot to detect patterns.

Patterns between different experiences are also sought in [13],

[14] through spectral representations that model the frequency

of appearance of different features.

The main drawback of the aforementioned works is the

lack of semantic meaning of the information stored in the

map. For this reason, some authors started to focus on objects

as the elements to map the environment. Relevant works in

static environments are [1], [2], where robust pose graphs of

indoor environments and object reconstruction are proposed.

Recently, an adaptation of this work for coping with high-

dynamic environments was proposed in [15]. Semantic, ge-

ometric and motion information is used for object tracking

and pose estimation. Other solutions for high-dynamic envi-

ronments have been proposed [16], [17], [18], [19]. In [17], a

static weighing method estimates whether an object is static

or not based on the Euclidean distance between object edges

in two situations.

Regarding low-dynamic environments, changes at an object

level can be detected inferring if they are static or movable. In

[20], an approach is introduced where a map of the static envi-

ronment and a database of the discovered objects is maintained

over time. Both the map and the objects are 3D reconstructions

that are refined as the robot discovers the environment. In [21],

several representations of the environment are maintained and

overlaps between objects and representations are checked for

changes. An object-based pose graph is developed in [22],

where the most up to date representation of the environment

is maintained by merging new objects and removing old ones.

In [23] tracking of objects is performed in 3D maps. When an

object has disappeared from its mapped position, the system

looks for it until its new location is found. An updated 3D

representation of the environment is maintained over time.

In contrast to the related work, we propose to map the

environment as an object-based pose graph that captures the

movability of the objects. To the best of our knowledge, such

works have been proposed for features but not for objects. In

addition, a new definition for describing the probability of an

object to be in an already-mapped position is presented. Our

resulting map is a probabilistic object-based pose graph where

static and movable objects are included and improved object

classification is obtained.
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III. OBJECT DETECTION AND CUBOID

REPRESENTATION

The most common approaches for object representation in

pose graphs are object reconstruction [2] and cuboid gen-

eration [19]. Both methods require an object detector that

provides information on the object position and class. With

this information, reconstruction approaches group the pixels or

scans that belong to an object and extract the object geometry;

on the contrary, cuboid generation approaches identify the

3D bounding box of the object representing the space that it

occupies. Regarding limitations, object reconstruction is highly

demanding in terms of memory and computing power, but

it gives an individual and detailed representation of objects.

Cuboid generation overlooks the specific characteristics of

each object instance within the class with the advantage of

reducing computational costs. In this work, a cuboid genera-

tion method is used as we are interested in classifying objects

according to their class.

Object detection is performed in RGB images through

ResNet-101 [24] trained with COCO Dataset [25]. Detections

contain all the objects, oi, present in the image frame Ik at

time step k. Each object is defined by the detection confidence,

p(oi|Ik), its 2D bounding box, bi,2D, and the object class.

2D bounding boxes and point cloud information are used

to calculate the centroid ci = [xi, yi, zi] and the size of

the 3D bounding box bi,3D = [wi, hi, di], where the object,

centroid and bounding box are linked through their indices.

Only objects with high detection confidence, p(oi|Ik) > 0.7,

are included in the map. We consider such detections reliable,

without further parameter tuning, as the details of the object

detection algorithm are out of the scope of this paper. Cuboid

generation is shown in Figure 2.

Fig. 2. Object detection and generation of object cuboid. In (a), the 2D
bounding box, class and confidence of a detected object is shown. In (b), the
cuboid and centroid for the object are calculated using the 2D bounding box
of the object and the current point cloud.

Point cloud information is used to calculate transformations

between image pixels and coordinates in the map, as presented

in [26]. Such transformations are firstly used to obtain the

object depth. Object depth is characterized using minimum,

mean and maximum values. Minimum and maximum values

are calculated for defining vertex depth and mean value for

centroid depth. Minimum object depth is calculated as the

median of the 2% smallest depths within the 2D bounding box

of the object. Maximum object depth is calculated through

an adaptation of the flood fill algorithm, starting from the

minimum-object-depth pixel and recursively visiting its neigh-

bors. A threshold, θ, is defined for the difference in depth of

two neighboring pixels. If the difference in depth between the

minimum-object-depth pixel and its neighbor is smaller than

the threshold, the two pixels are connected and they belong to

the object. Otherwise, the neighboring pixel is considered part

of the background and it is discarded. Mean object depth is

calculated as the mean value between minimum and maximum

object depths.

3D coordinates of the object centroid are obtained using

the mean object depth and pixel-to-coordinate transformation.

Similarly, 3D coordinates of the bounding box vertices are

estimated using the minimum and maximum object depths and

the width and height of the 2D bounding box.

This method provides a representation of every object that

the robot sees as a 3D cuboid characterized by its 3D bounding

box and its centroid from RGB images and point cloud

information.

IV. INITIAL POSE GRAPH

The initial pose graph captures the objects and trajectory

as the robot explores the environment for the first time.

This process implies the generation of robot poses, mapping

the detected objects and connecting poses with objects. In

addition, identifying whether the detected objects have been

already mapped is required for pose graph consistency.

A. Building the initial pose graph

Our representation of the world is an object-based pose

graph that consists of robot poses, objects, and connections

between them. For pose generation, reliable information about

the robot pose is assumed. In addition, this pose is used to

determine when the robot has returned to an already-mapped

pose.

Neighboring poses are connected and they are also con-

nected with the objects detected from them. In addition, every

time an object is detected, it is annotated with the connections

to the poses from where it was seen, the object class, the

probability of finding the object in that location, p(oi)0, and

whether the object is active (present in the mapping session),

inactive (missed in the mapping session) or unknown to be

active (not visisted in the mapping session). Newly detected

objects are always identified as active and their probability

is set as an initial probability that depends on the detection

confidence p(oi|Ik). This probability refers to how likely it

is to find that object i again in the same location. For this

reason, and as it is the first time that the object is detected,

an initialization factor of 0.5 is used, as we do not know yet

how dynamic the object is:

p(oi)0 = 0.5p(oi|Ik) (1)

Object-based pose graphs require to control the addition of

objects as redundant mapping can become a major problem.

This is solved through online object merging.
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B. Object merging

Object merging involves identifying that an object detected

in image frame Il at time step l was previously seen from the

same or another position in image frame Ik, where l > k. In

this work, every object to be added to the map is analyzed

according to its class and position. Firstly, two objects are

only going to be merged if they belong to the same object

class. Secondly, two conditions are introduced to evaluate the

relation between object positions. If the centroid of the new

object lies inside the cuboid of the already-mapped object,

cj(x, y, z) ∈ bi,3D, they are automatically merged without

any modification. If the centroid of the new object is within

the area of influence, ainf (oi) of the already-mapped object,

the two objects are merged and the cuboid of the object is

reshaped. The area of influence of an object is defined as a

sphere centered in the object centroid where given the size of

the object no other centroid of the same object class can be

found. This sphere is defined by the diagonal of the object
√

b2i,3D multiplied by a tolerance factor α, as objects from

the same object class may have approximately similar sizes

but not exactly the same:

ainf (oi) = α
√

b2i,3D (2)

If the centroid lies in the area of influence, cj(x, y, z) ∈
ainf (oi), the cuboid of the already-mapped object is reshaped

to include the centroid of the new detection. This situation is

illustrated in Figure 3.

Fig. 3. Object merging for a sofa. In (a), the two instances of the object as
shown. As the centroid of the second detection (right) is within the area of
influence of the first detection, in (b) both instances are merged.

V. POSE GRAPH ADAPTATION OVER TIME

Every time that a new mapping session, m, starts the pose

graph is updated. The robot is assumed to travel through the

first mapping session path (although it can drive it partially

or in different directions), and we assume that the robot can

always be localized in one of the mapped poses. Updating the

pose graph implies adding new objects and detecting whether

the already-mapped objects are still present or have been

moved/removed. While objects detected within one mapping

session are updated and merged online, matching objects

between different mapping sessions is performed offline when

the mapping session has finished. Therefore, object probability

is just evaluated and modified once and efficiency is improved

as unnecessary evaluations are avoided while the robot is

moving.

A. Updating already-mapped objects

As the robot moves, the expected already-mapped objects

are registered. An object becomes expected when it was

already mapped from the current robot pose and it is supposed

to enter the frustum of the camera according to its mapped

position, ci ∈ F , where F denotes the frustum defined by

the vertical and horizontal angles along with the minimum

and maximum detection distances of the camera. When the

mapping session has finished, the register of expected objects

is compared to the objects detected during the session.

If an expected object has been seen again, its probability

increases according to the following equation and it is consid-

ered to be active:

p(oi)m =
s(cmi , cm−1

i )p(oi|Ik) + ξ + p(oi)m−1

2
(3)

Here, s(cmi , cm−1

i ) refers to the similarity between the cen-

troid position of both detections according to their Euclidean

distance and ξ relates to the false-negative rate of the detector

maintaining a low value for the new measurement even if the

object was not detected. The similarity takes values between

0 and 1, where the higher the measure is, the closer the two

detections are; and it is computed as follows:

s(cmi , cm−1

i ) =
1

1 + ‖cmi − cm−1

i ‖2
(4)

If an expected object is not detected again, its probability

decreases and it is considered inactive. In such a case, p(oi|Ik)
is zero and 3 simplifies as follows:

p(oi)m =
ξ + p(oi)m−1

2
(5)

If an already-mapped object was not expected (the robot

has not visisted it) and it was not detected its probability is

not affected by the map update, so it is labelled as unknown

to be active.

B. Adding new objects

The objects to add are those ones detected by the robot

that do not correspond to any of the expected objects. Before

adding a new object a check is performed to confirm that

the object was not mapped to another pose. If it was already

mapped, a new connection is created. Otherwise, the new

object is added and annotated with its probability, class and

cuboid. The probability for newly added objects is calculated

similarly to the initial probability (first mapping session) as

described in (1).
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C. Inferring object class movability

After every mapping session, m, the individual object

probabilities are updated. Grouping them according to object

class reveals valuable information about object movability

and allows to classify static and movable objects. Movability,

Mm,a ∈ [0, 1], is the measure that captures whether an object

class, a, is static or movable. Movability is the complement

of the mean object probability for all the objects that belong

to an object class, na, defined by:

Mm,a = 1−

∑

i∈a p(oi)m

na

(6)

Movability for different object classes is inferred by the

robot based on its own experience in the environment.

VI. EXPERIMENTAL RESULTS

Experiments were conducted in an indoor environment (15

x 6) m2 using a Turtlebot 2 robot equipped with an Asus Xtion

depth camera. The robot gathered information in 20 different

mapping sessions during a month where 22 object were present

in the environment: 12 chairs, 3 sofas, 2 cups, 3 bottles, 1 plant

and 1 laptop.

All the experiments presented in this paper were performed

with the same values for the threshold for depth, θ, tolerance

factor for merging, α and false-negative rate, ξ (including

the experiments shown in Figures 1, 2 and 3). The value

of θ was set to 15 cm, α to 0.9 and ξ is assumed to be 0.

We have empirically evaluated that this choice is suitable for

different objects present in the environment and for different

environments, see Table I. The first three columns in Table I

refer to θ: d represents the average difference between depth

of neighboring pixels for each object class (cm); %d∗ refers

to the percentage of differences that are greater than 15 cm;

and %ε refers to the final error in size comparing the real

and calculated depth for the object. Although several objects

have differences between individual pixels higher than the

defined threshold, this only affects the chairs with a 5.91%

error (a 50 cm-wide object will be detected as 47.05 cm wide).

Next three columns refer to α: min(s) column shows the

minimum separation (m) between objects of the same class

present in any of the environments; max(D) column shows

the maximum diagonal value (m) for each of the objects

classes; and finally, 0.9max(D) refers to the area of influence

of the object. Although the maximum diagonal values for some

objects are larger than the minimum distance (what would lead

to an error), using the α value of 0.9 solves these possible

errors.

TABLE I
EVALUATION OF PARAMETERS θ AND α

Object d %d∗ %ε min(s) max(D) 0.9max(D)

chair 1.62 1.86 5.91 0.67 0.69 0.62
sofa 1.23 1.06 0 1.85 1.89 1.70
plant 1.57 1.41 0 - 0.63 0.57
cup 0.41 0 0 0.44 0.15 0.13

bottle 0.42 0 0 1.54 0.09 0.08
laptop 0.35 0 0 - 0.46 0.41

Images gathered by the robot during some of the mapping

sessions are shown in Figure 4. Red boxes highlight the

changes in the sample images. All the processing took place on

a PC with IntelCore i7-6500U CPU@2.50GHz 12GB RAM.

Fig. 4. Sample of images captured by the robot in three different mapping
sessions. Changes as movement of chairs, presence of new objects such as
cups or bottles are introduced between mapping sessions (red boxes).

Experiments presented in sections VI-A and VI-B show the

building and the adaptation process for the object-based pose

graph presented in this work. In addition, section VI-C shows

the improvement in object classification regarding movability.

A. Real-world experiments in a dynamic environment

This first experiment evaluates the performance of the

mapping system and its adaptation to the changes in the map.

For this purpose, two mapping sessions (m = 0 and m = 1)

are evaluated in detail. The initial map, generated in m = 0, is

shown in Figure 5 (a), the active elements for the next mapping

Fig. 5. Result for two mapping sessions. In (a) the objects of the first mapping
session are included (10 chairs, a plant and 2 sofas). In (b), the new objects
detected are shown (9 chairs, some of them were in a different position than
in the previous mapping session and 2 sofas). Finally, in (c), the adaptation
of the map to the new situation is shown.
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session are shown in Figure 5 (b), and, finally, Figure 5 (c)

shows the resulting map after the two mapping sessions. Every

object is represented using its cuboid, object class (color-

coded) and the connections to the poses where they were

detected.

Table II shows the detail of object probabilities. Objects not

entering the frustum of the camera (unknown) are listed with

- and their probabilities remain constant, undetected objects

(inactive) decrease their probabilities whereas detected objects

(active) increase them after the two mapping sessions (forth

column).

TABLE II
OBJECT PROBABILITY FOR THE TWO FIRST MAPPING SESSIONS

Object m = 0 m = 1 m = 0 & m = 1

0 0.4919 0.00 0.2460
1 0.4954 0.00 0.2477
2 0.4901 0.5956 0.5428
3 0.4961 0.6477 0.5719
4 0.4981 0.8087 0.6534
5 0.4861 0.5414 0.5138
6 0.4961 - 0.4961
7 0.4896 0.00 0.2448
8 0.4279 0.00 0.2139
9 0.4733 0.00 0.2366

10 0.4785 - 0.4785
11 0.4856 0.00 0.2428
12 0.4864 0.00 0.2432
13 0.4904 - 0.4904
14 - 0.4975 0.4975
15 - 0.4978 0.4978
16 - 0.4787 0.4787
17 - 0.4983 0.4983
18 - 0.4030 0.4030
19 - 0.4980 0.4980

B. Long-term inference of object movability

After validating the performance of the proposed method

for two mapping sessions, the map resulting from the com-

plete set of mapping sessions is evaluated. The initial map

Fig. 6. Results after 20 mapping sessions and the adaptation in the environ-
ment. (a) and (b) show the resulting map for the first and last mapping sessions
respectively, (c) shows the active elements for the last mapping session and
(d) shows the objects that are learned as static after the 20 mapping sessions.

(first mapping session) and the resulting map (all the objects

mapped along their probabilities) are shown in Figure 6 (a)

and (b), respectively. From the resulting map, the active map

(objects present in the last mapping session) and static map

(object probability > 50%) can be obtained as shown in Figure

6 (c) and (d). Figure 6 (c) shows the objects that were active

in the last mapping session. Figure 6 (d) shows the objects

that the robot considers static after including the complete set

of mapping sessions. They are the three sofas, the plant and

the three chairs, which corresponds to the elements that were

not moved during the experiments.

Updating object probabilities during 20 mapping sessions

results in a polarization between the objects that have not

being detected in most of the sessions (movable objects) and

those that remain for almost all the sessions (static objects).

As shown in Table III, object movability is scaled in a realistic

fashion and the robot has effectively learned which objects are

more movable (higher values of movability). The evolution of

movability within all the mapping sessions is shown in Figure

7.

TABLE III
MOVABILITY ACCORDING TO OBJECT CLASS

Object class Movability

Bottle 0.8765
Cup 0.8302

Laptop 0.7516
Chair 0.7343
Plant 0.3007
Sofa 0.2319

Fig. 7. Evolution of the movability for each object class during the mapping
sessions.

C. Comparison to binary object classification

Comparison to binary object classification is included to

further evaluate the performance of the method. Binary object

classification identifies objects as movable or static. Most of

the approaches that use binary classification are meant to map

the static objects and discard the movable ones [21], [22],

[23]. In order to replicate this behavior, only the objects that

have been labeled as active or unknown for all of the mapping

sessions are included in the resulting map as they are supposed
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to be static. Figure 8 (a) and (b) show the resulting static map

for binary classification and the static map of the proposed

method after evaluating the complete set of mapping sessions,

respectively.

Fig. 8. Comparison of object classification according to the movability of
objects between the binary classification method (a) and using the proposed
method (b) after evaluating all the mapping sessions.

As shown in Figure 8, the method proposed outperforms

binary object classification as object probability increases

the robustness of object classification. Binary classification

overlooks static objects just because they were not detected in

one mapping session, obtaining a 42.85% of successful static

objects mapped in contrast to the 100% of the method pro-

posed. Therefore, robustness is increased in our method thanks

to employing the proposed object movability calculation in

object classification. In addition, binary classification can just

infer about static and movable objects, but it does not give any

insight in the degree of movability.

D. Discussion

Quantitative results of the proposed method and comparison

to binary classification have been presented in this section.

Comparison to other methods that define the movability of

the environment elements is not appropriate as those works

map the environment using features instead of objects. Al-

though both methods pursue the same objective, as they do

not use equivalent information, methods based on feature

descriptors cannot be applied to objects. The only possible

way to compare these approaches is through the improvement

in localization, which is beyond the scope of this paper.

Therefore, we give an extensive discussion on how our method

presents a contribution in the light of these prior works.

Feature-based approaches [3], [4], [5] gather information

from the salient regions of images, scans or point clouds.

Features can be merged, removed or assigned a probability

that could be registered for dynamic environments, but the

meaning of these features is not easy to transfer to the real

world. Features represent an abstraction level that allows to

know which regions of the environment are prone to changes,

but they need a second step to determine which elements

are located in that region to gain environment understand-

ing. In contrast, object-based approaches implicitly provide

environment understanding, as changes are directly associated

to objects. They also share the advantages of feature-based

approaches, as they determine the regions of the environment

that change more.

Although it was not possible to compare to any other spe-

cific method, the movability of objects can be calculated with

other well-known methods, such as Bayesian filtering. Here we

briefly discuss the comparison of our method with a standard

Kalman filter [27]. Kalman filters can estimate the belief of a

specific object remaining static or being movable. As proposed

for our method, object class movability can be calculated by

grouping the objects probabilities (or beliefs) for each object

class. Kalman filter and our method can be compared through

the results obtained regarding object class movability as shown

in Figure 9. Our method (red) and three instances of Kalman

filter (blue) are compared for a static object and a highly

movable object. The process model for the Kalman filter is

initialized with µ0 = 0.5 and Σ0 = 0.2, and it is assumed

to be static if measurements are not received (µt = µt−1 and

Σt = Σt−1). The measurement model is defined by each new

observation and the measurement noise covariance, Rt. The

results show that noisier measurements (higher Rt) lead to

a slow evolution of object movability, being more difficult

to distinguish between static and movable objects. On the

contrary, more precise measurements (lower Rt) lead to a

more polarized estimation of object movability, especially for

movable objects. Our method performs similarly to a Kalman

filter of Rt = 0.2 for increasing movability (bottle). However,

our performance for static objects is increased (sofa), as the

system infers faster that the object is static. For these reasons,

we conclude that our method performs better than Bayesian

filtering for the task of object movability estimation.

Fig. 9. Comparison of object movability between the Kalman filter and our
method.

Some advantages can also be found regarding the resulting

map. In our method, object probability and active objects are

maintained through the different mapping sessions resulting in

an improvement compared to other works. Active elements for

each mapping session are included, as for [9], [10]. Also the

static and dynamic maps of the environment, as for [6], [7].

Comparing the different representations, we can say that the

resulting map for the proposed method gives more complete

and representative information of the environment than other

state-of-the-art methods.

VII. CONCLUSIONS AND FUTURE WORK

We have proposed a method for mapping and map adapta-

tion through object-based pose graphs for low dynamic indoor

environments. This new method calculates and maintains

object probability depending on whether an object is seen

again or not and capturing whether it is static or movable.

As shown in the experimental results, including object proba-

bility improves the resulting map. In addition, it provides the
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robot with a realistic estimation of the movability of objects

according to its class gathered from its own experience that

outperforms object classification using a binary method.

Overall, this paper strengthens the idea that real-world

environments have to be treated as dynamic environments

consisting of objects that may be more or less movable and

important information can be obtained from capturing their

movability. The method proposed in this paper allows for

a straightforward extension to improve other tasks such as

localization or object search. Therefore, future research in-

cludes developing a localization algorithm that builds upon the

method proposed in this work and improves the localization

of the robot thanks to the individual object probabilities and

object class movability. In addition, improvements to this work

include the recalculation of the path (not only the objects),

as the original path could become impassable and new paths

could be created to overcome this situation.

ACKNOWLEDGMENT

This research has received funding from HEROITEA: Het-

erogeneous Intelligent Multi-Robot Team for Assistance of

Elderly People (RTI2018-095599-B-C21), funded by Span-

ish Ministerio de Economia y Competitividad and the

RoboCity2030- DIH-CM project (S2018/NMT-4331, RoboC-

ity2030 - Madrid Robotics Digital Innovation Hub). This

work was supported by the European Regional Development

Fund under the project Robotics for Industry 4.0 (reg. no.

CZ.02.1.01/0.0/0.0/15 003/0000470) and by the Grant Agency

of the Czech Technical University in Prague, grant no.

SGS19/174/OHK3/3T/13.

REFERENCES

[1] R. F. Salas-Moreno, R. A. Newcombe, H. Strasdat, P. H. Kelly, and A. J.
Davison, “Slam++: Simultaneous localisation and mapping at the level
of objects,” in Proceedings of the IEEE conference on computer vision

and pattern recognition, 2013, pp. 1352–1359.
[2] J. McCormac, R. Clark, M. Bloesch, A. Davison, and S. Leutenegger,

“Fusion++: Volumetric object-level slam,” in 2018 international confer-

ence on 3D vision (3DV). IEEE, 2018, pp. 32–41.
[3] B. Bacca, J. Salvi, and X. Cufı́, “Appearance-based mapping and local-

ization for mobile robots using a feature stability histogram,” Robotics

and Autonomous Systems, vol. 59, no. 10, pp. 840–857, 2011.
[4] M. Bürki, M. Dymczyk, I. Gilitschenski, C. Cadena, R. Siegwart, and

J. Nieto, “Map management for efficient long-term visual localization
in outdoor environments,” in 2018 IEEE Intelligent Vehicles Symposium

(IV). IEEE, 2018, pp. 682–688.
[5] D. Meyer-Delius, M. Beinhofer, and W. Burgard, “Occupancy grid

models for robot mapping in changing environments,” in Twenty-Sixth

AAAI Conference on Artificial Intelligence, 2012.
[6] A. Walcott-Bryant, M. Kaess, H. Johannsson, and J. J. Leonard, “Dy-

namic pose graph SLAM: Long-term mapping in low dynamic envi-
ronments,” in 2012 IEEE/RSJ International Conference on Intelligent

Robots and Systems. IEEE, 2012, pp. 1871–1878.
[7] J. Ginés, F. Martı́n, V. Matellán, F. J. Lera, and J. Balsa, “Dynamics

maps for long-term autonomy,” in 2017 IEEE International Conference

on Autonomous Robot Systems and Competitions (ICARSC). IEEE,
2017, pp. 85–90.

[8] F. Dayoub and T. Duckett, “An adaptive appearance-based map for
long-term topological localization of mobile robots,” in 2008 IEEE/RSJ

International Conference on Intelligent Robots and Systems. IEEE,
2008, pp. 3364–3369.

[9] M. T. Lázaro, R. Capobianco, and G. Grisetti, “Efficient long-term
mapping in dynamic environments,” in 2018 IEEE/RSJ International

Conference on Intelligent Robots and Systems (IROS). IEEE, 2018, pp.
153–160.
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