
OBJECT-BASED SEMANTIC REAL-TIME CONCURRENCY CONTROL

BY

LISA B. DIPIPPO

A DISSERTATION SUBMITTED IN PARTIAL FULFILLMENT OF THE

REQUIREMENTS FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

IN

APPLIED MATHEMATICAL SCIENCE

UNIVERSITY OF RHODE ISLAND

1995

DOCTOR OF PHILOSOPHY DISSERTATION

OF

LISA B. DIPIPPO

APPROVED:
Dissertation Committee

Major Professor

DEAN OF THE GRADUATE SCHOOL

UNIVERSITY OF RHODE ISLAND
1995

ABSTRACT

Concurrency control for a real-time database must maintain both the traditional logical

consistency constraints of data and transactions, and the additional temporal consistency

constraints of data and transactions. Furthermore, the concurrency control should have the

ability to express the trade-o� that results from the inherent conict between temporal and

logical consistency constraints. The concurrency control should also be able to maintain

and bound any imprecision that results from trading o� logical consistency for temporal

consistency.

This dissertation presents a model and a concurrency control technique for real-time

object-oriented databases. The model, called RTSORAC, is based on an object-oriented

data model and it allows for the explicit expression of logical and temporal data consistency

constraints. The concurrency control technique supports temporal and logical consistency,

as well as bounded imprecision that results from their trade-o�. It uses a semantic locking

mechanism within each object and user-de�ned compatibility over the methods of the ob-

ject. The semantic-based compatibility function can specify when to sacri�ce precise logical

consistency to meet temporal consistency requirements. The concurrency control technique

can also specify accumulation and bounding of any resulting logical imprecision.

The dissertation presents a set of restrictions on the compatibility function and an

object-oriented form of the epsilon-serializability correctness criterion (OESR). It then

presents a proof of global correctness that shows that the semantic locking technique, under

the compatibility function restrictions, can guarantee OESR.

To demonstrate how the semantic locking technique performs under varying conditions,

the dissertation presents a set of tests that were conducted to compare the technique with

other techniques. The techniques indicate that, in general, the semantic locking technique

preserves transaction temporal consistency better than the other techniques tested, and it

keeps data temporal inconsistency low.

i

ACKNOWLEDGEMENT

I have always thought of the work in this dissertation as a collaborative e�ort between

me and so many people who have helped me in many ways, not just academically.

First I must thank my advisor and friend Victor Fay-Wolfe, without whom I would not

have known what a real-time database was. He has been an advisor in more than just my

work and has provided me with all of the support a graduate student could ask for - and

then some.

I also thank Joan Peckham, who has been a role model for me in work and in life and

in combining the two! My fellow graduate student Janet Prichard has been a supportive

friend as well as a helpful colleague. I thank the entire RTSORAC research group for all of

the valuable input I have gotten throughout the process of my research.

I thank Manbir Sodhi and the rest of my committee for their support and help through-

out the entire PhD process. Many thanks to John Kelvin Black, who provided me with a

a solid testbed system upon which to design and run my performance tests. I also have to

thank Roman Ginis for all of the little tasks that he performed in order to help me get my

tests running. I thank Colleen Kelly for her help in analyzing the results of my testing. I

must also give special thanks to elvis for working with me night and day to get my testing

done.

Finally, I must thank my family for all of the love and support that they have given me

throughout the years. And for all of the encouragement that I ever got that enabled me

to get this far. I thank my husband John for all of his love, and for sticking with me from

start to �nish in this endeavor. And last, but de�nitely not least, I thank my little Kaiya

Lee for sleeping when I needed her to, and more importantly for giving me the perspective

I needed in school, in work and in life.

iii

Contents

1 Introduction 1

1.1 Motivation : 1

1.2 Goal of Research : 5

1.3 Our Approach : 5

1.4 Dissertation Outline : 6

2 Related Work 7

2.1 Mutual Exclusion Techniques : 7

2.2 Traditional Serializability Techniques : 8

2.3 Semantic Concurrency Control Techniques : : : : : : : : : : : : : : : : : : : 10

2.3.1 Transaction-Based Semantic Concurrency Control : : : : : : : : : : 11

2.3.2 Object-Based Semantic Concurrency Control : : : : : : : : : : : : : 13

2.4 Bounded Imprecision : 15

2.5 Evaluation of Related Work : 18

2.5.1 Transaction Temporal Consistency : : : : : : : : : : : : : : : : : : : 18

2.5.2 Data Temporal Consistency : 19

2.5.3 Transaction Logical Consistency : 19

2.5.4 Data Logical Consistency : 20

2.5.5 Bounding Imprecision : 20

2.5.6 Burden on the User : 20

3 RTSORAC Model 22

3.1 Object Types : 23

3.2 Transactions : 24

3.3 Relationships : 26

4 The Semantic Locking Technique 27

4.1 Compatibility Function : 27

4.2 Semantic Locking Mechanism : 30

4.2.1 Semantic Lock Request : 32

4.2.2 Method Invocation Request : 32

4.2.3 Releasing Locks. : 34

5 Bounding Imprecision 36

5.1 Object-Oriented ESR : 36

5.2 Restrictions on The Compatibility Function : : : : : : : : : : : : : : : : : : 37

iv

5.3 Correctness : 40

5.4 Example : 43

6 Implementation 45

6.1 Object Type Implementation : 45

6.2 Transaction Implementation : 46

6.3 Shared Memory Management : 47

6.4 Semantic Locking Mechanism Implementation : : : : : : : : : : : : : : : : : 47

7 Evaluation 49

7.1 Testbed Construction : 49

7.2 Performance Model : 51

7.3 Performance Parameters : 53

7.4 Comparison Techniques : 57

7.5 Performance Measurements : 59

7.6 Testing : 60

7.6.1 Deadline Miss Ratio : 60

7.6.2 Temporal Inconsistency Ratio : 61

7.7 Results : 63

7.7.1 Deadline Miss Ratio Results : 63

7.7.2 Temporal Inconsistency Ratio Results : : : : : : : : : : : : : : : : : 70

7.7.3 Overall Results : 73

8 Conclusion 74

8.1 Contributions : 74

8.2 Comparison with Related Work : 76

8.3 Limitations and Future Work : 79

v

List of Tables

1.1 Forms of Consistency for Real-Time Database : : : : : : : : : : : : : : : : : 5

2.1 Lock Compatibility Table : 12

7.1 Performance Parameters for Agrawal Performance Model : : : : : : : : : : 53

7.2 Compatibility Function for Comparison Techniques : : : : : : : : : : : : : : 57

7.3 Tests Performed : 60

vi

List of Figures

1.1 Concurrency Control Allowable Schedules : : : : : : : : : : : : : : : : : : : 4

3.1 Example of Submarine Object Type : 23

3.2 Example of Relative Location Relationship : : : : : : : : : : : : : : : : : 26

4.1 Compatibility Function Examples : 29

4.2 Mechanism for Semantic Lock Request : 30

4.3 Mechanism for Method Invocation Request : : : : : : : : : : : : : : : : : : 31

6.1 Object Management Implementation : 46

7.1 Construction of Testbed Con�guration : 50

7.2 Running a Test : 51

7.3 Agrawal Performance Model : 52

7.4 System Con�guration Tables : 54

7.5 Workload Tables : 55

7.6 Low Method Invocations : 64

7.7 Medium Method Invocations : 64

7.8 High Method Invocations : 64

7.9 Short Methods : 66

7.10 Medium Length Methods : 66

7.11 Long Methods : 66

7.12 Short Deadlines : 68

7.13 Medium Deadlines : 68

7.14 Long Deadlines : 68

7.15 Low Imprecision : 69

7.16 Medium Imprecision : 69

7.17 High Imprecision : 69

7.18 Temporal Consistency Baseline : 70

7.19 Temporal Inconsistency - Method Execution : : : : : : : : : : : : : : : : : : 72

7.20 Temporal Inconsistency - Absolute Validity Interval : : : : : : : : : : : : : 72

7.21 Temporal Inconsistency - Allowable Imprecision : : : : : : : : : : : : : : : : 72

vii

Chapter 1

Introduction

Applications such as submarine contact tracking, program stock trading, and medical pa-

tient monitoring require timely actions as well as the ability to access and store complex

data that reects the state of the application's environment. A traditional database provides

some of the functionality required by these applications, such as coordination of concurrent

actions and consistent access to shared data. Real-time databases have all of the features

of traditional databases, but they can also express and maintain time-constrained data and

time-constrained transactions [Ram93]. Object-oriented databases provide a mechanism for

expressing and accessing complex data in an encapsulated form with a well-de�ned interface

[ZM90]. These added features of real-time databases and object-oriented databases present

more complexity than exists in traditional databases and this complexity a�ects how the

database controls access to its data.

This dissertation de�nes concurrency control requirements of a real-time object-oriented

database and describes a model and a concurrency control technique that attempt to meet

these requirements. It presents a new correctness criterion and a proof of correctness of

the technique. Finally, the dissertation describes a prototype implementation on which

performance tests were conducted, and analyzes the results.

1.1 Motivation

A transaction is an executable entity that is the unit of concurrency in a database. The

concurrency controlmechanism of a traditional database coordinates actions of transactions

that operate concurrently and access shared data [BHG86]. Determining which transactions

1

may execute concurrently depends on the correctness criterion chosen for the concurrency

control mechanism. One such correctness criterion is mutual exclusion which requires that

each transaction execute from start to �nish without interruption from other transactions,

thus no concurrency is allowed. Most traditional concurrency control techniques require

serializability of its transactions. A schedule of transactions is considered to be serializable

if it produces the same output as some serial execution of the same transactions [BHG86].

Concurrency control mechanisms that require mutual exclusion or serializability usually

ensure that each transaction that accesses shared data remains atomic, either all of its

actions are performed or none are, and exclusive, it does not interfere with other transac-

tions [BHG86]. These requirements place constraints on how the transactions may execute

(transaction logical consistency constraints) and on how the data may be accessed (data

logical consistency constraints).

The concurrency control mechanism of a real-time database must maintain not only the

logical consistency of the database, it must also maintain transaction temporal consistency

and data temporal consistency. Transaction temporal consistency constrains when a trans-

action must execute by imposing timing constraints such as deadlines, earliest start times

and latest start times. Often transactions are assigned priorities based on these timing

constraints. The real-time scheduler must use these priorities when scheduling transactions

on the CPU. Data temporal consistency constrains how old a data item may be and still be

considered valid. The concurrency control mechanism for a real-time database must main-

tain all four forms of consistency constraint: transaction logical consistency, data logical

consistency, transaction temporal consistency and data temporal consistency.

Unfortunately, there exist certain inherent conicts between temporal and logical con-

straints that make it di�cult for a concurrency control mechanism to maintain all four

forms of constraints. For instance, in order to maintain transaction temporal consistency,

a transaction that updates a piece of data may be blocked by another transaction that is

reading the same piece of data. If the data in question is getting \old" it would be in the

interest of its temporal consistency to allow the updating transaction to execute. However,

this execution could violate the logical consistency of the data or of the reading transaction.

Thus, there is a trade-o� between maintaining temporal consistency and maintaining logical

consistency. If logical consistency is chosen, then there is the possibility that a piece of data

may become old, or that a transaction may violate a timing constraint. If, on the other

2

hand, temporal consistency is chosen, the consistency of the data or of the transactions

involved may be compromised.

Another problem that may occur due to the conict between logical and temporal con-

straints is called priority inversion. This occurs when a transaction is blocked by a lower

priority transaction because the lower priority transaction holds locks on data that the

higher priority transaction is waiting for. The temporal consistency constraints of the

transactions impose the priority ordering, but the logical consistency constraints of the

transactions forces the higher priority transaction to be blocked by the lower priority trans-

action holding the lock.

In order to express the trade-o� between temporal and logical consistency that exists in

a real-time database, a concurrency control mechanism must be able to use knowledge about

the database application in determining which transactions may execute concurrently. Such

a mechanism is said to provide semantic concurrency control. By using semantic information

about the database and the particular application domain, the database designer can de�ne

less restrictive correctness criteria, sometimes relaxing the requirement for serializability.

A consequence of relaxing serializability is that imprecision may accumulate in the data

in the database and in the transactions' views of the data. Recall the example described

earlier in which an update transaction preempts a reading transaction in order to maintain

the temporal consistency of the data. In this case, the reading transaction may get an

imprecise view of the data because it may read the value written by an uncommitted

update transaction. A data value resulting from a schedule of transactions is imprecise if

it di�ers from the corresponding value resulting from each possible serializable schedule of

the same transactions [RP]. The imprecision of a data item may be local to the view of a

single transaction, such as when one transaction reads data written by another uncommitted

transaction. A data item may also be imprecise with respect to future transactions that

access it, such as when two transactions that write to the data item interleave.

Semantic concurrency control can facilitate the expression of the trade-o� between tem-

poral and logical consistency, and therefore help to maintain the temporal consistency of

the data. It can also help to maintain the temporal consistency of the transactions. Fig-

ure 1.1 illustrates how the choice of concurrency control correctness criteria can a�ect the

database's ability to maintain transaction temporal consistency. It shows that the set of

schedules that produce serial execution of transactions (using mutual exclusion, for exam-

3

ALL SCHEDULES

SERIALIZABLE

SERIAL

X
X X

X

X

X

X

XX

X

X

X

X

X

XX

X

X

X
X

X
X

X

X
X

X

X

X

X

X

X

X

X

X X

X

X

X
X

X X

X
X

X
X

X

X XX

X X

X

X

X

X

X

X

X = POSSIBLE SCHEDULE OF

 TRANSACTIONS

SCHEDULES THAT MEET

TIMING CONSTRAINTS

EXPRESSABLE

SEMANTICS

LOGICALLY

CONSISTENT

Figure 1.1: Concurrency Control Allowable Schedules

ple) is a very small subset of logically consistent schedules. The set of serializable schedules

is also a small subset. However, when semantics of the application are used to determine

concurrency, a larger subset of logically consistent schedules results. Allowing as large a

subset as possible is important in a real-time database because the more logically consis-

tent schedules that the correctness criterion allows, the more exibility the scheduler has in

�nding a schedule that is both logically consistent and temporally consistent.

Most traditional databases are based upon the relational data model in which data is

stored in a set of tables [Dat86]. An object-oriented data model supports functionality

beyond that of the relational data model [ZM90]. Data in an object-oriented data model is

represented by objects, each with its own unique object identity. Encapsulation of data and

implementation provides a well-de�ned interface to each object through operations called

methods. While the representation of the data or the implementation may change, the

interface remains the same and thus, users of the object are unaware of the changes. An

object-oriented data model supports objects with complex state, that is, objects that may

refer to other objects.

While most work in concurrency control for real-time databases has used the relational

data model [YWLS94], there are several reasons that an object-oriented data model [ZM90]

can be more suitable for the complex real-time applications described above. First, the

encapsulation mechanisms of an object-oriented data model facilitate expressing semantic

4

Temporal Consistency Logical Consistency

Transaction e.g. Start, Deadline, Period req e.g. Serializability

Data e.g. Absolute validity interval e.g. Serializable operations

Table 1.1: Forms of Consistency for Real-Time Database

concurrency control information within each object. Because the concurrency control is

de�ned by the object designer, the trade-o� between temporal and logical consistency can

be expressed based on the semantics of the object. Second, the capability to include user-

de�ned methods on data objects can improve real-time concurrency by allowing a wide

range of operation granularities for semantic concurrency control. Finally, constraints can be

expressed as �rst-class entities in an object-oriented data model, thus allowing the expression

of temporal, logical and imprecision constraints as an integral part of the data.

1.2 Goal of Research

Our goal is to provide a concurrency control technique for a real-time object-oriented

database that supports all four forms of consistency constraints (Table 1.1) and the trade-

o�s that result.

1.3 Our Approach

In order to meet our goal, we have �rst de�ned a model for real-time object-oriented

databases, called RTSORAC (Real Time SemanticObjects,Relationships AndConstraints)

[PDPW94]. The model incorporates functionality of traditional databases with the require-

ments of real-time databases and the additional features of object-oriented databases. We

have devised a concurrency control technique based on the RTSORAC model, called se-

mantic locking. In our technique, concurrency control is distributed to the individual data

objects, each of which controls concurrent access to itself based on a semantically de�ned

compatibility function for its methods.

Semantic locking supports data and transaction logical consistency by providing func-

tionality similar to concurrency control techniques for non real-time databases. It supports

data temporal consistency by allowing for the expression and enforcement of the trade-o�

of logical consistency for temporal consistency. The technique supports transaction tempo-

5

ral consistency by allowing for the speci�cation of more logically consistent schedules than

those allowed by serializability (Figure 1.1). Furthermore, semantic locking can specify

accumulation and bounding of any logical imprecision that may result from relaxing serial-

izability. We have proven that our technique can bound imprecision by showing that it can

guarantee a form of epsilon serializability [RP] specialized for object-oriented databases.

1.4 Dissertation Outline

In Chapter 2 we review related work and evaluate it to indicate why each does not suf-

�ciently support the four forms of consistency of Table 1.1 and the associated trade-o�s.

Chapter 3 de�nes our RTSORAC model for real-time object-oriented databases. Chapter

4 describes our semantic locking technique. In Chapter 5 we present a new correctness

criterion and use it to prove that semantic locking can be globally correct and that it can

bound imprecision. Chapter 6 describes the prototype implementation of the RTSORAC

model and of our technique. Chapter 7 presents the results of performance tests using

simulated workloads. The tests indicate how our technique supports the transaction and

data temporal consistency. Chapter 8 compares our work with related work, presents the

contributions and limitations of our work, and discusses future work.

6

Chapter 2

Related Work

In this chapter we describe some of the related work that has been done in the area of con-

currency control. We discuss several techniques in order of increasing semantics used. The

�rst techniques that we present require mutual exclusion in which no semantics are used.

The traditional serializability techniques that we describe next use the semantics of read

and write operations to determine how much concurrency to allow. We present semantic

concurrency control techniques in which the semantics of the actual applications are used

to further enhance the amount of concurrency used. We also describe several correctness

criteria and techniques that allow bounded imprecision. The chapter ends with an evalua-

tion of the related work based on its ability to support the four consistency requirements:

transaction logical consistency, data logical consistency, transaction temporal consistency

and data temporal consistency.

2.1 Mutual Exclusion Techniques

Mutual exclusion requires that only a single transaction or process can access a resource

at a time. It does not allow any concurrency among transactions. The programming

language Ada [DoD83] uses rendezvous to enforce mutual exclusion. The technique is called

rendezvous because a caller task must wait for an accept from a server task and the server

must wait at an accept for a call from a caller. The two tasks meet at this rendezvous

point and while the server is processing the request from the caller, no other caller may

rendezvous with the server.

Real-Time Euclid [KS86], a third generation language designed for real-time applica-

7

tions, uses monitors to maintain mutual exclusion. A monitor is an abstract data type that

contains both the data and procedures needed to perform allocation of a particular shared

resource or group of shared resources [Dei84]. A process calls a monitor entry and mutual

exclusion is strictly enforced at the monitor boundary. Real-Time Euclid has extended the

standard �rst-in �rst-out wait queue to handle time. A time bound is speci�ed on the

wait statement so that if time runs out on a process that is waiting for a monitor entry an

exception is raised that will handle the missed timing constraint.

2.2 Traditional Serializability Techniques

Some concurrency control techniques that require serializability use certain semantic knowl-

edge of the application to gain extra concurrency. We describe only those serializability

techniques that use no application-speci�c knowledge and describe semantic based tech-

niques in the next subsection.

Read/write locking is a technique in which two types of locks are provided for each data

item based upon the operation that is requested. A read lock is compatible with other read

locks, but a write lock is not compatible with read locks or other write locks. When a lock

is requested on a data item, it is granted if it is compatible with all other locks already held

on the particular data item and denied otherwise. Read/write locking is used to maintain

serializability of the operations on a data item [BHG86].

Two-phase locking [BHG86] is a concurrency control technique that is used to maintain

the serializability of transactions. It is used along with some type of compatibility locking

technique like read/write locking. Two-phase locking requires that a transaction acquire all

of the locks that it needs before releasing any locks. Therefore, it cannot release a lock until

all locks are acquired and it cannot request a lock once another lock has been released.

Certain variations of two-phase locking have been developed for particular purposes

[BHG86]. For instance, conservative two-phase locking requires that all locks are acquired

by a transaction before any other processing is done. This is done to avoid deadlock. Strict

two-phase locking forces all transactions to hold their locks until they are terminated either

by a commit or an abort.

There are several real-time concurrency control techniques that extend two-phase locking

to take into account real-time requirements. In [SRSC91], the priority ceiling protocol

8

[Raj89] real-time scheduling algorithm is combined with a version of two-phase locking to

handle the priority inversion problem. Using this protocol, priority inversion is bounded

so that a transaction can be blocked by at most one lower priority transaction until it

completes or suspends itself.

In [AGM88], the 2PL-HP (two-phase locking with high priority) protocol was proposed.

In this protocol, conicts are resolved by aborting lower priority transactions. If a trans-

action requesting access to shared data has a higher priority than all other transactions

holding locks on the data, the lock holders abort and the requester gets the lock. Otherwise

the requester waits for the holder to release the lock. Another variation of this idea, called

H2PL (hybrid 2PL), was proposed in [HL92]. In this technique certain conditions, such

as transaction workload, are checked to avoid unnecessary aborts. Also, whenever a lower

priority transaction that is blocking a higher priority transaction aborts and therefore has

to be restarted, its priority is raised to that of the higher transaction to prevent priority

inversion (priority inheritence).

Timestamp ordering is a serializability technique that does not use locks, but rather

determines which interleavings to allow based upon the time at which the transactions

were initiated [BHG86]. Each transaction receives a timestamp. Given two concurrent

transactions, T1 and T2, if two conicting operations within these transactions, o1 and o2,

access shared data, then o1 is processed before o2 if and only if the timestamp of T1 is

before the timestamp of T2. The concurrency control mechanism receives operations on a

�rst come �rst served basis, but rejects any operations that it receives \too late". That is,

if o1 is received and it conicts with o2 and the timestamp of T1 is before the timestamp of

T2, but o2 was received �rst, o1 is too late. It is rejected and therefore T1 is aborted.

All of the serializability techniques described above are pessimistic in nature. That is,

a conict is detected when it occurs and some action is taken right away. For instance, in

two-phase locking and its variations, when a lock conict is detected, one of the conicting

transactions is either blocked or aborted. Similarly, with timestamp ordering, conicting

transactions are handled at the time the conict occurs. Optimistic concurrency control

[KR81] techniques detect conicts after the data access occurs. Each transaction completes

its execution, including all data accesses, assuming that no other conicting actions are

executing concurrently. When a transaction completes its execution, it enters a validation

phase in which all data accesses are validated. If the transaction did not perform any

9

actions that conict with the actions of an already committed transaction, the concurrency

control manager marks any uncommitted conicting transaction for abort. Otherwise, if

the transaction has been marked for abort, it is aborted. Optimistic concurrency control

can use either locks or timestamps for detection of conicts.

A study of real-time concurrency control techniques in [HCL90b] indicates that in sys-

tems in which late transactions are discarded, a real-time optimistic concurrency control

mechanism outperforms the pessimistic technique of [AGM88]. In [HCL90a], a real-time

optimistic concurrency protocol called WAIT-50 is presented. In this protocol, a lower pri-

ority transaction waits at validation time for any conicting higher priority transactions to

give the higher priority transactions a chance to meet their deadlines �rst. A wait control

mechanism monitors transaction conict states and dynamically decides when and how long

a low priority transaction should wait for its conicting higher priority transactions.

A real-time optimistic concurrency control technique called OCC-TI [LS93] uses times-

tamp intervals to detect conicts. Every transaction is assigned an initial timestamp interval

of [0;1). The interval is adjusted to represent serialization order dependencies. A �nal

timestamp is assigned from the interval at the end of the validation phase. The validation

of a transaction consists of adjusting timestamp intervals of concurrent transactions and

restarting conicting transactions whose intervals cannot be adjusted. This technique uses

the concept of dynamic adjustment of serialization order presented in [LS90].

2.3 Semantic Concurrency Control Techniques

A semantic concurrency control mechanism utilizes application speci�c knowledge to in-

crease concurrency, sometimes de�ning less restrictive correctness criteria than serializ-

ability. Most of the previous work in semantic concurrency control can be divided into

two categories: transaction-based semantic concurrency control and object-based semantic

concurrency control. Transaction-based semantic concurrency control capitalizes on the se-

mantics of the known transactions in the system to allow interleavings that might not be

allowed in a traditional scheme. Object-based semantic concurrency control manages access

to each object in the system based on the semantics of the operations de�ned on the object.

The remainder of this section briey discusses some of the previous work done in each of

these categories of semantic concurrency control.

10

2.3.1 Transaction-Based Semantic Concurrency Control

In [GM83], Garcia-Molina de�nes a semantically consistent schedule to be a schedule that

transforms the database into a consistent state. Transactions are classi�ed into semantic

types based on what they do in the database. For each type, a compatibility set is de�ned to

identify which other types are compatible with, i.e., may interleave with, the given type. The

user divides a transaction type into atomic steps where a step represents some indivisible,

real-world action. Any interleaving that is allowed is between these user-de�ned steps. In

the transaction processing mechanism proposed, when a transaction requires access to a

data object, a lock is requested. If no other locks are held on the object, the request is

granted and the object keeps track of the compatibility set of the type of transaction holding

the lock. If another transaction attempts to lock the same object, the transaction processing

mechanism checks to see if the type of the requesting transaction is in the compatibility set

of the transaction already holding the lock. If so, the lock is granted, if not, the transaction

must wait to gain access to the object. In this technique, serializability is replaced as a

correctness criterion by semantic consistency.

In [CGM85] a performance evaluation is done to identify the conditions under which

it may be advantageous to use an application-dependent concurrency control mechanism

such as the one described in [GM83]. The tests in [CGM85] determined that probability

of saved conict is an important factor for identifying when to use a semantic concurrency

control technique. That is, they found that in an application where semantic compatibilities

allow the system to avoid more conicts than traditional, non-semantic-based techniques

like two-phase locking, it is bene�cial to use these semantic techniques. The evaluation also

indicated that if a database is small or has frequently accessed portions and the number of

concurrent transactions is high, an application dependent concurrency control mechanism

could be useful.

In [Lyn83] an approach similar to [GM83] is proposed. In [Lyn83], each transaction has

a di�erent set of breakpoints with respect to each di�erent transaction type. This approach

allows varying levels of concurrency among di�erent types of transactions. Transactions

are grouped into nested classes. As the classes become more re�ned, the level of atomicity

becomes �ner. For each class, breakpoints are inserted in a transaction which de�ne places

where other transactions of the same class may interleave. The breakpoints of higher level

classes are carried down to the lower level classes. Therefore, for each transaction t, the

11

Lock Lock Held

Requested S E RS RE

S YES NO YES COND

E NO NO COND COND

Table 2.1: Lock Compatibility Table

set of breakpoints where another transaction t0 can interrupt is determined by the lowest

class containing both t and t0. The levels of atomicity produced by this technique form a

hierarchy of allowable interleavings among transactions.

Another transaction-based semantic concurrency control mechanism is described in

[FO89]. This work extends the previous work described in [GM83] and [Lyn83] by creating

fewer restrictions on allowable interleavings. Nested classes are not used, and therefore the

interleavings are not required to be hierarchical as in [Lyn83]. Transactions are classi�ed by

types and are divided by placing breakpoints between operations where certain interleav-

ings are allowed. Each breakpoint has associated with it a set, called the interleaving set,

containing the types of transactions which are permitted to interrupt at that point. Four

kinds of locks are used in the concurrency control technique described: shared, exclusive,

relatively shared and relatively exclusive. A shared lock or exclusive lock is granted in the

traditional way for read access or write access respectively. Relatively shared and relatively

exclusive locks are used to produce non-serializable interleavings. At a breakpoint, the lock

can change depending on the actions taken before that point. A shared lock becomes a

relatively shared lock at a breakpoint if there is no update before it, otherwise it becomes

an exclusive lock. An exclusive lock always becomes a relatively exclusive lock at a break-

point. A compatibility table, as seen in Table 2.1, is given for these four locks and while

some of the entries are simply YES or NO, others, labelled COND, depend on whether or

not the type of the transaction requesting the lock is in the interleaving set of the type of

the transaction holding the lock. Locks are released after termination of the transaction.

The RTC language [WDL93], which also has object-based features, provides mechanisms

for concurrency among transactions. For instance, an exclusive block ensures that any

execution within the block is exclusive of interruption from any other incompatible actions.

The work in [ABAK94], generalizes the previous work in transaction based semantic

concurrency control and presents a formal method for determining correct schedules. An

12

atomic unit of a transaction Ti relative to another transaction Tj is de�ned to be a sequence

of consecutive operations of Ti such that no operations of Tj are allowed to be executed

within this sequence. Atomicity(Ti; Tj) refers to the ordered sequence of atomic units of Ti

relative to Tj . A schedule of transactions is a relatively atomic schedule if for all transactions

Ti and Tj , no operation of Ti is interleaved with an atomic unit of Tj relative to Ti.

The authors of [ABAK94] recognize that in general, relative atomicity speci�cations

tend to be conservative because not all potential conicts occur. They expand the class

of relatively atomic schedules to include interleavings of operations which do not have any

dependencies between them. An operation o2 directly depends on an operation o1 if o1

precedes o2 and either both operations are in the same transaction or o1 conicts with o2.

A relatively serial schedule is de�ned to be analogous to the notion of serial schedules in

the serializability theory. A schedule is relatively serial if for all transactions Ti and Tj,

if an operation o of Ti is interleaved with an atomic unit U of Tj relative to Ti, then o

does not depend on any operation p in U , and any other operation q in U does not depend

on o. A schedule is relatively serializable if it is conict equivalent to some relatively

serial schedule. This de�nition provides a new correctness criterion for transaction based

concurrency control. Further, the authors present a method for determining if a given

schedule is relatively serial by testing for acyclicity of a directed graph.

2.3.2 Object-Based Semantic Concurrency Control

The techniques described in this section take advantage, to varying degrees, of the oppor-

tunity for increased concurrency provided by the object-oriented paradigm.

In [BR88], an object-based semantic concurrency control technique is used in a sys-

tem which allows nested data objects, i.e., objects containing other objects. A hierarchical

structure, called a granularity graph, is used to represent the nesting. The outermost object

is represented at the root of the graph and the children of the root represent the objects

nested inside. For each operation de�ned on the object, an a�ected set is computed, con-

taining all nodes in the graph that are a�ected by the operation. Concurrency is controlled

by avoiding conicts among the operations on the object. A conict occurs between two

operations if they do not commute, that is, if the order in which they are performed a�ects

the results returned by the operations or the resulting state of the object. The approach

to determining compatibilities between operations is divided into two steps. First, the se-

13

mantics of the operations are analyzed to determine if they are always compatible, never

compatible or conditionally compatible. The second step is performed dynamically when

the operations are requested, to determine the value of a conditional compatibility. This

value is determined by computing the intersection of the a�ected sets of the two operations

in question. If this intersection is empty, then the operations commute and therefore are

compatible.

Another object-based mechanism that uses commutativity as the de�nition of compati-

bility is described in [Wei88]. Two slightly di�erent versions of commutativity are de�ned,

forward commutativity and backward commutativity. The di�erence between these criteria

is subtle and the author asserts that they are both necessary because each one is used with

di�erent recovery mechanisms. Forward commutativity is designed to work with intentions

lists, while backward commutativity works with recovery using undo logs. One of the major

results of [Wei88] is that concurrency control and recovery are closely linked and must be

considered together. When compatibility between operations is in question, commutativity

is computed dynamically, as in [BR88].

In [BR92] another technique very similar to that in [BR88] is described. However, in

the former, compatibility between operations is based on recoverability and not on commu-

tativity. An operation, o1 is recoverable relative to another operation, o2, if the outcome

of performing o2 is the same whether or not o1 executed immediately before o2. Therefore,

recoverable operations are allowed to execute concurrently but must commit in the order

in which they were invoked.

The three object-based semantic concurrency control techniques described above add

concurrency to a database by exploiting the semantics of the object's operations, but each

ultimately requires serializability as a correctness criterion. Other researchers have increased

concurrency even further by relaxing the serializability constraint. In both [WDL93] and

[SS84] the database designer de�nes the compatibility between operations on an object. This

user-de�ned compatibility may or may not preserve serializability. Consistency constraints

are determined by the designer and implemented through the compatibility relations.

In [WDL93], RTC is a language proposed to control real-time concurrency. Objects

called resources have actions de�ned on them. The compatibility relation Cr is a non-

symmetric relation on these actions which determines if two actions are compatible, that is,

if the actions can be overlapped to result in a consistent state of the resource. The designer

14

of the system must ensure the correctness of the compatibility relation with respect to the

semantics of the resource being de�ned.

In [SS84] as well, the user is responsible for de�ning compatibilities, but the authors

present some guidelines for doing so. The user de�nes all possible dependencies among

the operations of an object, possibly involving values of parameters. Some of these de-

pendencies are characterized as insigni�cant in that cycles formed by them do not a�ect

data consistency. Rather than using serializability as the correctness criteria, a schedule is

considered correct if it is orderable with respect to a relation formed by combining all of

the signi�cant dependencies in the objects involved.

The authors also present the concept of a type-speci�c locking protocol. The locks

that a transaction requests should be held only as long as the semantics of the application

suggest. Therefore, each application will use a type-speci�c locking protocol to determine

when locks should be released.

2.4 Bounded Imprecision

In many real-time systems, imprecise results have been considered acceptable to allow timing

constraints to be met [LLS+91]. Some of the semantic concurrency control techniques

described above allow imprecision in an ad hoc way in order to provide more concurrency

[GM83, Lyn83, SS84]. Here we describe several correctness criteria that formalize the

concept of imprecision along with several concurrency control techniques that use these

criteria.

In [KM92] the use of imprecision in databases and in real-time systems is synthesized and

formalized through the concept of similarity. The authors de�ne new correctness criteria,

less restrictive than serializability, based on the idea that data values that are su�ciently

close may be interchanged as input to a transaction without undue adverse e�ects.

Similarity of a data object is de�ned by the user based on the semantics of the data. Two

views of a transaction are similar if and only if every read event in both views uses similar

values with respect to the transaction. Two database states are similar if the corresponding

values of every data object in the two states are similar. These de�nitions are used to

extend the traditional correctness criteria, �nal-state serializability, view serializability and

conict serializability to new criteria based on similarity.

15

The Similarity Stack Protocol (SSP) described in [KM93] de�nes similarity of data based

on the time at which the data is written. Two data items are considered to be similar if

their timestamps are within a speci�ed bound. Transactions are placed on a scheduling

stack according to their priorities. Read/write events of di�erent transactions may swap

positions on the stack as long as they are similar.

Epsilon Serializability. Epsilon serializability (ESR) [RP, DP93] is a correctness cri-

terion that generalizes serializability by allowing bounded imprecision in transaction pro-

cessing. ESR assumes that serializable schedules of transactions using precise data always

result in precise data in the database and in precise return values from transactions. In

order to accumulate and limit imprecision, ESR assumes use of only data items that belong

to a metric space. A metric space is a set of values on which a distance function is de�ned.

The distance function has the properties of positivity and symmetry and it upholds the

triangle inequality [RP].

A transaction speci�es limits on the amount of imprecision that it can import and export

with respect to a particular data item. Import limitt;x is de�ned as the maximum amount

of imprecision that transaction t can import with respect to data item x, and export limitt;x

is de�ned as the limit on the amount of imprecision exported by transaction t to data item

x [RP]. For every data item x in the database, a data �-speci�cation (data �x) expresses a

limit on the amount of imprecision that can be written to x [DP93].

The amount of imprecision imported and exported by each transaction, as well as the

imprecision written to the data items, must be accumulated during the transaction's execu-

tion. Import imprecisiont;x represents the amount of imprecision imported by transaction

t with respect to data item x. Similarly, export imprecisiont;x represents the amount of

imprecision exported by transaction t with respect to data item x. Data imprecisionx

de�nes the amount of imprecision written to the data item x.

ESR de�nes Safety as a set of conditions that speci�es boundaries for the amount of

imprecision permitted in transactions and data. Safety is divided into two parts: transac-

tion safety and data safety. Safety for transaction t with respect to data item x is de�ned

in [RP] as follows:1

1In [RP] the terms import inconsistencyt;x and export inconsistencyt;x are used. We have renamed

them to import imprecisiont;x and export imprecisiont;x.

16

TR-Safetyt;x �

8><
>:

import imprecisiont;x � import limitt;x

export imprecisiont;x � export limitt;x

Data safety is described informally in [DP93]. We formalize the de�nition of data safety for

data item x:

Data-Safetyx � data imprecisionx � data �x

The original de�nition of ESR [RP, DP93] can now be stated as: ESR is guaranteed if and

only if all transactions and data items are safe. Or, more formally as:

De�nition 1 ESR is guaranteed if and only if TR-Safetyt;x and Data-Safetyx are in-

variant for every transaction t and every data item x.

Several concurrency control techniques have been designed to maintain ESR instead of

the more restrictive serializability criterion. [WYP92] describes several concurrency con-

trol techniques in which read-only transaction need not be serializable with other update

transactions, but update transactions must be serializable among themselves. The tech-

niques are variations of two-phase locking, timestamp ordering and optimistic concurrency

control. The concurrency control protocols presented in [PHK+93] extend the notion of ep-

silon serializability to distributed databases. They allow divergence from consistency among

database sites as long as their di�erences remain within speci�ed limits.

[WA92] presents another concurrency control protocol that allows bounded inconsis-

tency. The protocol works on an object-based model. In this model, a transaction invokes

an operation on an object and the object has a set of possible actions, called the resolution

set, from which to execute the operation. The state of an object is de�ned by the sequence

of resolutions that have been performed in response to invoked operations. Two resolution

sequences are considered equivalent if the resulting object states are the same.

The object designer determines compatibility of object operations based on the notion

of commutativity with bounded inconsistency. For every resolution sequence op:oq of the

operation sequence p:q, the designer de�nes a forward resolution set dilating function (fpq)

and a backward resolution set dilating function (bpq). These functions are de�ned such that

for every state s, if there is a resolution sequence op:oq of the operation sequence p:q with op

in the resolution set of p (rs(p)) and oq in the resolution set of q (rs(q)), then there exists

a resolution sequence o0

q:o
0

p that is equivalent to op:oq for the operation sequence q:p with

17

o0

p in fpq(rs(p)) and o0

q in bpq(rs(q)).

The above functions are placed in a compatibility table. When a transaction invokes an

operation on an object, the concurrency control mechanism looks in the table to determine

if the invoked operation is compatible with all concurrent operations in the object. If the

operations are found to be compatible, the resolution sets of the corresponding operations

are updated to take into account any inconsistency that may have been allowed by the inter-

leaving of operations. The object designer speci�es inconsistency limits for each operation.

The protocol ensures that the limits are not violated.

2.5 Evaluation of Related Work

In this section we evaluate the related work that we have described based on our goals

for concurrency control in real-time, object-oriented databases. We do this in order to

determine which of the previously described techniques can help us in our own work and to

identify important issues that have not been addressed in this area.

2.5.1 Transaction Temporal Consistency

Real-Time Euclid was speci�cally designed to handle real-time applications and therefore

it is well equipped to handle temporal constraints on transactions. It allows both periodic

and aperiodic transactions as well as timing constraints within execution of a transaction.

Ada does not fare as well in this evaluation. The only timing device that is provided by Ada

is a delay. However, Ada 95 provides for periodic processes as well as exception handling

for missed timing constraints [BP91].

While two-phase locking was not designed to handle temporal consistency, several real-

time techniques have extended two-phase locking to do so [SRSC91, AGM88, HL92]. Each

of these techniques assigns priorities to transactions that reect the timing constraints

imposed on them. In [SRSC91] the priority inversion problem is bounded to a single lower

priority blocking transaction. Both [AGM88] and [HL92] use priority to resolve conicts. In

general, if a conict occurs between two transactions, the lower priority transaction yields

to the higher priority transaction, aborting if necessary.

Each of the real-time optimistic concurrency control techniques [HCL90a, LS93] was

evaluated and compared with other pessimistic techniques based on the number of deadlines

18

that were missed. Both performed well in this regard compared to the chosen pessimistic

techniques. One di�erence is that [HCL90a] uses transaction priority to actively maintain

transaction temporal consistency and [LS93] does not use transaction priority, but rather

relies on the increased concurrency to allow more transactions to make their deadlines.

Of the semantic concurrency control techniques, only [WDL93] and [KM93] explicitly

address transaction temporal consistency. The RTC language described in [WDL93] al-

lows a programmer to express a full range of timing constraints on transactions. In the

SSP protocol described in [KM93], transaction temporal consistency is enhanced by the use

of the priority stack scheduler. While the ESR based techniques [WYP92, PHK+93] and

the technique described in [WA92] do not explicitly address transaction temporal consis-

tency, the use of correctness criteria that are more exible than serializability supports the

maintenance of temporal constraints (see Figure 1.1).

2.5.2 Data Temporal Consistency

None of the mechanisms that we have described actively supports maintenance of temporal

consistency of data. This is one of the major e�orts in our research.

2.5.3 Transaction Logical Consistency

Logical consistency of transactions is de�ned by the way a concurrency control mechanism

allows a transaction to use a group of objects. Two-phase locking is more exible than

conservative and strict two-phase locking because they generally hold locks longer. The

real-time techniques based on two-phase locking [SRSC91, AGM88, HL92] also maintain

transaction logical consistency by preserving serializability of transactions.

Of the object-based semantic techniques, [BR92] and [Wei88] do not discuss logical

constraints on transactions. These techniques concentrate solely on the consistency of the

data. Type-speci�c locking is provided in [SS84] to allow a transaction to use more than

one data object. The semantics of the application are examined to determine how long

a transaction should hold a lock on an object. In [WDL93] the RTC language provides

mechanisms for processes to exclusively access objects for as long as is necessary in the

particular situation.

The database designer de�nes transaction logical consistency in the transaction-based

semantic concurrency control mechanisms that we have described [GM83, Lyn83, FO89].

19

The designer de�nes correctness in an ad hoc manner based on the semantics of each

individual transaction. In [ABAK94] the above transaction-based techniques are generalized

and correctness is formalized in the notion of relative serializability. In [KM93, WYP92,

PHK+93, WA92] transaction logical consistency is also de�ned by the designer. But in these

techniques, the correctness criteria are more structured. The transaction interleavings that

are allowed are restricted to maintain limits on imprecision that may accumulate.

2.5.4 Data Logical Consistency

All of the mutual exclusion and serializability techniques maintain data logical consistency.

Each of the semantic concurrency control techniques described uses semantics to some

extent to maintain logical consistency of objects. The transaction-based techniques de�ne

semantic consistency of the data objects that must be maintained. In [BR88], [BR92] and

[Wei88] semantics-based commutativity or recoverability is used to maintain serializability.

User-de�ned logical consistency is maintained in [SS84], [WDL93] and [WA92] through a

semantic compatibility relation and in [KM93] through the speci�cation of similarity.

Some epsilon-serializability based techniques require that data appear as if it has been

accessed serializably [WYP92, PHK+93]. While other techniques that use ESR as a correct-

ness criterion allow non-serializable updates as long as the data will eventually be restored

to a consistent state [DP93].

2.5.5 Bounding Imprecision

Imprecision may result from any of the semantic concurrency control techniques that allow

non-serializable access to the data. The transaction based techniques [GM83, Lyn83, FO89,

ABAK94] handle imprecision in an ad hoc manner. Imprecision is not accumulated or

bounded. The same is true for the object-based technique in [SS84]. The correctness

criteria de�ned in [KM92, RP, DP93, WA92] provide the ability to allow non-serializable

interleavings of transactions while maintaining a bounded amount of imprecision.

2.5.6 Burden on the User

An important criterion on which to measure semantic concurrency control techniques is the

burden that is placed on the user to de�ne the semantics of the application.

20

All of the transaction-based semantic techniques [GM83, Lyn83, FO89] place a heavy

burden on the user because he must know about every transaction in the system. The user

must also be able to de�ne compatibilities among all of the transaction types at di�erent

points in each transaction. The user is required to view each transaction globally, moreover,

the kinds of applications that can utilize this type of concurrency control mechanism are

limited.

With epsilon-serializability [RP, DP93], each transaction must specify limits on the

amount of imprecision that it can import and export. Similarly, the user speci�es allowable

amounts of imprecision in the technique described in [WA92]. This is somewhat less di�cult

than de�ning transaction compatibilities because the limits de�ned for each transaction are

independent of other transactions. However, in [WA92], it is left up to the user to de�ne the

forward resolution set dilating function and the backward resolution set dilating function

used to determine compatibility among object operations.

The concept of similarity in [KM92] is de�ned by the designer for each data item. Thus

the transactions need not be known up front, only the data to be used. The object-based

techniques, by de�nition, allow the user to view the application from a more modular per-

spective. Rather than de�ning compatibilities among all transactions, the user is required

only to de�ne compatibilities among operations on each object. This allows the user to

focus on the speci�c semantics of the object. In [SS84, WDL93] these compatibilities are

based solely on the user-de�ned correctness criteria and therefore the burden is completely

on the user to de�ne them. In [BR88, BR92, Wei88] the compatibilities are based on either

commutativity or recoverability and are computed dynamically by the concurrency control

mechanism. Very little burden is placed on the user in these techniques.

The related work that we have presented provides a rich foundation upon which to build.

However, there is no one concurrency control technique that supports logical and temporal

consistency of data and transactions as well as the trade-o� among them.

21

Chapter 3

RTSORAC Model

Our semantic locking concurrency control technique is based upon our model of a real-time

object-oriented database called RTSORAC. This model extends object-oriented data models

by incorporating time into objects and transactions. This incorporation of time allows for

explicit speci�cation of data temporal consistency and transaction temporal consistency.

The RTSORAC model is comprised of a database manager, a set of object type, a set

of relationship types and a set of transactions. The database manager performs typical

database management operations, including scheduling of all execution on the processor,

but not necessarily including concurrency control. We assume that the database manager

uses some form of real-time, priority-based, preemptive scheduling of execution on the

processor. Database object types specify the structure of database objects. Relationships

are instances of relationship types; they specify associations among the database objects

and de�ne inter-object constraints within the database. Transactions are executable entities

that access the objects and relationships in the database.

We illustrate our real-time object-oriented database model using a simpli�ed submarine

command and control system. The application involves contact tracking, contact classi�-

cation and response planning tasks that must have fast access to large amounts of sensor

data [BOW93]. This sensor data is considered precise and thus provides a periodic source

of precise data to the database. Since sensor data is only valid for a certain amount of time,

the database system must ensure the temporal consistency of the data so that transactions,

such as those for contact tracking and response planning, get valid data. The data in the

system may be accessed by transactions that have timing constraints, such as those in-

22

UpdateSpeed

UpdateBearing

IncPosition

GetSpeed

GetCountry

...

M

C A

CF

N: SUBMARINE

Speed

Bearing

Position

Size

Signature

Captain

Torpedoes

Country

Speed.value>=0

change(Speed) V
 change(Bearing)
=>change(Position)

| Speed.time -
Bearing.time| < 3

Speed.time >
 Now - 5

Speed.ImpAmt<=1.0

Figure 3.1: Example of Submarine Object Type

volved with tracking other ships in a combat scenario. Transactions in this application may

also allow for certain amounts of imprecision depending on the semantics. For instance,

a transaction that requests position information involving a friendly ship may allow more

imprecision than a transaction tracking ships in a combat scenario. Figure 3.1 illustrates

an example of a Submarine object type in the database schema.

3.1 Object Types

An object type is de�ned by hN;A;M;C;CF i. The component N is the name of the

object type. The component A is a set of attributes, each of which is characterized by

hvalue; time; ImpAmti. Here, value is an abstract data type that represents some char-

acteristic value of the object type. The �eld a:time de�nes the age of attribute a. If an

attribute a allows any amount of imprecision, then it must belong to a metric space (see

ESR Section 2.4). The �eld a:ImpAmt is the same type as a:value. It represents the

amount of imprecision that has been introduced into the value of a. The attributes of the

submarine include Speed, Bearing and Country. While Speed and Bearing may allow a

certain amount of imprecision in their values (they are of the real number metric space),

Country is not a metric space attribute and must therefore remain precise at all times.

An object type's M component is a set of methods that provides the only means for

transactions to access instances of the object type. A method is de�ned by h Arg; Op; Exec;

OC i. Arg is a set of arguments each of which has the same structure as an attribute (value,

23

time, ImpAmt). An input argument is one whose value is used by the method to update

attributes. A return argument is one whose value is computed by the method and returned

to the invoking transaction. We de�ne the sets InputArgs and ReturnArgs to represent

the subsets of Arg that contain the method's input arguments and the method's return

arguments respectively. Op is a sequence of programming language operations, including

reads and writes to attributes, that represents the executable code of the method. Exec is

the worst case execution time of the method. This time could be computed using techniques

described in [PE94]. OC is a set of constraints on the execution of the method including

absolute timing constraints on the method as a whole or on a subset of operations within

the method [PDPW94]. In Figure 3.1 IncPosition is a method of the Submarine object

type which adds the value of its input argument to Position:value.

The C component of an object type is a set of constraints that de�nes correct states

of an instance of the object type. A constraint is de�ned by hPr; ERi. Pr is a predicate

which can include any of the three �elds of attributes: value, time, and imprecision. Notice

that both logical and temporal consistency constraints as well as bounds on imprecision can

be expressed by these predicates. For instance, in Figure 3.1 the predicate Speed:time >

Now� 5 expresses a temporal consistency constraint on the Speed attribute that it should

not be more than �ve seconds old. A logical constraint on Speed is represented by the

predicate Speed:value >= 0. The predicate Speed:ImpAmt � 1:0 de�nes the maximum

amount of imprecision that may be allowed in the value of the Speed attribute. The

component ER of a constraint is an enforcement rule which is a sequence of programming

language statements that is executed when the predicate becomes FALSE (i.e. when the

constraint is violated).

The CF component of an object type is a boolean compatibility function with domain

M �M �SState. The compatibility function uses semantic information about the methods

as well as current system state (SState) to de�ne compatibility between each ordered pair

of methods of the object type. We describe the CF component in detail in Chapter 4.1.

3.2 Transactions

A transaction is de�ned by hMI;L; C;P i. MI is a set of method invocation requests

where each request is represented by hM;Arg; temporali. The M component of a method

24

invocation request is an identi�er for the method being invoked. Arg is the set of arguments

to the method. Recall that a method argument can be a return argument or an input

argument. A return argument r 2 Arg speci�es a limit on the amount of imprecision

allowed in the value returned through r as import limitr. An input argument i 2 Arg

speci�es the value, time and imprecision amount to be passed to the method, as well as

the maximum amount of imprecision that may be exported by the transaction through i,

export limiti. Note, the concurrency control technique we describe in Chapter 4 does not

limit the amount of imprecision that a transaction may export. However, for generality, the

model supports such a limit. The temporal �eld of a method invocation request speci�es

whether a transaction requires that temporally consistent data be returned.

The L component of a transaction is a set of lock requests and releases. Each lock

request is associated with a method invocation request. A transaction may request a lock

prior to the request for the method invocation, perhaps to enforce some transaction logical

consistency requirement. In this case, the lock request is for a future method invocation.

The transaction may also request the lock simultaneously with the method invocation, in

which case the lock is requested for a simultaneous method invocation. This model of a

transaction can achieve various forms of two-phase locking (2PL) [BHG86] by requesting

and releasing locks in speci�c orders. Other more exible transaction locking techniques

that do not follow 2PL can also be expressed.

The component C of a transaction is a set of constraints on the transaction. These

constraints can be expressed on execution, timing, or imprecision [PDPW94]. The priority P

of a transaction is used by the database manager to perform real-time transaction scheduling

(for a survey of real-time transaction scheduling see [YWLS94]). Each method invocation

requested by the transaction is to be executed at the transaction's priority. Because a

transaction is made up of a set of method invocations, our model assumes that a transaction

cannot perform any intermediate computations.

For example, assume that a user of the submarine database wants precise location

information on all submarines in the database. A transaction to perform such a task would

request a lock and a simultaneous invocation of the GetPosition method on each submarine

object in the database, specifying an imprecision import limit of zero for the arguments that

return the locations. The transaction would hold the locks for these methods until all of

the invocations are complete.

25

Iceberg

RelativeLocation
Submarine

RelativeLocation

Submarine

ReadDistanceVector

M

change(DistanceVector)
change(O2.Location)=>
change(O1.Location)VIC:

A:

P,G:
C:

DistanceVector

O1 <--> O2

DistanceVector.length>100

RelativeLocationN:

Figure 3.2: Example of Relative Location Relationship

3.3 Relationships

Relationships represent aggregations of two or more objects. In the RTSORAC model, a

relationship consists of hN;A;M;C;CF; P; ICi. The �rst �ve components of a relationship

are identical to the same components in the de�nition of an object. P is the set of partici-

pating objects in the relationship. Each participant speci�es the type of the participating

object. IC is a set of interobject constraints placed on objects in the participant set, and is

of the form hPartSet; Pred; ERi. Pred, and ER are as in object constraints, and PartSet

is a subset of the relationship's participant set P . The predicate is expressed using objects

from the PartSet, allowing the constraint to be speci�ed over multiple objects participating

in the relationship. Enforcement rules are de�ned as before, however the operations Op can

now include invocations of methods of the objects participating in the relationship.

An example of a relationship that might exist in our submarine application is one called

RelativeLocation that exists between two Submarines (see Figure 3.2). This relation-

ship contains the attribute DistanceVector which indicates the position of the two nautical

objects relative to each other in a standard �xed coordinate frame. It also contains inter-

object constraints on the relative positions of the nautical objects.

26

Chapter 4

The Semantic Locking Technique

This chapter describes our real-time concurrency control technique for database objects

under the RTSORAC model [DW93]. The technique uses semantic locks to determine which

transactions may invoke methods on an object. The granting of semantic locks is controlled

by each individual object which uses its compatibility function to de�ne conditional conict.

4.1 Compatibility Function

The compatibility function (CF) component of an object (Chapter 3.1) is a run-time func-

tion, de�ned on every ordered pair of methods of the object. The function has the form:

CF (mact; mreq) =< BooleanExpression >

where mact represents a method that has an active lock, and mreq represents a method for

which a lock has been requested by a transaction.

The boolean expression may contain predicates involving several characteristics of the

object or of the system in general. The concept of a�ected set that was introduced in

[BR88], is used as a basis for representing the set of attributes of an object that a method

reads/writes. We modify this notion to statically de�ne for each method m a read a�ected

set (RAS(m)) and a write a�ected set (WAS(m)). The compatibility function may refer to

the time �eld of an attribute as well as the current time (Now) and the time at which an

attribute a becomes temporally invalid (deadline(a)) to express a situation in which logical

consistency may be traded-o� to maintain or restore temporal consistency. The current

amount of imprecision of an attribute a (a:ImpAmt) or a method's return argument r

27

(r:ImpAmt) along with the limits on the amount of imprecision allowed on a (data �a

[DP93]) and r (import limitr) can be used to determine compatibility that ensures that

interleavings do not introduce too much imprecision. The values of method arguments

can be used to determine compatibility between a pair of method invocations, similar to

techniques presented in [SS84].

Imprecision Accumulation. In addition to specifying compatibility between two locks

for method invocations, the semantic locking technique requires that the compatibility

function express information about the potential imprecision that could be introduced by

interleaving method invocations. There are three potential sources of imprecision that the

compatibility function must express for invocations of methods m1 and m2:

1. Imprecision in the value of an attribute that is in the write a�ected sets of both m1

and m2.

2. Imprecision in the value of the return arguments of m1, when m1 reads attributes

written by m2.

3. Imprecision in the value of the return arguments of m2, when m2 reads attributes

written by m1.

Compatibility Function Examples. Figure 4.1 uses the submarine example of Chap-

ter 3.1 to demonstrate several ways in which the compatibility function can semantically

express conditional compatibility of method locks. Example A of Figure 4.1 shows how

a compatibility function can express a trade-o� of logical consistency for temporal consis-

tency when a lock is currently active for GetSpeed and a lock on UpdateSpeed is requested.

Under serializability, these locks would not be compatible because GetSpeed's view of the

Speed attribute could be corrupted. However, if the timing constraint on Speed is violated,

it is important to allow UpdateSpeed to restore temporal consistency. Therefore, the two

locks can be held concurrently as long as the value that is written to Speed by UpdateSpeed

(S2:value) is close enough to the current value of Speed (Speed:value). This determination

is based on the imprecision limit of GetSpeed's return argument S1 and the amount of

imprecision that UpdateSpeed will write to Speed through S2 (S2:ImpAmt). Also shown

is the potential accumulation of imprecision that could result from the interleaving. In this

28

Compatibility Imprecision Accumulation

A: CF (GetSpeed(S1); UpdateSpeed(S2)) = Increment S1:ImpAmt by

(Speed:time < (Now� 5)) AND S2:ImpAmt+ jSpeed:value � S2:valuej

(jSpeed:value� S2:valuej < (import limitS1�

(S1:ImpAmt+ S2:ImpAmt)))

B: CF (UpdateSpeed1(S1); UpdateSpeed2(S2)) = Increment Speed:ImpAmt by

(jS1:value � S2:valuej < (data �Speed� jS1:value� S2:valuej

Speed:ImpAmt))

C: CF (IncPosition(A); GetPosition(P)) = Increment P:ImpAmt by jA:valuej

jA:valuej � import limitP � P:ImpAmt

Figure 4.1: Compatibility Function Examples

case, GetSpeed's return argument S1 would have a potential increase in imprecision equal to

the di�erence between the value of Speed before the update takes place (Speed:value) and

the value of Speed after the write takes place (S2:value), plus the amount of imprecision

that is written to Speed by UpdateSpeed (S2:ImpAmt).

Example B in Figure 4.1 illustrates how an attribute can become imprecise. Two invo-

cations of UpdateSpeed may occur concurrently if a sensor writes one value and a human

user also updates the Speed. Two locks on UpdateSpeed may be held concurrently as

long as the di�erence between the values written by the associated invocations does not

exceed the allowed amount of imprecision for the Speed attribute. In this case, the ob-

ject's Speed attribute would have a potential increase in imprecision equal to the value of

jS1:value� S2:valuej if this interleaving were allowed.

Example C of Figure 4.1 represents the compatibility function for a method that is more

complex than the other examples. The method IncPosition reads the Position attribute,

increments it by the value of input argument A and then writes the result back to the

Position attribute. A lock for an invocation of this method may be held concurrently with

a lock for an invocation of GetPosition only if the amount by which IncPosition increments

the Position is within the imprecision bounds of the return argument P of GetPosition. In

29

Semantic Lock Request for mreq Step

granted := TRUE

for every ((mact 2 ActiveLocks) OR LA

((mact in prio queue) AND

(mact:prio > mreq:prio)))

if CF (mact;mreq) then LA1

save mact return arg ImpAmts

Increment imprecision LA2

else

granted := FALSE

endif

end for

if not granted then

Enqueue(mreq) in prio queue LB

else

Add mreq to ActiveLocks LC

endif

endif

Compatibilities

Enqueue
Request

Done

NO YES

Semantic Lock
Request

Add Lock
to

Active Locks Set

LA

LB LC

Figure 4.2: Mechanism for Semantic Lock Request

this case, GetPosition's return argument P would have a potential increase in imprecision

equal to the value of IncPosition's argument A if this interleaving were allowed.

4.2 Semantic Locking Mechanism

The semantic locking mechanism must handle three actions by a transaction: a semantic

lock request, a method invocation request and a semantic lock release. As described in

Chapter 3.2, a semantic lock may be requested for a future method invocation request or

for a simultaneous method invocation request. Future method invocation requests can be

useful if a transaction requires that all locks be granted before any execution occurs, as with

strict two-phase locking. Figures 4.2 and 4.3 show the procedures that the semantic locking

mechanism executes when receiving a semantic lock request and a method invocation request

respectively. A priority queue is maintained to hold requests that are not immediately

granted.

30

Method Invocation Req: mreq Step

InitialImprecision(mreq) A

if any Precondition fails then B

Enqueue(mreq) in prio queue L

else

for every a 2WAS(mreq) C1

save original a:ImpAmt

a:ImpAmt := mreq :WriteImp(a)

end for

for every r 2 ReturnArgs(mreq) C2

save original r:ImpAmt

r:ImpAmt := mreq :ReadImp(r)

end for

if already locked then D

Allow mreq to Execute I

Semantic Lock Update J

Check the queue K

else

Semantic Lock Request E

if lock granted then F

Allow mreq to Execute H

else

for every a 2WAS(mreq) G

restore original a:ImpAmt

for every r 2 ReturnArgs(mreq)

restore original r:ImpAmt

for every saved return arg r

of an active method invocation

restore original r:ImpAmt

endif

endif

Method
Invocation

Preconditions

Already
Locked?

Semantic Lock
Update

Enqueue
Request

Check the
Queue

Done

YESNO

YESNO

Initial
Imprecision

Update
Imprecision

Semantic
Lock

Request

Granted?
YES

Restore
ImpAmts

L

A

B

C

H
K

J

G

F

E

D

Allow
Method

Execution

NO

Allow
Method

Execution

I

Figure 4.3: Mechanism for Method Invocation Request

31

4.2.1 Semantic Lock Request

When an object receives a semantic lock request for method invocation mreq , the semantic

locking mechanism evaluates the compatibility function to ensure that mreq is compatible

with all currently active locks and with all queued lock requests for method invocations that

have higher priority than mreq (Figure 4.2, Step LA1). For each compatibility function test

that succeeds, the mechanism accumulates the imprecision that could be introduced by the

corresponding interleaving (Step LA2).

Recall that the boolean expression in the compatibility function can include tests involv-

ing value, time and imprecision information of the method arguments involved. A semantic

lock request for a future method invocation does not have values for arguments at the time

of the request. Thus, when evaluating the compatibility function for CF (mact; mreq), if

either mact or mreq is a future method invocation, then any clause of the compatibility

function that involves method arguments must evaluate to FALSE.

If all compatibility function tests succeed, the semantic locking mechanism grants the

semantic lock and places it in the active lock set (Step LC). If any test fails, the mechanism

places the request in the priority queue to be retried when another lock is released (Step

LB).

4.2.2 Method Invocation Request

When an object receives a method invocation request, the semantic locking mechanism

evaluates a set of preconditions and either requests a semantic lock for the invocation if

necessary, or updates the existing semantic lock with speci�c argument amounts. After

the preconditions are successfully evaluated and locks are granted or updated, the semantic

locking mechanism allows the method invocation to execute. The mechanism also accu-

mulates the imprecision that could result if the requested method were to execute. In the

following paragraphs we describe the steps in Figure 4.3 of the semantic locking mechanism

for a method invocation request mreq.

Initial Imprecision Calculation. Given method invocation request mreq, the semantic

locking mechanism �rst computes the potential amount of imprecision that mreq will in-

troduce into the attributes that it writes and into its return arguments. This computation

takes into account the imprecision in the attributes read by the methods and in the input

32

arguments as well as any computations that are done by the method on these values (Figure

4.3, Step A). An initial imprecision procedure computes the amount of imprecision thatmreq

will write to each attribute a in the write a�ected set of mreq (mreq:WriteImp(a)). The

procedure also computes the amount of imprecision that mreq will return through each of

its return arguments r (mreq:ReadImp(r)). The procedure computes these values by using

the amount of imprecision already in the attribute or return argument and calculating how

the method may update this imprecision through operations that it performs. This initial

imprecision procedure may be created by the object designer or by a compile-time tool that

examines the structure of mreq to determine how the method will a�ect the imprecision of

attributes in its write a�ected set and of its return arguments.

Preconditions Test. The next phase of the semantic locking mechanism for method in-

vocation request mreq tests preconditions that determine if executing mreq would violate

temporal consistency or imprecision constraints (Step B). The mechanism evaluates the

following preconditions when mreq has been requested:

Preconditions

mreq:temporal =) (8a2RAS(mreq)(Exec(mreq) < deadline(a)�Now)) (a)

8a2WAS(mreq)(mreq:WriteImp(a) � data �a) (b)

8r2ReturnArgs(mreq)(mreq:ReadImp(r) � import limitr) (c)

Precondition (a) ensures that if a transaction requires temporally valid data, then an

invoked method will not execute if any of the data that it reads will become temporally

invalid during its execution time. Precondition (b) ensures that executing the method

invocation will not allow too much initial imprecision to be introduced into attributes that

the method invocation writes. Precondition (c) ensures that the method invocation executes

only if it does not introduce too much initial imprecision into its return arguments.

If any precondition fails, then the semantic locking mechanism places the request on the

priority queue (Step L) to be retried when another lock is released. If the preconditions hold,

the semantic locking mechanism updates the imprecision amounts for every attribute a in

the write a�ected set of mreq with the value mreq:WriteImp(a). Similarly, it updates the

imprecision amounts for every return argument r of mreq with the value mreq:ReadImp(r)

33

(Step C). The mechanism saves the original values for the imprecision amounts of the

attributes and return arguments involved so that they can be restored if the lock is not

granted.

Because the preconditions can block a transaction if the data that it accesses is too

imprecise for its requirements, there must be some way of restoring precision to data so

that transactions are not blocked inde�nitely. Certain transactions that write precise data

are characterized as independent updates [DP93]. Such a transaction, which may come from

a sensor or from user intervention, restores precision to the data that it writes and allows

transactions that are blocked by the imprecision of the data to be executed.

Associated Semantic Lock. The semantic locking mechanism next determines whether

or not mreq is already locked by a semantic lock requested earlier (Step D). If not, a

semantic lock is requested (Step E) as described in Chapter 4.2.1. If the lock is granted, the

semantic locking mechanism allows the method invocation to execute (Step H). Otherwise,

the mechanism restores the original values of any imprecision amounts that were changed

(Step G).

If the semantic lock associated with mreq was granted earlier, the semantic locking

mechanism allows mreq to be executed (Step I). The mechanism then performs a semantic

lock update (Step J). This procedure entails updating the existing semantic lock associated

with mreq with speci�c argument information that was not available when the lock was

granted. Updating existing locks potentially increases concurrency among methods because

with values of arguments, the compatibility function is more likely to evaluate to TRUE.

After the semantic lock is updated, the lock requests waiting on the priority queue are

checked for compatibility with the newly updated lock (Step K).

4.2.3 Releasing Locks.

A semantic lock is released explicitly by the holding transaction. Whenever a semantic

lock is released, it is removed from the active locks set and the priority queue is checked

for any requests that may be granted. Since the newly-released semantic lock may have

been associated with a method invocation that restored logical or temporal consistency to

an attribute, or the lock may have caused some incompatibilities, some of the queued lock

requests may now be granted. Also, method invocation requests that are queued may now

34

pass preconditions if temporal consistency or precision has been restored to the data. The

requests in the queue are re-issued in priority order and if any of these requests is granted,

it is removed from the queue.

35

Chapter 5

Bounding Imprecision

In this chapter we show how our semantic locking technique can bound imprecision in

the objects and transactions of the database. To do this, we prove that the semantic

locking technique, under two general restrictions on the design of each object's compatibility

function, ensures that the epsilon-serializability (ESR) [RP] correctness criteria, de�ned for

object-oriented databases, is met. First we extend the de�nition of ESR to object-oriented

databases. Second, we present the two general restrictions on the compatibility function.

Third, we formally prove the su�ciency of these restrictions for ensuring that our semantic

locking technique maintains object-oriented ESR. Finally, we how the restricted semantic

locking technique bounds imprecision, using the submarine tracking example.

5.1 Object-Oriented ESR

Recall the ESR de�nitions of data and transaction safety from Chapter 2.4:

TR-Safetyt;x �

8><
>:

import imprecisiont;x � import limitt;x

export imprecisiont;x � export limitt;x

Data-Safetyx � data imprecisionx � data �x

These de�nitions of are general; we now de�ne safety more speci�cally for the RTSORAC

real-time object-oriented data model. Although this model allows arbitrary attributes and

return arguments, we assume in the following de�nitions and theorem that each attribute

value is an element of some metric space (de�ned in Chapter 2).

36

Data Safety. Data in the RTSORAC model is represented by objects. Safety for an

object o is de�ned as follows:

Object-Safetyo � 8a2oA(a:ImpAmt � data �a)

where oA is the set of attributes of o. That is, if every attribute in an object meets its

speci�ed imprecision constraints, then the object is safe.

Transaction Safety. Transactions in the RTSORAC model operate on objects through

the methods of the object. Data values are obtained through the return arguments of the

methods and are passed to the objects through the input arguments of methods. Let tMI

be the set of method invocations in a transaction t and let oM be the set of methods in

an object o. We denote the method invocations on o invoked by t as tMI u oM . We de�ne

safety of a transaction (OT) t with respect to an object o as follows:

OT -Safetyt;o �

8><
>:
8m2(tMIuoM)8r2ReturnArgs(m)(r:ImpAmt � import limitr)

8m2(tMIuoM)8i2InputArgs(m)(i:ImpAmt � export limiti)

That is, as long as the arguments of the method invocations on object o invoked by OT

t are within their imprecision limits, then t is safe with respect to o.

We can now de�ne Object Epsilon Serializability (OESR) as:

De�nition 2 OESR is guaranteed if and only if OT -Safetyt;o and Object-Safetyo are

invariant for every object transaction t and every object o.

This de�nition of OESR is a specialization of the general de�nition of ESR.

5.2 Restrictions on The Compatibility Function

The RTSORAC compatibility function allows the object type designer to de�ne compatibil-

ity among object methods based on the semantics of the application. We now present two

restrictions on the conditions of the compatibility function that are su�cient to guarantee

OESR. Intuitively, these restrictions allow read/write and write/write conicts over a�ected

sets of methods as long as speci�ed imprecision limits are not violated.

The imprecision that is managed by these restrictions comes from interleavings allowed

by the compatibility function. Any imprecision that may be introduced by calculations

37

performed by the methods is accumulated by the initial imprecision procedure before the

compatibility function is evaluated (see Chapter 4.2.2).

Let a be an attribute of an object o, and m1 and m2 be two methods of o.

Restrictions

R1: If a 2 WAS(m1)
T

WAS(m2) then the compatibility function for CF (m1; m2) and

CF (m2; m1) may return TRUE only if it includes the conjunctive clause:

jz1� z2j � (data �a � a:ImpAmt), where z1 and z2 are the values written to a by m1

andm2 respectively. Furthermore, the compatibility function's associated imprecision

accumulation must specify the following for a: a:ImpAmt := a:ImpAmt+ jz1 � z2j.

R2: If a 2 RAS(m1)
T

WAS(m2) then for every r 2 ReturnArgs(m1) let z be the value

of r using a's current value, let x be the value written to a by m2 and let w be the

value of r using x. Then:

a) the compatibility function for CF (m2; m1) may return TRUE only if it includes

the conjunctive clause: jz � wj � (import limitr � r:ImpAmt). Furthermore,

the compatibility function's associated imprecision accumulation must specify

the following for r: r:ImpAmt := r:ImpAmt+ jz � wj.

b) the compatibility function for CF (m1; m2) may return TRUE only if it includes

the conjunctive clause: jz � wj � (import limitr � (r:ImpAmt+ x:ImpAmt)).

Furthermore, the compatibility function's associated imprecision accumulation

must specify the following for r: r:ImpAmt := r:ImpAmt+x:ImpAmt+ jz�wj.

Restriction R1 captures the notion that if two method invocations interleave and write

to the same attribute a, the amount of imprecision that may be introduced into a is at most

the distance between the two values that are written (jz1 � z2j). To maintain safety, this

amount cannot be greater than the imprecision limit less the current amount of imprecision

for a (data �a � a:ImpAmt). The accumulation of this imprecision in a:ImpAmt is also

reected in R1.

As an example of restriction R1, recall the compatibility function example of Fig-

ure 4.1B of Chapter 4.1. Notice that the Speed attribute is in the write a�ected set of

the method UpdateSpeed and thus restriction R1 applies to the compatibility function

38

CF (UpdateSpeed1(S1); UpdateSpeed2(S2)). The value written to the Speed attribute by

UpdateSpeed1 is S1 and the value written to Speed by UpdateSpeed2 is S2. Thus, the

compatibility function, CF (UpdateSpeed1(S1); UpdateSpeed2(S2)) may return TRUE only

if jS1 � S2j � (data � � specSpeed � Speed:ImpAmt).

Restriction R2 is based on the fact that if a method invocation that reads an attribute

(m1) is interleaved with a method invocation that writes to the same attribute (m2), the

view that m1 has of the attribute (in return argument r) may be imprecise. In R2a the

amount of imprecision in m1's view of the attribute is at most the distance between the

value of the attribute before m2's write takes place and the value of the attribute after

m2's write takes place (jz�wj). This amount cannot be greater than the imprecision limits

imposed on r less the current amount of imprecision on r (import limitr � r:ImpAmt); it

also must be accumulated in the imprecision amount of r.

Restriction R2b di�ers from R2a in that in R2b m1 is currently active and m2 has been

requested. The initial imprecision procedure for m1 computes the amount of imprecision

that m1 will return through r (m1:ReadImp(r)) before m2 is invoked, and thus r:ImpAmt

does not include the amount of imprecision thatm2 might introduce into a (x:ImpAmt). Be-

cause allowing the interleaving between m1 and m2 could cause any imprecision introduced

into a to be returned by m1 through r, the additional amount of imprecision introduced to

a by m2 (x:ImpAmt) must be taken into account when testing for compatibility between

m1 and m2. It must also be included in the accumulation of imprecision for r.

Figure 4.1A of Chapter 4.1 presents an example of a compatibility function that meets

restriction R2b. Notice that the function will evaluate to TRUE only if the di�erence be-

tween the value of the Speed attribute before the update takes place (Speed:value) and

the value of the attribute after the update takes place (S2:value) is within the allowable

amount of imprecision speci�ed for the return argument of the GetSpeed method. Notice

also that this allowable amount of imprecision must take into account the amount of im-

precision already in the return argument (S1:ImpAmt) and the amount of imprecision in

the argument used to update the Speed attribute (S2:ImpAmt).

Each of the restrictions requires that non-serializable interleavings are allowed only if

certain conditions involving argument amounts evaluate to TRUE. Thus, for CF (m1; m2),

if either m1 or m2 is a future method invocation, then the restrictions require that only

serializable interleavings be allowed. Therefore, no imprecision will be accumulated when

39

one or both method invocations being tested for compatibility is a future method invocation.

We call the concurrency control technique that results from placing Restrictions R1 and

R2 on the compatibility function, the restricted semantic locking technique.

5.3 Correctness

We now show how the restricted semantic locking technique guarantees OESR. First, we

prove a lemma that Object-Safety remains invariant through each step of the semantic

locking mechanism. We then prove a similar lemma for OT-Safety. Both of these lemmas

rely on the design of the restricted semantic locking technique, which contains tests for

safety conditions before each potential accumulation of imprecision.

It is su�cient to demonstrate that safety is maintained for semantic lock requests for

simultaneous method invocations only, since this is the only part of the semantic locking

mechanism that can introduce imprecision into data and transactions. A semantic lock

request for a future method invocation m does not introduce imprecision because the argu-

ment amounts are not known. Thus restrictions R1 and R2 require that no imprecision be

accumulated when interleaving m with any other method invocation. Lock releases also do

not introduce imprecision.

Lemma 1 If the restricted semantic locking technique is used, then Object-Safetyo is in-

variant for every object o.

Proof:

Let o be an object and oA be the set of attributes in o. We assume that o is

initially safe and that the restricted semantic locking technique is used. Con-

sider the steps in the semantic locking mechanism (Figure 4.3) in which the

imprecision amount of a, a:ImpAmt, is updated:

� (Step C) Imprecision is accumulated if the preconditions for a requested

method invocationm hold and a 2 WAS(m). Since the preconditions hold,

Step C1 ensures a:ImpAmt = m:WriteImp(a), and from Precondition (b):

m:WriteImp(a) � data �a. Combining these two relations we have that

a:ImpAmt � data �a, which is the requirement for Object Safety. Thus,

Object Safety remains invariant after Step C.

40

� (Step LA) Imprecision is accumulated in Step LA2 if the compatibility func-

tion evaluation in Step LA1 for method invocationsm1 andm2 evaluates to

TRUE and a 2 WAS(m1)
T
WAS(m2). In this case, the imprecision after

Step LA2 is a:ImpAmtnew = a:ImpAmtold+ jz1� z2j, where z1 and z2 are

the values written to a bym1 and m2 respectively. From Restriction R1 we

have that jz1�z2j � data �a�a:ImpAmtold. This inequality can be rewrit-

ten as a:ImpAmtold+ jz1�z2j � data �a. Combining this relation with the

above relation involving a:ImpAmtnew yields: a:ImpAmtnew � data �a,

which is the requirement for Object Safety. Thus, Object Safety remains

invariant after Step LA. 2

Lemma 2 If the restricted semantic locking technique is used, then OT -Safetyt;o is invari-

ant for every transaction t with respect to every object o.

Proof:

Let o be an object, t be a transaction, m be a method invocation on o invoked

by t, r be a return argument of m, and i be an input argument ofm. We assume

that t is initially safe with respect to o and that the restricted semantic locking

technique is used. We show that r:ImpAmt � import limitr �rst for the case

when a semantic lock for m is requested by t and then for the case when t holds

the semantic lock for m.

Case 1. Transaction t requests a semantic lock for m and a semantic lock is

held for another method invocation m1. Consider the situations in which

r:ImpAmt is updated by the semantic locking mechanism:

� (Step C) Imprecision is accumulated if the preconditions for m hold.

Since the preconditions hold, Step C2 ensures r:ImpAmt=m:ReadImp(r),

and from Precondition (c): m:ReadImp(r)� import limitr. Combin-

ing these two relations we have that r:ImpAmt � import limitr, which

is the requirement for OT Safety. Thus, OT Safety remains invariant

after Step C.

� (Step LA) Imprecision is accumulated in Step LA2 if the compatibility

function evaluation in Step LA1 for CF (m1; m) evaluates to TRUE and

41

RAS(m)
T

WAS(m1) 6= ;. In this case, the imprecision after Step

LA2 is r:ImpAmtnew = r:ImpAmtold+ jz�wj, where z is the value of

r using the current value of a, and w is the value of r using the value

written by m1 to a. From Restriction R2a we have that jz � wj �

import limitr � r:ImpAmtold. This inequality can be rewritten as

r:ImpAmtold+ jz� wj � import limitr. Combining this relation with

the above relation involving r:ImpAmtnew yields: r:ImpAmtnew �

import limitr, which is the requirement for OT Safety. Thus, OT

Safety remains invariant after Step LA. 2

Case 2 Transaction t holds the semantic lock for m and a semantic lock is

requested for m1. In this case, r:ImpAmt can only be updated in Step

LA of the semantic locking mechanism and only when the compatibil-

ity function evaluation in Step LA1 for CF (m;m1) evaluates to TRUE

and RAS(m)
T

WAS(m1) 6= ;. In this case, the imprecision after Step

LA2 is r:ImpAmtnew = r:ImpAmtold + x:ImpAmt + jz � wj, where x

is value written to a by m1, z is the value of r using a's current value

and w is the value of r using x. From Restriction R2b we have that

jz � wj � import limitr � (r:ImpAmtold + x:ImpAmt). This inequality

can be rewritten as r:ImpAmtold + x:ImpAmt+ jz � wj � import limitr.

Combining this relation with the above relation involving r:ImpAmtnew

yields: r:ImpAmtnew � import limitr, which is the requirement for OT

Safety. Thus, OT Safety remains invariant after Step LA. 2

The other OT safety property, i:ImptAmt � export limiti, is trivially met

because the semantic locking technique does not limit the amount of imprecision

that is exported by a transaction to other transactions or to objects. As stated

in [DP93], if transactions execute simple operations, the export limit can be

omitted and the transaction can rely completely on data �-specs for imprecision

control. The simple model of transactions of Chapter 3.2 allows us to de�ne

for all input arguments i, export limiti = 1. Thus, regardless of the value of

i:ImpAmt, OT safety is invariant. 2

Theorem 1 If the restricted semantic locking technique is used, then OESR is guaranteed.

42

Proof: Follows from De�nition 2, Lemma 1, and Lemma 2. 2

Theorem 1 shows that if the restricted semantic locking technique is used, the impreci-

sion that is introduced into the data and transactions is bounded. Because OESR is guar-

anteed across all objects and all transactions, this result shows that the restricted semantic

locking technique maintains a single, global correctness criterion that bounds imprecision

in the database.

5.4 Example

We use an example of a Submarine object, which is an instance of the object type in

Figure 3.1 of Chapter 3 to illustrate how the semantic locking technique maintains the

imprecision limits of a data object and therefore guarantees OESR. The object's method

UpdateSpeed(S) writes the value S to the value �eld of the object's Speed attribute. We

assume that the Speed attribute is initially precise (Speed:ImpAmt = 0), that the only

active lock is for a simultaneous invocation of UpdateSpeed(10:0), and that the object's

priority queue is empty. Let a transaction request a lock for a simultaneous invocation of

UpdateSpeed(10:6), where the value 10:6 has 0:3 units of imprecision in it. As indicated in

Figure 3.1, the imprecision limit on Speed is data �Speed = 1:0.

When the Submarine object receives the request for the UpdateSpeed(10:6) method

invocation it executes the semantic locking mechanism of Figure 4.3. First it computes

the initial imprecision procedure (Step A). Speed is the only attribute in the write af-

fected set of UpdateSpeed and UpdateSpeed has no return arguments, so the initial im-

precision procedure computes UpdateSpeed:WriteImp(Speed). Because the invocation

UpdateSpeed(10:6) writes 10.6 to Speed with 0.3 units of imprecision, the initial impre-

cision procedure computes UpdateSpeed:WriteImp(Speed) = 0:3.

The preconditions for the requested UpdateSpeed(10:6) method invocation are tested

next (Step B). Precondition (a) trivially holds because RAS(UpdateSpeed)=;. Precondi-

tion (b) also holds since UpdateSpeed:WriteImp(Speed) = 0:3 � 1:0. Since UpdateSpeed

has no return arguments, Precondition (c) holds as well.

Step C1 of the semantic locking mechanism then initializes the imprecision amount for

the Speed attribute to the value of UpdateSpeed:WriteImp(Speed), so Speed:ImpAmt =

0:3.

43

Because the semantic lock was requested for a simultaneous method invocation, the con-

dition in Step D is TRUE and a semantic lock request is performed (Step E). In Step LA1,

the object's semantic locking mechanism checks the compatibility of the requested invoca-

tion of UpdateSpeed(10:6) with the currently locked invocation of UpdateSpeed(10). Recall

from Figure 4.1 and the example in Chapter 5.2 that CF (UpdateSpeed1(S1);

UpdateSpeed2(S2))= jS1:value � S2:valuej � data �Speed � Speed:ImpAmt. The test of

the compatibility function uses the imprecision amount for Speed that was stored in Step

C and thus: jS1:value� S2:valuej = j10� 10:6j = 0:6 and data �Speed � Speed:ImpAmt =

1:0� 0:3 = 0:7. Since 0:6 � 0:7, the method invocations are compatible in Step LA1.

Now the object's semantic locking mechanism executes Step LA2 to accumulate im-

precision for the Speed attribute into the imprecision amount for Speed stored in Step C.

Recall from Figure 4.1: CF (UpdateSpeed1(S1); UpdateSpeed2(S2))) Speed:ImpAmt :=

Speed:ImpAmt + jS1:value � S2:valuej. Thus, the mechanism computes a new value for

the imprecision amount for the Speed attribute as: Speed:ImpAmt := 0:3 + 0:6 = 0:9:

Because there are no other active locks to check for compatibility, the compatibility

function evaluates to TRUE. The object's mechanism grants a semantic lock for the invo-

cation of UpdateSpeed(10:6) and adds the lock to the object's active lock set (Step LC).

Finally the semantic locking mechanism executes UpdateSpeed(10:6) (Step H). Note that

the imprecision amount for the Speed attribute is now 0.9. Both UpdateSpeed method

invocations execute concurrently and the imprecision limits are maintained.

Although we have only demonstrated relatively simple method interleavings in this

example (essentially two writes to a single attribute), the use of read a�ected and write

a�ected sets in the semantic locking technique allows it to perform in a similar fashion for

more complicated object methods.

44

Chapter 6

Implementation

We have implemented the RTSORAC model in a prototype system, developed by John

K. Black, that will extend the Open Object Oriented Database System (Open OODB)

[WBT92] to support real-time requirements [WPD+]. The prototype executes on a Sun

Sparc Classic workstation under the Solaris 2.4 operating system. RTSORAC objects are

implemented in main memory using Solaris' shared memory capability. Transactions can

access objects in the shared memory segment as if the objects were in their own address

space. Before accessing an object, a transaction executes the semantic locking mechanism

to provide concurrency control.

6.1 Object Type Implementation

A schema in our prototype is speci�ed by C++ classes for RTSORAC object types. The

current implementation provides attributes having only oating point value �elds. The

compatibility function of an object is implemented as an NxN array where N is the number

of methods in the object. The elements of the array indicate compatibility between the

methods, where the rows represent requested methods and the columns represent currently

active methods. The elements contain either 0 (the methods are never compatible), 1 (the

methods are always compatible), or a pointer to a function that uses available information

to determine compatibility between the methods.

The implementation provides certain \meta members" in the C++ class representing the

object type. These meta members include a wait queue, the compatibility function array,

POSIX mutual exclusion locks (mutexes) and condition variables, and member functions

45

C++
Specification

OPM TPM

RT OODB Library

RequestLock()
ReleaseLock()

Shared Memory

Object Keeper
Information

Object Table

Compile

Execute
Link

Transaction
process 0321

main
thread shared

local

process
address space

main
thread shared

local

process
address space

Transaction
process 6165

Object 0730

Attributes

Meta members

Object 0619

Attributes

Meta members

main
threadshared

local

process
address space

Object Keeper
Process

Real-time POSIX Compliant Operating System

Figure 6.1: Object Management Implementation

to request and release locks on the object (RequestLock and ReleaseLock). These meta

members are provided to assure that only one transaction may execute the semantic locking

mechanism at a time.

6.2 Transaction Implementation

Transactions in the prototype system are C++ programs that include the schema �le of

object type declarations. Each transaction program is compiled into a POSIX process (or

a thread within a process). Each process maps all database objects, which reside in shared

memory, into its own address space. The process uses calls to an object's meta member

RequestLock to lock an object while using it. Once the object is locked, the transaction

calls the object's methods as if the object were in the transaction's own address space. A

transaction process uses calls to the underlying operating system to set its priority and to

set alarms for start times and deadlines.

46

6.3 Shared Memory Management

In the prototype system, an object keeper process creates a shared main memory segment

at system startup. This keeper process may load the shared segment with object instances,

either by restoring previously archived objects, or by instantiating new objects. Transaction

processes use the POSIX shared memory capabilities to map the shared segment into their

own virtual address spaces (see Figure 6.1), thereby gaining direct access to object instances.

Transactions use an overloaded C++ new operator to dynamically place objects in the shared

segment or to locate existing objects by name. To do this, part of the shared segment is

reserved at a well-known o�set for use by the system as an object table. The table associates

each object's name with the object's o�set from the shared segment's base address. The

table also stores object type information. The special new operator automatically manages

the object table and uses it to translate object names to o�sets. From this o�set, the new

operator creates a properly typed pointer to the object in the shared memory segment and

returns this pointer to the transaction. There is also an overloaded delete operator for

removing objects.

6.4 Semantic Locking Mechanism Implementation

The implementation of the semantic locking mechanism is based on the pseudocode of Figure

4.3. The implementation currently allows only simultaneous method invocations, and not

lock requests for future method invocations (see Chapter 4). A transaction requests a

semantic lock for a method invocation by calling the meta member function RequestLock,

specifying the method and the arguments for the requested invocation. The meta member

function acquires the POSIX mutex for access to the object's meta data. When the mutex is

granted, the RequestLock function attempts to acquire a semantic lock for the transaction

(See Figure 4.3). If the lock is granted, the request is placed in the active locks set and

the transaction can immediately continue execution and call the method. If the lock is

not granted, the transaction is placed in the object's wait queue and is suspended. The

suspended transaction will be awakened to retry its lock request when another lock is

released. Whether or not the lock is granted, the transaction releases the mutex at the

end of the RequestLock function. Note that mutexes are used to ensure mutual exclusion

only for each object's meta members during the semantic locking mechanism execution.

47

Transaction access to object attributes is controlled with semantic locks.

A transaction explicitly releases the locks that it holds by calling the ReleaseLock

meta member function on the object. This meta member function removes the method

invocation from the object's active locks set. It then broadcasts on a POSIX condition

variable to awaken all of the suspended transactions in the object's wait queue so they

may retry their locks requests. The use of a real-time scheduler provided by the operating

system assures that the awakened transactions make their lock requests in priority order.

48

Chapter 7

Evaluation

We utilized the prototype system described in Chapter 6 to conduct performance tests

in which we compared two versions of our semantic locking mechanism with other object

based concurrency control techniques (exclusive locking, read/write locking and commuta-

tive locking). Each test involved generating a set of synthetic system con�gurations and a

set of synthetic workloads. On each system con�guration, we executed the corresponding

workload using each of the concurrency control mechanisms. The results of these tests indi-

cate, in general, that our semantic locking technique, in both forms, maintains transaction

temporal consistency better than the other concurrency control techniques. The results also

point out under what semantic conditions our semantic locking technique best maintains

data temporal consistency. In this chapter we �rst describe the construction of our testbed.

We present the performance model and performance parameters and compare them to a

well-known performance model to show the validity of our testing. We go on to explain

why we chose to compare our semantic locking technique with the techniques listed above.

We describe the measurements that we used to compare the di�erent concurrency control

techniques, and briey describe how the testing was performed. Finally, we present the

results of the tests and analyze them.

7.1 Testbed Construction

Figure 7.1 illustrates how a system con�guration and a workload is generated. The range �le

stores the data ranges from which the parameters are randomly generated. The workload

and con�guration generation program reads from the data ranges �le and uses a seed value

49

Data
Ranges

File

Workload
and

Configuration
Generator

System
Configuration

File

Workload
File

Schema
files

Object
Creator

File

Transaction
File

seed value

Object Builder
Program

Transaction
Builder
Program

Figure 7.1: Construction of Testbed Con�guration

to produce a random number within the speci�ed range for each parameter (see Section 7.3

for performance parameters). The workload and con�guration program produces the object

parameters and the transaction parameters in the system con�guration �le and the workload

�le respectively. The object builder program then reads from the system con�guration �le

and produces schema �les that contain the C++ speci�cations of the objects in the system.

The object builder program also produces a �le containing information for storing the

objects in shared memory (object creator �le). The transaction builder program reads

from the workload �le and produces a �le containing C++ code for the transactions of the

workload speci�cation.

Once the system con�guration and the workload are generated, the test is run using

the prototype system described in Chapter 6. Figure 7.2 illustrates how a test is run.

First the shared memory segment is created. Then the object creator program is compiled

including the schema �les. The object creator program runs placing the objects of the system

con�guration into the shared memory segment. When the objects are in shared memory, the

controller program, which is compiled to include the schema �les and transaction code, runs

as the controller process. The controller process maps the shared memory segment into its

own memory space and spawns threads representing the transactions of the workload. The

transaction threads run, accessing objects using the chosen concurrency control mechanism.

The controller process reports the results of the test to a statistics �le. We repeated this

procedure for each test that we performed, changing the seed value to get di�erent random

50

Object
Creator File

Schema
Files

Transaction
Files

Object
Creator
Program

Controller
Program

Controller
Process

Trans threads

stats file

obj1 objn

Shared Memory

include

include

include

. ..

Figure 7.2: Running a Test

con�gurations, and changing the range �le to vary speci�c parameters.

7.2 Performance Model

As a baseline model for our testing, we used the canonical concurrency control simulation

model of [ACL87], with some modi�cations to accommodate the semantics unique to our

model and technique. Figure 7.3 displays the logical queuing model of [ACL87] which is

central to their simulation model for concurrency control algorithm performance. We will

refer to the simulation model of [ACL87] as the Agrawal model for simplicity. The terminals

in Figure 7.3 represent sources of transactions. When a transaction originates at a terminal

and the maximum number of transactions are active, the new transaction enters the ready

queue. When the transaction comes o� the ready queue, it enters the concurrency control

queue (cc queue) and makes its concurrency control requests to the concurrency control

module. If the request is granted, the transaction goes to the object queue to access the

requested objects, cycling through all of the objects in the request. The transaction returns

to the cc queue to make its next request. If a request is denied, the transaction enters the

blocked queue where it waits to reenter its request.

51

...

TERMINALS

delay

ready
queue

update

update
queue

UPDATE
RESTART

COMMIT

ACCESS

BLOCK

cc queue

cc

blocked
queue

think

no
more? think?

no

yes

yes

object

object
queue

Figure 7.3: Agrawal Performance Model

To test our semantic locking technique, we made several modi�cations to the Agrawal

model to handle the required semantics and the real-time aspects of our technique. Here

we describe how our performance model maps to the Agrawal model of Figure 7.3. Our

controller program (see Figure 7.2 represents the terminals of the Agrawal model, starting

transactions at speci�ed start times. Rather than place a maximum number of transac-

tions (multiprogramming level) on our system, we use the range of start times to represent

interarrival time, which is a better measure of system load than multiprogramming level

in real-time databases [AGM88, HSTR89]. Thus, in our model, the ready queue is not

necessary.

A major di�erence between our performance model and the Agrawal performance model

is that ours is modularized so that each object has its own concurrency control queue. In

our model, the mutex that guards the semantic locking mechanism and the meta data of an

object (see Chapter 6) represents the cc queue of Figure 7.3. The priority wait queue in our

technique represents the blocked queue of Figure 7.3 with the additional semantics of real-

time priority. The semantic locking mechanism of our technique represents the concurrency

52

Parameter Meaning

db size Number of objects

tran size Mean size of transactions

max size Size of largest transaction

min size Size of smallest transaction

write prob Probability that transaction writes object

int think time Mean intratransaction think time

restart delay Mean transaction restart delay

num terms Number of terminals

mpl Multiprogramming level

ext think time Mean time between transactions

obj io I/O time for accessing an object

obj cpu CPU time for accessing an object

num cpus Number of CPUs

num disks Number of disks

Table 7.1: Performance Parameters for Agrawal Performance Model

control module of the Agrawal model. It examines one concurrency control request at a

time and when granted, the requested actions are performed immediately on the object.

Thus, our performance model has no object queue or cycle for more requests that are seen

in Figure 7.3. The results of a concurrency control request in our model are simpler than in

the Agrawal model, allowing only the actions BLOCK and ACCESS. Our transactions do

not restart and they update in place. A commit of a transaction is assumed in our model

after all of its locks are released.

7.3 Performance Parameters

The parameters of our performance model are based on the parameters of the Agrawal

model displayed in table 7.2. There are several parameters that do not apply to our system.

For instance, we do not have a parameter to represent the number of disks (num disks) or

the object I/O time (obj io) because our system is a main memory database. The number

of CPUs (num cpus) in our model is one, and the controller program (see Figure 7.2) is the

only source of transactions (num terms). Since our transactions do not restart, we have no

parameter to represent restart delay. On the other hand, our model requires parameters

that do not exist in the Agrawal model because our technique examines object semantics to

determine concurrency control. In this section, as we present our performance parameters,

we point out if and how they map to the Agrawal model performance parameters.

53

Objects

no. attribs 1-5

no. methods 2-5

A

Attributes

value 1.0-10.0

time 0

imp amt 0.0

imp limit 1.0-10.0

avi 1-10

B

Methods

a�ected sets 0-1

exec time 1-3

C

Figure 7.4: System Con�guration Tables

System Con�guration. The system con�gurations that were generated in our testing

consisted of groups of data objects. Each con�guration was made up of ten objects (db size

in Table 7.2), each with randomly generated attributes, methods and constraints. The

compatibility function for each object was generated based upon the concurrency control

protocol used and the semantics of the object (See Section 7.4).

Figure 7.4 illustrates how each of the parameters in the system con�guration was gen-

erated. In general, the ranges of values for the parameters were chosen so that the system

con�gurations were complex enough to produce interesting results, while remaining reason-

able. Chart A shows that for each object, the number of attributes was between 1 and

5, and the number of methods was between 2 and 5. Figure 7.4B shows how the �elds of

each attribute were generated. The value �eld was generated randomly from the range of

numbers shown. The time �eld of the attribute was set at the time the test started. In

the chart, the zero represents the time relative to the time the system con�guration was

built. The amount of imprecision initially in the attribute (at the start of the test) was

zero. Two constraints relating to the attributes were also generated randomly. The impre-

cision limit for the attribute was between 1.0 and 10.0. The avi (absolute validity interval)

was generated from a range of relative times (1 to 10 seconds) and was then added to the

current absolute time when the system con�guration was built. There are no analogous

Agrawal parameters (Table 7.2) to those in Figure 7.4B because the parameters in Figure

7.4B represent speci�c semantics of the data.

Figure 7.4C displays parameters for each method of an object. The a�ected sets (read

a�ected set and write a�ected set) were generated randomly so that for each attribute in

the object, a value of either 0 or 1 was randomly chosen to specify if the attribute was

54

Transactions

no. meth invocs 1-5

start time 4-35

deadline 12-25

exec time computed

slack time computed

priority computed

A

Method

Invocations

object sys con�g

method sys con�g

temporal 0-1

B

Method

Invocation

Arguments

imp limit 1.0-10.0

imp amt 0.0

value 1.0-10.0

time 0

C

Figure 7.5: Workload Tables

in the a�ected set. The a�ected set parameter is analogous to the write prob parameter

of the Agrawal model. Because the methods of our RTSORAC model permit more than

simple reads and writes, write probability was not su�cient for our testing environment.

The execution time for each method was generated as an integer number of KiloWhetstones

[DSW90]. 1 This execution time is analogous to the int think time parameter of Table 7.2.

It can also be considered to be analogous to the obj cpu parameter because each access of

an object in our system is a method invocation.

To facilitate de�nition of object semantics in our testing environment, we made a sim-

plifying assumption regarding the methods of an object:

Assumption 1 For every attribute a in the read a�ected set of a method m, there is a

return argument rm;a that returns the value read by m, and for every attribute a in the

write a�ected set of the method m, there is an input argument im;a that stores a value to be

written by m. We also assumed that the only execution performed by a method was done by

the reads and writes associated with its arguments.

The arguments of a method and their types were determined by the randomly generated

a�ected sets. For example, if an attribute a was in the read a�ected set of a method m,

then m had an return argument r that returned the value of a.

Workload. Generation of a workload for our performance tests involved building trans-

actions. Because the transactions had to access data by invoking speci�c methods, the

1This execution time was later converted to seconds and nanoseconds based on testing on the prototype

implementation.

55

workload had dependencies on the system con�guration used. Therefore, each system con�g-

uration had a corresponding workload con�guration. Each test that we performed involved

20 transactions accessing a single system con�guration. Figure 7.5 displays the parameters

that were used to build transactions for the workload. Chart A in the �gure indicates that

for each transaction the number of method invocations was generated randomly from a

range of 1 to 5. We used this parameter to represent transaction size (tran size, max size

and min size of Table 7.2). For the start time and deadline of each transaction, random

relative times (in seconds) were generated from the ranges indicated in the chart. They

were relative to some initial starting time for the entire test. The start time determined the

ext think time of the Agrawal model, and we added the deadline parameter to account for

real-time semantics. We used the range of start times to represent system load, so we did

not use the mpl parameter of Table 7.2. The execution time of a transaction was calculated

by adding the execution times of each of the methods that the transaction invoked. The

slack time was calculated by subtracting the execution time from the relative deadline. The

priority of the transaction was determined based on a least slack time priority assignment

scheme, which has been shown to be optimal under certain conditions [CSK88].

Figure 7.5B shows the parameters for each method invocation of a transaction. It

is for these parameters that the workload generation required knowledge of the system

con�guration. Because the Agrawal model involved only reads and writes, our method

invocation parameters were not based on any Agrawal parameters. For the generation of

each method invocation, �rst an object was chosen randomly from among all of the objects

in the system con�guration. Then a method was chosen randomly from among all of the

methods of the chosen object. For each argument to the chosen method (See Figure 7.5C),

if it was a return argument, an imprecision limit was generated randomly from a range of

1.0 to 10.0. If the argument was an input argument, a value was generated from a range

of 1.0 to 10.0. The time �eld for the input argument was the time at which the write

actually took place and the initial imprecision amount for the input argument was zero.

The generation of the method invocation also randomly determined (from 0 or 1) whether

or not the transaction required temporally consistent data to be returned by the invocation.

Each transaction in a given workload requested locks using a two-phase locking scheme.

The transaction requested a lock when it was needed (just before invoking the method) and

the transaction held the lock until the end of its execution. Transactions that missed their

56

Exclusive Locking CF (m1; m2) = FALSE

Read/Write Locking CF (m1; m2) = (WAS(m1) = ;)AND(WAS(m2) = ;)

Commutativity Locking CF (m1; m2) = (WAS(m2) \ (WAS(m1) [RAS(m1)) = ;)

AND((RAS(m2) \WAS(m1)) = ;)

m1=requested method, m2=active method

RAS(m)=read a�ected set of m, WAS(m)=write a�ected set of m

Table 7.2: Compatibility Function for Comparison Techniques

deadlines were aborted and not restarted.

7.4 Comparison Techniques

One unique feature of our semantic locking technique is the way in which the technique de-

�nes conict between transactions. Our user-de�ned compatibility function de�nes conict

between methods based on object semantics and system characteristics. To demonstrate the

performance of our technique, we have chosen to focus our testing on how conicts are de-

�ned. That is, we have compared our technique with other concurrency control techniques

that de�ne conict in various ways.

We have implemented each of the object locking techniques by de�ning the compatibility

function accordingly. Table 7.2 shows the compatibility function for each of the techniques

with which we compared our semantic locking technique. Exclusive locking de�nes conict

by mutual exclusion. Only one transaction may access an object at a time. The correspond-

ing compatibility function in Table 7.2 is therefore always false; allowing no methods within

an object to interleave. Read/write locking of objects allows multiple readers of an object,

but only one writer at a time. The compatibility function for read/write locking ensures

that two methods that have common attributes in their write a�ected sets do not interleave.

Commutativity of methods, as de�ned in [BR88], allows methods to interleave only if the

intersections of the a�ected sets of the methods involved are empty. The compatibility

function for commutativity locking in Table 7.2 ensures that if the requested method writes

an attribute, no active method reads or writes the attribute, and if the requested method

reads an attribute, no active method writes the attribute.

In general, the compatibility function for our semantic locking mechanism is de�ned by

the designer of the object, based on the semantics of the speci�c application. To demonstrate

how our technique can express the trade-o� between temporal and logical consistency, we

57

implemented two versions: one in which logical consistency was chosen over temporal,

and the other in which temporal consistency of data was chosen over logical. For ease of

description, we refer to the former as the semantic-logical technique and we refer to the

latter as the semantic-temporal technique.

To implement the semantic-logical technique, we used the semantics of the compatibility

function restrictions of Chapter 5.2 for our generated objects. Thus, logical consistency was

de�ned by the OESR correctness criterion. To implement the semantic-temporal technique,

we used the same semantics as the semantic-logical technique, except that the semantic-

temporal technique allowed concurrency that could violate OESR in order to preserve the

temporal consistency of the data. For example, if in the submarine example of Chapter 3,

a currently active GetSpeed method was reading the temporally invalid Speed attribute,

the semantic-temporal technique would have allowed a requested UpdateSpeed method to

write to the Speed attribute even if it violated the imprecision limits of the transaction that

requested the GetSpeed method.

For the semantic-logical technique, given a currently active method m1 and a requested

method m2, the compatibility function CF (m1; m2) started out as TRUE and the object

builder program of Figure 7.1 iteratively added clauses as follows:

a: 8a2(WAS(m1)\WAS(m2))CF := CF AND jim1;a:value � im2;a:valuej�data �a �

a:ImpAmt

b: 8a2(WAS(m1)\RAS(m2))CF := CF AND ja:value� im1;a:valuej � import limitrm2;a
�

rm2;a:ImpAmt

c: 8a2(RAS(m1)\WAS(m2))CF := CF AND ja:value� im2;a:valuej � import limitrm1;a
�

(rm1;a:ImpAmt+ im2;a:ImpAmt)

Notice that these three cases are directly analogous to the compatibility function re-

strictions of Chapter 5. Recall Assumption 1 which involves the direct relationship between

arguments of a method and the attributes of its object. In case a above, im1;a:value rep-

resents the value written to attribute a by method m1 and im2;a:value represents the value

written to a by m2. The di�erence between these values is the potential imprecision that

will be introduced if methods m1 and m2 interleave. In the read/write conict in cases b

and c, a:value is the value of the attribute a before the write takes place and im;a:value is

the value of a after the write takes place. The di�erence between these values represents

58

the potential imprecision that will be returned through the return argument rm;a if the

methods are allowed to interleave.

For the semantic-temporal technique, the object builder program of Figure 7.1 built the

compatibility function the same as above except in case c. If, in the course of building the

compatibility function, case c arose, then the object builder program added the following

to the compatibility function:

OR((Now� a:time) > a:avi)

Adding this clause allowed the requested method to acquire a semantic lock and update

the temporally inconsistent data even if it violated the logical consistency of the reading

method.

Each of the �ve object locking concurrency control techniques was implemented in our

prototype system described in Chapter 6. For the implementation of exclusive locking,

read/write locking and commutativity locking we used a simpli�ed version of the semantic

locking technique in which all of the steps in the technique that involved testing or accumu-

lation of imprecision (Steps A, C and G of Figure 4.3) were left out because none of these

techniques allows any imprecision. This removed any unnecessary overhead from the com-

parison techniques so that they were better represented. The temporal precondition was left

in the comparison techniques so that any di�erence that was found among the techniques

could be attributed to the way in which conict was de�ned, and not to di�erences in how

locks were acquired.

7.5 Performance Measurements

Traditionally the measure of a concurrency control protocol is the throughput of transac-

tions [ACL87]. However, because our technique was designed for real-time applications, it is

more important to measure temporal consistency than it is to measure throughput. One way

to measure temporal consistency of transactions in a real-time database is through the per-

centage of transactions that miss their deadlines (deadline miss ratio) [HSTR89, AGM88].

To measure the temporal consistency of the data we calculated the percentage of method

requests that returned temporally invalid data to its transaction (temporal inconsistency

ratio) [Son92].

59

Deadline Miss Ratio Temporal Inconsistency Ratio

DL1: Method Invocations TI1: Baseline

Test Suite DL2: Method Execution TI2: Method Execution

DL3: Deadline TI3: Absolute Validity Interval

DL4: Allowable Imprecision TI4: Allowable Imprecision

Table 7.3: Tests Performed

7.6 Testing

For each test that we performed we generated 15 system con�gurations and 15 corresponding

transaction sets. The results of each test were averaged over these 15 trials producing a

95% con�dence level with an error of at most 5% for deadline miss ratio and less than 1%

for temporal inconsistency ratio (unless otherwise speci�ed). We executed a test for each

of the �ve concurrency control protocols that we compared. We also varied the interarrival

time of transactions to illustrate how the techniques perform under varying system loads.

We used the range of start times for a transaction as a measure of interarrival time. That

is, the smaller the range of start times for a set of transactions, the closer the interarrival

time and therefore the heavier the load. Table 7.3 summarizes the tests that we performed.

7.6.1 Deadline Miss Ratio

We performed four test suites to measure deadline miss ratio, each to highlight a particular

parameter of the testing.

Test Suite DL1: Method Invocations. The �rst test was chosen to illustrate how the

length of transactions a�ects concurrency control. We used the number of method invoca-

tions in a transaction to represent transaction length. A short transaction had a randomly

generated number of method invocations from 1 to 3. A medium length transaction had

from 4 to 6 method invocations. A long transaction had from 7 to 9 method invocations.

Test Suite DL2: Method Execution. The length of the methods invoked by a transac-

tion is another way of examining the e�ect of length of transaction. We varied the execution

time of methods so that it was randomly chosen from a range of 1 to 3 KiloWhetstones for

60

short methods, 5 to 8 KiloWhetstones for medium length methods, and 10 to 15 KiloWhet-

stones for long methods.

Test Suite DL3: Deadline. We varied the length of the transactions' deadlines in order

to examine how the concurrency control mechanism reacts to di�erent real-time environ-

ments. The deadlines for transactions were randomly chosen from a range of 8 to 11 seconds

for short deadlines, 12 to 15 seconds for medium deadlines, and 17 to 20 seconds for long

deadlines.

Test Suite DL4: Allowable Imprecision. We wanted to examine how our own seman-

tic locking mechanism works in applications with varying amounts of allowable imprecision.

For this test suite, we did not run the other concurrency control techniques (exclusive,

read/write, and commutativity) because none of them allows any imprecision. We varied

the imprecision limits for attributes and return arguments. The �rst test allowed no im-

precision. Then the limit for \medium" imprecision was randomly chosen from a range of

1.0 to 5.0, and the limit for \high" imprecision was randomly chosen from a range of 6.0 to

10.0.

7.6.2 Temporal Inconsistency Ratio

We measured temporal inconsistency by examining the percentage of all method requests

that read temporally inconsistent data. In order to do this, we had to change the system

so that transactions did not abort when they missed their deadlines, but rather continued

until complete. We found that if transactions were allowed to abort, a concurrency control

mechanism that missed a lot of deadlines appeared to preserve temporal consistency better

than a mechanism that allowed more deadlines to be made. This was because the aborted

transactions stopped at a time when they were most likely to read temporally inconsistent

data.

Without transaction aborts, another problem emerged. In the tests for deadline miss

ratio, deadlock was avoided because transactions had a maximum amount of time to run,

and then they aborted. Without deadlines, there was the possibility that deadlock would

occur and the tests could not be run. In order to alleviate this problem, we used the

method of requesting locks in a speci�ed order. The objects and their methods in the

61

system con�guration were given a total ordering and the transaction builder program of

Figure 7.1 built the transactions so that they requested locks in the speci�ed order.

The total ordering alleviated most of the deadlock situations, but the priority queue in

our system produced another source of possible deadlock. Because our semantic locking

mechanism required that a requested method be compatible with all active methods and

all queued requests of higher priority, it was possible for a transaction T1 to be blocked by

a method request of higher priority transaction T2 that was blocked by an active method

of T1. In order to prevent these situations from stopping our tests, we placed a very long

deadline on all transactions (5 minutes). Those transactions that were not complete after

this long deadline were assumed to have been stuck in deadlock. From these transactions,

we only counted the method requests that successfully returned data.

We performed four test suites (Table 7.3 TI1-TI4) to measure temporal inconsistency

ratio. First we produced the baseline test to compare our semantic-temporal and our

semantic-logical techniques with the other object-based concurrency control techniques.

We then performed three other test suites to examine how our semantic-logical technique

performed under di�erent conditions. We looked at varying method execution time, absolute

validity interval and allowable imprecision. We chose to use our semantic-logical technique

in these tests as opposed to our semantic-temporal technique because we wanted to use a

technique with bounded imprecision.

Test Suite TI1: Baseline Test. In the baseline test we chose execution time, from a

range of 5 to 8 KiloWhetstones, and absolute validity interval, from a range of one to three

seconds. The rest of the parameters were as set out in Figures 7.4 and 7.5. We performed

this test to compare all of the �ve concurrency control techniques in a typical con�guration.

Test Suite TI2: Method Execution. We examined the performance of our semantic-

logical technique with low method execution (1 to 3 KiloWhetstones), medium method

execution (5 to 8 KiloWhetstones), and high method execution (10 to 15 KiloWhetstones).

The purpose of this test was to see if the length of the methods in the system a�ects the

temporal consistency of the data read by transactions in our technique.

Test Suite TI3: Absolute Validity Interval. The absolute validity interval is directly

related to data temporal consistency because it is this interval that de�nes the temporal con-

62

sistency of the data. Thus, we chose to test how our semantic-logical technique performed

with varying values for absolute temporal validity. We �rst examined the performance when

attributes were considered temporally valid for a very short period of time (low avi, 0 to

1 second). The medium absolute validity interval test chose avi from a range of 1 to 3

seconds. For the long absolute validity interval, the avi for attributes was randomly chosen

from a range of 3 to 5 seconds.

Test Suite TI4: Allowable Imprecision. The fourth suite of tests examined how

temporal consistency in our semantic-logical technique was a�ected by varying amounts of

allowable imprecision. The �rst test allowed no imprecision. The second test in the test

suite allowed a medium amount of imprecision, between 1.0 and 5.0. The high imprecision

test allowed imprecision from 6.0 to 10.0.

7.7 Results

The results of our deadline miss ratio performance tests are displayed in Figures 7.6-7.17. In

most cases the two applications of our semantic locking mechanism missed fewer deadlines

than the other concurrency control mechanisms. Figures 7.18-7.21 display the results of the

tests measuring temporal inconsistency ratio.

7.7.1 Deadline Miss Ratio Results

Test Suite DL1: Method Invocations. Taking the 5% error into account, there was

virtually no di�erence among the �ve concurrency control mechanisms with both very short

transactions and very long transactions (See Figures 7.6 and 7.8). There was a large dif-

ference between the overall results for short transactions and the overall results for long

transactions. When transactions were very short, very few deadlines were missed, and

when transactions were long, a very high percentage of deadlines was missed. This overall

result was what we would have expected. One reason that we did not see any signi�cant

di�erence among the concurrency control techniques for short and long transactions was

that the values we chose to represent long transactions and short transactions were extreme.

The test involving medium length transactions (Figure 7.7) showed some more inter-

esting results. The maximum error for this test was 9%, but even taking that error into

63

0%

20%

40%

60%

80%

100%

very low low med high very high

exc

r/w

comm

SLM-l

SLM-t

Low Method Invocations

% Missed
Deadline

Interarrival Rate

Interarrival
Rate

Start Time
Range

very low

low

med

high

very high

4 - 35 sec

4 - 30 sec

4 - 25 sec

4 - 15 sec

4 - 5 sec

Figure 7.6: Low Method Invocations

0%

20%

40%

60%

80%

100%

very low low med high very high

exc

r/w

comm

SLM-l

SLM-t

Medium Method Invocations

% Missed
Deadline

Interarrival Rate

Interarrival
Rate

Start Time
Range

very low

low

med

high

very high

4 - 35 sec

4 - 30 sec

4 - 25 sec

4 - 15 sec

4 - 5 sec

Figure 7.7: Medium Method Invocations

0%

20%

40%

60%

80%

100%

very low low med high very high

exc

r/w

comm

SLM-l

SLM-t

High Method Invocations

% Missed
Deadline

Interarrival Rate

Interarrival
Rate

Start Time
Range

very low

low

med

high

very high

4 - 35 sec

4 - 30 sec

4 - 25 sec

4 - 15 sec

4 - 5 sec

Figure 7.8: High Method Invocations

64

account, we can see that our semantic techniques performed better than the others. And

at high interarrival rates, the semantic-temporal technique missed slightly fewer deadlines

than the semantic-logical technique. This result may be due to the fact that with very high

contention for the processor (high interarrival rates) there were more chances for methods

of di�erent transactions to conict. It was therefore more likely that the read/write conict

that allowed the semantic-temporal technique to violate logical consistency would occur.

Test Suite DL2: Method Execution. Figures 7.9-7.11 display the results of the tests

performed to examine the e�ect of method length. In general, the results indicate that the

longer the methods of a transaction, the more deadlines are missed, and the more alike

the concurrency control techniques that we tested. For long methods (Figure 7.11), all �ve

techniques were essentially the same, missing almost all of the transactions. In this test,

the interarrival rate of transactions had very little e�ect.

The test for medium length methods (Figure 7.10) showed a greater variance of perfor-

mance among the concurrency control mechanisms due to varying interarrival rate. At very

low processor contention (low interarrival rate), the semantic techniques performed better

than the others. As the interarrival rate increased, the di�erence among the techniques

diminished and all �ve techniques had a high miss ratio.

Short methods produced an even greater di�erence among the concurrency control tech-

niques tested. The miss ratio of the two semantic techniques remained very low regardless

of the interarrival rate. The performance of the other techniques was very close to the

performance of the semantic techniques at low interarrival rates. As the interarrival rate

increased, they had higher miss ratios than the semantic techniques.

One possible explanation for these results was that as method execution time of the

methods increases, the possibility of the real-time scheduler �nding a feasible schedule, one

that met all of its deadlines, decreased. Thus, at high method execution (Figure 7.11), there

was very little di�erence among the �ve concurrency control techniques because there were

very few feasible schedules. As the methods became shorter (Figures 7.10 and 7.9), there

was more di�erence among the concurrency control techniques' performance. Recall Figure

1.1) which we used to illustrate how semantic concurrency control techniques can meet

more deadlines because they provide exibility in �nding feasible schedules. The results of

Figures 7.9-7.11 accentuate that point: when there were more feasible schedules (shorter

65

0%

20%

40%

60%

80%

100%

very low low med high very high

exc

r/w

comm

SLM-l

SLM-t

Low Method Execution

% Missed
Deadline

Interarrival Rate

Interarrival
Rate

Start Time
Range

very low

low

med

high

very high

4 - 35 sec

4 - 30 sec

4 - 25 sec

4 - 15 sec

4 - 5 sec

Figure 7.9: Short Methods

0%

20%

40%

60%

80%

100%

very low low med high very high

exc

r/w

comm

SLM-l

SLM-t

Medium Method Execution

% Missed
Deadline

Interarrival Rate

Interarrival
Rate

Start Time
Range

very low

low

med

high

very high

4 - 35 sec

4 - 30 sec

4 - 25 sec

4 - 15 sec

4 - 5 sec

Figure 7.10: Medium Length Methods

0%

20%

40%

60%

80%

100%

very low low med high very high

exc

r/w

comm

SLM-l

SLM-t

High Method Execution

% Missed
Deadline

Interarrival Rate

Interarrival
Rate

Start Time
Range

very low

low

med

high

very high

4 - 35 sec

4 - 30 sec

4 - 25 sec

4 - 15 sec

4 - 5 sec

Figure 7.11: Long Methods

66

methods) our semantic techniques provided more exibility for the scheduler to �nd them.

Test Suite DL3: Deadline. In all three of the deadline tests, the patternn were very

similar. All �ve concurrency control mechanisms performed very much alike (within 10% of

each other) at low interarrival rates. Only at the highest interarrival rate (when transactions

begin within a second of each other) did we see a di�erence.

In the short deadline test (Figure 7.12), all of the concurrency control techniques missed

around 50% of their deadlines at the very high interarrival rate. When deadlines were

medium length (Figure 7.13) there was a much wider di�erence among the concurrency

control techniques at the very high interarrival rate, with exclusive locking just below the

level it was at in the short deadline test and the others spread out between 8% and 20%.

In the test for long deadlines (Figure 7.14), the di�erence among the concurrency control

techniques decreased again at the very high interarrival rate, with the semantic techniques

remaining about the same as in the medium deadline tests and the other techniques perform-

ing closer to the semantic techniques. In all three tests, the semantic techniques performed

almost identically.

Why did the miss ratio remain the same until the highest interarrival rate in all three

tests? One reason was that given enough distance among start times, most transactions had

enough time to meet short deadlines, so of course they also had enough time to meet longer

deadlines. The reason that we did not see a di�erence between the semantic techniques in

this test suite is that length of transaction deadline does not a�ect the temporal consistency

of the data.

Test Suite DL4: Allowable Imprecision. The tests for allowable imprecision were

performed only for the semantic techniques to see if there was a di�erence between them

when varying amounts of imprecision were allowed. When no imprecision was allowed

(Figure 7.15) there was virtually no di�erence between the techniques (when error is taken

into account). Similar results were achieved with high imprecision (Figure 7.17). In this

test, both techniques missed virtually no deadlines. The only di�erence between the two

techniques in these tests can be seen in the test for medium imprecision (Figure 7.16).

At low interarrival rates, the two techniques performed the same. As the interarrival rate

increased, the semantic-temporal technique missed slightly fewer deadlines.

67

0%

20%

40%

60%

80%

100%

very low low med high very high

exc

r/w

comm

SLM-l

SLM-t

Short Deadline

% Missed
Deadline

Interarrival Rate

Interarrival
Rate

Start Time
Range

very low

low

med

high

very high

4 - 35 sec

4 - 30 sec

4 - 25 sec

4 - 15 sec

4 - 5 sec

Figure 7.12: Short Deadlines

0%

20%

40%

60%

80%

100%

very low low med high very high

exc

r/w

comm

SLM-l

SLM-t

Medium Deadline

% Missed
Deadline

Interarrival Rate

Interarrival
Rate

Start Time
Range

very low

low

med

high

very high

4 - 35 sec

4 - 30 sec

4 - 25 sec

4 - 15 sec

4 - 5 sec

Figure 7.13: Medium Deadlines

0%

20%

40%

60%

80%

100%

very low low med high very high

exc

r/w

comm

SLM-l

SLM-t

Long Deadline

% Missed
Deadline

Interarrival Rate

Interarrival
Rate

Start Time
Range

very low

low

med

high

very high

4 - 35 sec

4 - 30 sec

4 - 25 sec

4 - 15 sec

4 - 5 sec

Figure 7.14: Long Deadlines

68

0%

20%

40%

60%

80%

100%

very low low med high very high

SLM-l

SLM-t

No Imprecision

% Missed
Deadline

Interarrival Rate

Interarrival
Rate

Start Time
Range

very low

low

med

high

very high

4 - 35 sec

4 - 30 sec

4 - 25 sec

4 - 15 sec

4 - 5 sec

Figure 7.15: Low Imprecision

0%

20%

40%

60%

80%

100%

very low low med high very high

SLM-l

SLM-t

Medium Imprecision

% Missed
Deadline

Interarrival Rate

Interarrival
Rate

Start Time
Range

very low

low

med

high

very high

4 - 35 sec

4 - 30 sec

4 - 25 sec

4 - 15 sec

4 - 5 sec

Figure 7.16: Medium Imprecision

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

very low low med high very
high

SLM-l

SLM-t

High Imprecision

% Missed
Deadline

Interarrival Rate

Interarrival
Rate

Start Time
Range

very low

low

med

high

very high

4 - 35 sec

4 - 30 sec

4 - 25 sec

4 - 15 sec

4 - 5 sec

Figure 7.17: High Imprecision

69

0%

20%

40%

60%

80%

100%

very low low med high very
high

exc

r/w

comm

SLM-l

SLM-t

Temporal Consistency Baseline

% Temporally
Inconsistent

Interarrival Rate

Interarrival
Rate

Start Time
Range

very low

low

med

high

very high

4 - 35 sec

4 - 30 sec

4 - 25 sec

4 - 15 sec

4 - 5 sec

Figure 7.18: Temporal Consistency Baseline

One reason there is a slight di�erence between the semantic-temporal technique and

the semantic-logical technique in the medium imprecision test (Figure 7.16) is that the

semantic-temporal technique allowed more concurrency. We did not see a di�erence in

the high imprecision test (Figure 7.17) because there was enough imprecision that the

exibility provided by the semantic-temporal technique was not signi�cant. In the test

involving no imprecision (Figure 7.15) we would have expected the results to be similar to

the results of the test with medium imprecision because the semantic-temporal technique

allowed imprecision to be introduced in the case where data temporal consistency was

violated. However, there was no signi�cant di�erence between the techniques.

7.7.2 Temporal Inconsistency Ratio Results

Figures 7.18-7.21 display the results of the temporal inconsistency tests. One general ob-

servation that can be made is that across the board, the temporal inconsistency was not

a�ected by system load (interarrival rate). One explanation for this is that when the system

became heavily loaded, deadlock was more likely to occur. Thus, those transactions that

might have read temporally inconsistent data were caught in deadlock and did not perform

the late reads. Another interesting general result was that in almost all cases, the temporal

inconsistency was low (below 20%). A reason for this was that the temporal precondition

(precondition a of Chapter 4) of the semantic locking mechanism guarded against obvious

temporal inconsistency. It checked to see if an attribute might become temporally incon-

sistent during the execution time of the method. While the precondition did not guarantee

70

that transactions would not read old data, the results of these tests indicated that the it

helped to keep the amount of temporally inconsistent data read low.

Test Suite TI1: Baseline Test. Figure 7.18 displays the results of the baseline tem-

poral inconsistency test. There was no signi�cant di�erence among all of the concurrency

control mechanisms. This result was somewhat surprising in that we expected our semantic

techniques to preserve temporal consistency better than the other object-based techniques.

It may be the case that there are semantic conditions under which our techniques perform

better. We �rst ran this test with the temporal preconditions in each of the techniques,

and found no signi�cant di�erence. We ran the test again with the temporal precondition

removed from all but the semantic techniques to see if we could see a di�erence this way.

The results displayed in Figure 7.18 are from the latter of the two tests.

Test Suite TI2: Method Execution. Figure 7.19 shows the results of the tests we

performed to examine how length of methods a�ected the performance of our semantic-

logical technique. The results are just as we would have expected: as the methods got

longer, the temporal inconsistency ratio increased. In the tests, attributes started out

temporally valid and started aging at the beginning of the test. They became fresh again

when they were written. With longer methods, each access of an attribute was further from

the most recent write. Thus, the attribute was more likely to be old with longer methods.

Test Suite TI3: Absolute Validity Interval. The results of the tests examining the

e�ect of absolute validity interval on temporal inconsistency appear in Figure 7.20. For

medium and high absolute validity intervals, there was virtually no temporal inconsistency.

However, we see substantial temporal inconsistency with low absolute validity interval. The

reason for this big di�erence is that the low absolute validity interval was chosen from a

range of 0 to 1 seconds, and some attributes had an absolute validity interval 0 seconds.

Thus, by the time the transaction read the data, it was already temporally inconsistent.

Test Suite TI4: Allowable Imprecision. Figure 7.21 shows the results of the test

that was performed to illustrate how di�erent amounts of imprecision a�ected temporal

inconsistency. For all three tests, the semantic-logical technique had almost no temporal

inconsistency. This would indicate that temporal inconsistency is not a�ected by imprecision

71

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

very low low med high very
high

low

med

high

Semantic-logical -- Method Execution

% Temporally
Inconsistent

Interarrival Rate

Interarrival
Rate

Start Time
Range

very low

low

med

high

very high

4 - 35 sec

4 - 30 sec

4 - 25 sec

4 - 15 sec

4 - 5 sec

Figure 7.19: Temporal Inconsistency - Method Execution

0%

20%

40%

60%

80%

100%

very low low med high very
high

low

med

high

Semantic-logical -- Absolute Validity Interval

% Temporally
Inconsistent

Interarrival Rate

Interarrival
Rate

Start Time
Range

very low

low

med

high

very high

4 - 35 sec

4 - 30 sec

4 - 25 sec

4 - 15 sec

4 - 5 sec

Figure 7.20: Temporal Inconsistency - Absolute Validity Interval

0%

20%

40%

60%

80%

100%

very low low med high very
high

low

med

high

Semantic-logical -- Allowable Imprecision

% Temporally
Inconsistent

Interarrival Rate

Interarrival
Rate

Start Time
Range

very low

low

med

high

very high

4 - 35 sec

4 - 30 sec

4 - 25 sec

4 - 15 sec

4 - 5 sec

Figure 7.21: Temporal Inconsistency - Allowable Imprecision

72

at all. This result is contrary to the expected result, which is that more imprecision would

allow reads to occur more quickly (due to higher concurrency) and thus there would be

less temporal inconsistency. A possible explanation for this result is that the use of the

temporal precondition takes away any signi�cant di�erence we might have expected in this

test.

7.7.3 Overall Results

Overall, the results of our testing were as we expected. Our semantic techniques generally

met more deadlines than the other object-based techniques. We saw the di�erence best in

cases where methods were short, and transactions had a medium number of method invoca-

tions. The results of the temporal inconsistency tests revealed that while there was no sig-

ni�cant di�erence between our semantic techniques and the other object-based techniques,

our semantic-logical technique performed best under conditions of low method execution

time and attribute absolute validity interval above 1 second.

One relatively surprising result of these tests was that the amount of imprecision had

little e�ect on missed deadline ratio or on temporal inconsistency ratio. This phenomenon

requires further investigation to determine if there are semantic conditions under which

imprecision does have an e�ect on performance. Perhaps a lower absolute validity interval

or a longer method execution time would produce more expected results.

73

Chapter 8

Conclusion

Our goal for this work was to provide a concurrency control technique for a real-time

object-oriented database that supports all four forms of consistency constraints depicted

in Table 1.1 (transaction logical consistency, data logical consistency, transaction temporal

consistency and data temporal consistency) and the trade-o�s that result. The contributions

that we have made towards reaching this goal include the de�nition of the RTSORAC model,

the speci�cation of the semantic locking technique, the de�nition of the OESR correctness

criterion, and the compatibility function restrictions as su�cient conditions for maintaining

OESR. We have also conducted performance tests in order to demonstrate how our technique

meets our stated goal. These contributions have provided a strong foundation for future

work as well. In this chapter we discuss these contributions and compare our work with the

related work that was discussed in Chapter 2. We also discuss certain limitations that our

work may have and point out possible future work that may alleviate these limitations.

8.1 Contributions

Recall that the goal of our work was to support the four consistency constraints: transaction

logical consistency, data logical consistency, transaction temporal consistency, and data

temporal consistency. The contributions enumerated above combine to provide support for

all of these constraints as well as the trade-o� that results.

Transaction Logical Consistency. Our semantic locking technique maintains logical

consistency of transactions based on semantic consistency de�ned by the designer. Our

74

de�nition of an object-oriented version of the epsilon serializability correctness criterion

(OESR) has provided a standard way of de�ning semantic consistency among transactions,

while bounding imprecision. The restrictions that we specify for the de�nition of the com-

patibility function provide guidelines for the designer of the compatibility function so that

OESR is maintained. As we proved in Chapter 5, the semantic locking mechanism, under

the compatibility function restrictions, maintains OESR to bound imprecision.

Data Logical Consistency. The RTSORAC model provides a mechanism for specifying

imprecision amounts and limits for data in objects. The compatibility function restrictions

facilitate the maintenance of data logical consistency speci�ed by the OESR correctness

criterion. These features together help our semantic locking mechanism to maintain data

logical consistency with bounded imprecision.

Transaction Temporal Consistency. Our semantic locking technique supports trans-

action temporal consistency constraints in two ways. First, the wait queue in an object is

priority based. Thus, a lower priority lock request cannot be granted if there is an incompat-

ible request in the queue with higher priority. Second, our technique supports transaction

temporal consistency through the increased concurrency that it provides. Recall from Figure

1.1 that the more logically consistent schedules that a concurrency control technique allows,

the more likely it is that the real-time scheduler will be able to �nd a schedule that is both

logically consistent and temporally consistent. The exibility of our technique, its ability to

relax serializability if necessary, increases the possibility that transaction timing constraints

will be met. However, because our technique provides no guarantee of predictability, it is

best suited for soft real-time applications.

The performance results indicate that under many semantic conditions our technique

meets as many, if not more, transaction deadlines than the other object-based techniques

that we tested.

Data Temporal Consistency. Data temporal consistency constraints can be explicitly

speci�ed in the RTSORAC model. The compatibility function can use these temporal

constraints to specify method interleavings that will help maintain or restore temporal

consistency to the data. The temporal precondition of our semantic locking technique

helps to avoid reading temporally inconsistent data. The results of our performance testing

75

indicate that our semantic locking technique, under various semantic conditions, allows

very little temporal inconsistency (less than 20% of all method requests) to be seen by

transactions.

Trade-O�s. Because we have recognized that the inherent trade-o� between temporal

and logical consistency exists, we have taken several measures in our work to handle it. The

compatibility function of the object can specify conditions under which to sacri�ce logical

consistency to maintain the temporal consistency of the data. In the event that logical

consistency is sacri�ced, we have provided means to ensure that the semantic locking mech-

anism can bound the imprecision that may result: the compatibility function restrictions,

the OESR correctness criterion, and the precondition tests. The results of our deadline

miss ratio performance tests indicate that when there is a signi�cant di�erence between the

two versions of our semantic locking technique, the one that chooses temporal consistency

over logical consistency (the semantic-temporal technique) preserves transaction temporal

consistency better than the version that chooses logical consistency (the semantic-logical

technique). This implies that if the object designer is willing to sacri�ce locigal consistency,

a gain can be made when temporal consistency is chosen in the trade-o�.

8.2 Comparison with Related Work

In Chapter 2 we described various concurrency control techniques and pointed out why

each of them did not meet the goals we set for our work. Above, we showed how our work

meets our goals. Here we indicate further how our work di�ers from the related techniques

described in Chapter 2.

Mutual Exclusion Techniques. While the mutual exclusion techniques described in

Chapter 2 [DoD83, BP91, KS86] maintain consistency of data and transactions, they do not

allow any concurrency among transactions. Our semantic locking technique allows as much

concurrency as is allowed by the user-de�ned compatibility function and the transactions

that access the objects. Thus, our technique can maintain mutual exclusion at a particular

object by specifying no compatibility among methods in the object. And, at the same time,

another object in the same database may allow more concurrency if the application requires

it.

76

Traditional Serializability Techniques. Two-phase locking (2PL) [BHG86] is a con-

currency control technique that speci�es how to acquire locks. It is used along with an

object-based technique that speci�es what to do when conicting locks have been requested.

Traditionally, the object-based technique that is used along with 2PL is read/write lock-

ing [BHG86]. Transactions that use our semantic locking technique can acquire locks in

a two-phase manner (as we did in our performance tests). Our technique provides more

exibility than read/write locking. The test results of Chapter 6 indicate that, in general,

our technique, with 2PL and the semantics of our OESR restrictions, misses fewer deadlines

than 2PL with read/write locking.

Several real-time concurrency control techniques based on 2PL use priority to resolve

lock conicts [AGM88, HL92]. In our semantic locking technique, if a lock request is not

compatible with all currently active request and all requests in the queue with higher priority

it is queued and the corresponding transaction is blocked. We have no mechanism for

aborting the lower priority transaction in a conict.

Our technique di�ers from the optimistic concurrency control techniques that we de-

scribed [KR81, HCL90b, LS93] in one basic way, in that our technique is pessimistic.

[HCL90b] uses traditional read/write locking to de�ne conict, and [LS93] uses timestamp

intervals. It would be an interesting exercise to incorporate our compatibility function in

an optimistic protocol to see how it would compare with our current technique and with

other optimistic techniques.

Semantic Concurrency Control Techniques. The transaction-based semantic concur-

rency control techniques that we described in Chapter 2 [GM83, Lyn83, FO89, ABAK94]

require the designer to de�ne compatibility among all transaction types. Because our tech-

nique is object-based, it is more modular. That is, the designer must de�ne compatibility

among a relatively small set of object methods as opposed to a much larger set of trans-

action types. Also, the compatibility function restrictions described in Chapter 5 provide

the designer with guidelines for de�ning the compatibility function to maintain bounded

imprecision.

Another limitation of the transaction-based techniques that we described is the ad hoc

management of imprecision. While these techniques allow concurrency that relaxes serial-

izability, they do not provide a mechanism for handling the imprecision that may result.

77

Our semantic locking technique provides explicit mechanisms for specifying and bounding

imprecision.

We borrowed the concept of a�ected sets from the work in [BR88, BR92]. Our technique

is more exible in that it can use other characteristics to determine compatibility. Also,

while the techniques in [BR88, BR92, Wei88] require serializability, ours does not. The

commutativity technique used in our performance tests was based on the work in [BR88].

The test results indicate that our technique allows more concurrency and provides more

support for meeting temporal constraints of transactions.

The object-based technique described in [SS84] allows for non-serializable interleavings.

However, it, like the transaction-based techniques, does not provide a mechanism for han-

dling the imprecision that may result. Also, this technique, along with the object-based

techniques in [BR88, BR92, Wei88] do not support temporal consistency constraints, while

ours does.

Bounded Imprecision Techniques. The similarity based correctness criteria described

in [KM92] provide a general way of managing imprecision. However, the similarity based

technique described in [KM93] de�nes similarity based on the di�erence between timestamps

on data. Our technique de�nes imprecision based upon di�erences in attribute values, not

time.

Epsilon serializability [RP, DP93] provides another general correctness criterion for man-

aging imprecision. We found it to be a useful foundation for our object-oriented ESR cri-

terion. Our semantic locking technique di�ers from concurrency control techniques based

upon ESR [WYP92, PHK+93] because ours allows imprecision to be introduced under spe-

cial conditions, such as when temporal consistency has been violated.

Our semantic locking technique is closest to the concurrency control protocol presented

in [WA92]. This protocol uses commutativity with bounded imprecision to de�ne operation

conicts. It is similar to our technique in that the user de�nes the allowed amount of

imprecision for a given operation invocation and the protocol uses a modi�ed commutativity

table, based on user-de�ned resolution set dilating functions, to determine if the operation

can execute concurrently with the active operations. However, the protocol in [WA92]

does not take temporal considerations into account. Furthermore, our restrictions on the

compatibility function, de�ned in Chapter 6, provide the user with a guide for de�ning the

78

compatibility function to maintain correctness. There is no similar guide in [WA92] for

de�ning the resolution set dilating functions used to determine compatibility.

8.3 Limitations and Future Work

The work described in this dissertation provides a strong foundation for concurrency control

for a real-time object-oriented database. However, there are certain limitations to the work

upon which future work can build. These limitations exist in the RTSORAC model's

support for certain advanced features, in the semantic locking technique, in the support for

real-time applications provided by the technique, and in the performance testing.

RTSORACModel. Although the RTSORAC model is an object-oriented model, it does

not currently support inheritance of object types or relationship types. Inheritance provides

a mechanism for building type hierarchies as well as for polymorphism. The addition of

inheritance to the RTSORAC model would require a careful study of how it e�ects all of the

components of an object, including the compatibility function. For instance, if new methods

are added to an object of a subclass, the compatibility function of the superclass could be

inherited and then the designer would be responsible for �lling in the compatibilities for

the new methods with all of the inherited methods and also with each other.

Another feature of the RTSORAC model that requires more investigation is the concept

of nested objects. Currently, the model allows objects to point to other objects. How-

ever, the compatibility function of the outer-most object handles concurrency for the entire

nesting structure. That is, the outer-most compatibility function must be aware of the

semantics of all nested objects to determine compatibility between its methods. A possible

alternative to this is to coordinate the compatibility functions of all objects in the nesting.

For example, the a�ected set of a method could contain not only the attributes of its own

object, but it could also contain the a�ected sets of all methods in nested objects that it

might call.

Semantic Locking Technique. The semantic locking mechanism currently maintains

consistency for individual objects and transactions. It does not include system enforcement

of inter-object concurrency control. Extending semantic locking to provide such enforcement

is an area for future investigation. A possible approach could use RTSORAC relationships to

79

propagate locks from object to object when necessary. For instance, suppose an inter-object

constraint C is de�ned using the method m of an object O participating in a relationship

R. The corresponding enforcement rule may invoke m and therefore some measure must

be taken to protect the consistency of the object O. To automatically support the inter-

object constraint C, the semantic locking technique could propagate a semantic lock request

through relationship R to ensure that the enforcement rule that maintains the inter-object

constraint can execute while maintaining the consistency of object O.

Concurrency control and recovery have often been studied together in databases. This

is because if a transaction aborts, it is important that its results do not have unwanted

e�ects on other transactions and on the data. The work described in this dissertation does

not address recovery. However, we have a strong suspicion that with the use of our OESR

correctness criterion, recovery will not be necessary. That is, intuitively, as long as the

amount of imprecision that would occur due to an aborted transaction does not exceed

speci�ed limits, no recovery action is necessary if the transaction aborts.

Real-Time Support. Although our semantic locking technique provides support for both

transaction and data temporal consistency, there are ways in which its support for real-time

applications can be improved. The technique currently requires that a semantic lock request

that is not granted be blocked, regardless of its priority. Certain real-time concurrency

control techniques [AGM88, HL92] use transaction priority to determine whether to block

a requesting transaction or to abort a conicting locked transaction. We could extend our

semantic locking technique to perform similarly.

Another way in which we could further demonstrate support for real-time applications

is to include other real-time concurrency control techniques in our performance comparison.

The tests that were described in Chapter 7 involved a comparison with more traditional

techniques. We did this because we found no current real-time techniques that were object-

based. However, if we modify our technique to take priority into account when determining

how to handle conict, as described above, we could then perform a better comparison with

real-time techniques such as [AGM88] and [HL92].

Performance Tests. The tests that we performed have provided us with valuable insight

into how our semantic locking technique compares with other object-based techniques, as

80

well as how it performs under varying semantic conditions. The tests were also enlighten-

ing in various ways towards further studies that should be performed. The fact that the

amount of allowable imprecision had no signi�cant e�ect on either transaction temporal

consistency or on data temporal consistency prompts further investigation. Perhaps the

baseline semantics can be modi�ed to �nd semantic conditions under which varying levels

of imprecision will a�ect temporal consistency. Further testing for data temporal consis-

tency may reveal situations in which our semantic locking technique performs better than

the other object-based techniques. If not, such tests may at least reveal reasons for the

results that we have found thus far.

The deadlock condition that occurred when we removed the transaction deadlines to

test for data temporal consistency also requires more examination. Although the deadlock

only occurred under the no deadline situation, it will be interesting to investigate how to

handle deadlock that occurs because of priority. Perhaps some form of priority inheritance

could avoid such a situation.

The concurrency control requirements of a real-time database are beyond those of a tra-

ditional database and have not been fully met by any current techniques that we have found.

We believe that our contributions: the development of the RTSORAC model, the design of

the semantic locking technique, the speci�cation of the OESR correctness criterion, and the

de�nition of the compatibility function restrictions provide support for the requirements of

real-time databases and add to the general understanding of database concurrency control.

81

List of References

[ABAK94] D. Agrawal, J.L. Bruno, A. El Abbadi, and V. Krishnaswamy. Relative serializability:
An approach for relaxing the atomicity of transactions. In Proceedings of the 13th

Principles of Database Systems, pages 139{149, 1994.

[ACL87] Rakesh Agrawal, Michael J. Carey, and Miron Livny. Concurrency control performance
modeling: Alternatives and implications. ACM Transactions on Database Systems,

12(4):609{654, December 1987.

[AGM88] Robert Abbott and Hector Garcia-Molina. Scheduling real-time transactions: A perfor-
mance evaluation. In 14th VLDB Conference, August 1988.

[BHG86] Phillip A. Bernstein, Vassos Hadzilacos, and Nathan Goodman. Concurrency Control

and Recovery in Database Systems. Addison Wesley, New York, 1986.

[BOW93] Gregory A. Bussier, James Oblinger, and Victor Fay Wolfe. Real-time considerations in
submarine target motion analysis. In Proceedings of First IEEE Workshop on Real-Time

Applications, May 1993.

[BP91] Ted Baker and O�er Pazy. Real-time features for Ada 9x. In Proceedings of IEEE

Real-Time Systems Symposium, December 1991.

[BR88] B.R. Badrinath and Krithi Ramamritham. Synchronizing transactions on objects. IEEE
Transactions on Computers, 37(5):541{547, May 1988.

[BR92] B.R. Badrinath and Krithi Ramamritham. Semantics-based concurrency control: Be-
yond commutativity. ACM Transaction on Database Systems, 17(1):163{199, March
1992.

[CGM85] Ricardo Cordon and Hector Garcia-Molina. The performance of a concurrency control
mechanism that exploits semantic knowledge. In IEEE 5th International Conference on

Distributed Computing Systems, May 1985.

[CSK88] S. Cheng, J. Stankovic, and K.Ramamritham. Scheduling algorithms for hard real-time

systems - a brief survey. In IEEE Real-Time Systems Symposium, pages 150{173, 1988.

[Dat86] C. J. Date. An Introduction to Database Systems - Volume I. Addison-Wesley Publishing
Company, Reading, MA, 1986.

[Dei84] Harvey M. Deitel. An Introduction to Operating Systems. Addison-Wesley Publishing

Company, Reading, MA, 1984.

[DoD83] U.S. Department of Defense. Ada Programming Language, 1983. ANSI/MIL-STD-
1815A-1983.

[DP93] Pamela Drew and Calton Pu. Asynchronous consistency restoration under epsilon se-

rializability. Technical Report OGI-CSE-93-004, Department of Computer Science and
Engineering, Oregon Graduate Institute, 1993.

82

[DSW90] Patrick Donohoe, Ruth Shapiro, and Nelson Weiderman. Hartstone Benchmark User's

Guide, Version 1.0. Carnegie Mellon University, Software Engineering Institute, March
1990.

[DW93] Lisa B. Cingiser DiPippo and Victor Fay Wolfe. Object-based semantic real-time con-

currency control. In Proceedings of IEEE Real-Time Systems Symposium, December
1993.

[FO89] Abdel Aziz Farrag and M. Tamer Ozsu. Using semantic knowledge of transactions to in-
crease concurrency. ACM Transactions on Database Systems, 14(4):503{525, December

1989.

[GM83] Hector Garcia-Molina. Using semantic knowledge for transaction processing in a dis-
tributed database system. ACM Transactions on Database Systems, 8(2):186{213, June

1983.

[HCL90a] Jayant R. Haritsa, Michael J. Carey, and Miron Livny. Dynamic real-time optimistic
concurrency control. In Proceedings of IEEE Real-Time Systems Symposium, December
1990.

[HCL90b] Jayant R. Haritsa, Michael J. Carey, and Miron Livny. On being optimistic about
real-time constraints. In ACM PODS Symposium, April 1990.

[HL92] S.L. Hung and K.Y. Lam. Locking protocols for concurrency control in real-time
database systems. SIGMOD Record, 21(4):22{27, December 1992.

[HSTR89] Jiandong Huang, John Stankovic, D. Towsley, and Krithi Ramamritham. Experimen-
tal evaluation of real-time transaction processing. In Proceedings of IEEE Real-Time

Systems Symposium, December 1989.

[KM92] Tei-Wei Kuo and Aloysius K. Mok. Application semantics and concurrency control

of real-time data-intensive applications. In Proceedings of IEEE Real-Time Systems

Symposium, December 1992.

[KM93] Tei-Wei Kuo and Aloysius K. Mok. SSP: A semantics-based protocol for real-time data

access. In Proceedings of IEEE Real-Time Systems Symposium, December 1993.

[KR81] H.T. Kung and J.T. Robinson. On optimistic methods for concurrency control. ACM
Transactions on Database Systems, Jume 1981.

[KS86] Eugene Klingerman and Alexander Stoyenko. Real-time Euclid: A language for reli-

able real-time systems. IEEE Transactions on Software Engineering, SE-12(9):941{949,
September 1986.

[LLS+91] J. Liu, K. Lin, W. Shih, A. Yu, J. Chung, and W. Zhao. Algorithms for scheduling
imprecise computation. IEEE Computer, 24(5), May 1991.

[LS90] Yi Lin and Sang Son. Concurrency control in real-time databases by dynamic adjustment
of serialization order. In Proceedings of IEEE Real-Time Systems Symposium, December
1990.

[LS93] Juhnyoung Lee and Sang H. Son. Using dynamic adjustment of serialization order for

real-time database systems. In Proceedings of IEEE Real-Time Systems Symposium,
December 1993.

[Lyn83] Nancy A. Lynch. Multilevel concurrency { a new correctness criterion for database

concurrency control. ACM Transactions on Database Systems, 8(4):484{502, December
1983.

83

[PDPW94] J.J. Prichard, Lisa Cingiser DiPippo, Joan Peckham, and Victor Fay Wolfe. RTSORAC:
A real-time object-oriented database model. In The 5th International Conference on

Database and Expert Systems Applications, Sept. 1994.

[PE94] W. Pugh and T. Marlow (Editors). Proceedings of the ACM SIGPLAN workshop on lan-

guage, compiler and tool support for real-time systems. June 1994. held in conjunction
with ACM SIGPLAN PLDI Conference.

[PHK+93] Calton Pu, Wenwey Hseush, Gail E. Kaiser, Kun-LungWu, and Philip S. Yu. Distributed

divergence control for epsilon serializability. In Proceedings of 13th International Dis-

tributed Computing Conference, June 1993.

[Raj89] R. Rajkumar. Task Synchronization in Real-Time systems. PhD thesis, Carnegie Mellon

University, 1989.

[Ram93] Krithi Ramamritham. Real-time databases. International Journal of Distributed and

Parallel Databases, 1(2), 1993.

[RP] Krithi Ramamrithamand Calton Pu. A formal characterization of epsilon serializability.

To appear in IEEE Transactions on Knowledge and Data Engineering. Also available
as technical report No. CUCS-044-91 at Department of Computer Science, Columbia
University.

[Son92] Xiaohui Song. Data Temporal Consistency in Hard Real-Time Systems. PhD thesis,
University of Illinois at Urbana-Champaign, 1992. Technical Report UIUCDCS-R-92-
1753.

[SRSC91] Lui Sha, R. Rajkumar, Sang Son, and C. Chang. A real-time locking protocol. IEEE

Transactions on Computers, 40(7):793{800, July 1991.

[SS84] Peter M. Schwartz and Alfred Z. Spector. Synchronizing shared abstract types. ACM

Transactions on Computer Systems, 2(3):223{250, 1984.

[WA92] M.H. Wong and D. Agrawal. Tolerating bounded inconsistency for increasing concur-
rency in database systems. In Proceedings of the 11th Principles of Database Systems,
pages 236{245, 1992.

[WBT92] David L. Wells, Jos�e A. Blakely, and Craig W. Thompson. Architechture of an open
object-oriented database management system. IEEE Computer, 25(10):74{82, October
1992.

[WDL93] Victor Wolfe, Susan Davidson, and Insup Lee. RTC: Language support for real-time
concurrency. Real-Time Systems, 5(1):63{87, March 1993.

[Wei88] WilliamWeihl. Commutativity-based concurrency control for abstract data types. IEEE
Transactions on Computers, 37(12):1488{1505, December 1988.

[WPD+] V.F. Wolfe, J.J. Prichard, L.C. DiPippo, J. Black, J. Peckham, and P.J. Fortier. The RT-
SORAC real-time object-oriented database model and prototype. Information Systems.
submitted.

[WYP92] Kun-Lung Wu, Philip S. Yu, and Calton Pu. Divergence control for epsilon-
serializability. In Proceedings of International Conference on Data Engineering, 1992.

[YWLS94] Philip S. Yu, Kun-Lung Wu, Kwei-Jay Lin, and Sang H. Son. On real-time databases:

Concurrency control and scheduling. Proceedings of the IEEE, 82(1):140{157, January
1994.

[ZM90] Stanley Zdonik and David Maier. Readings in Object Oriented Database Systems. Mor-
gan Kau�man, San Mateo, CA, 1990.

84

Bibliography

Abbott, Robert, and Hector Garcia-Molina. Scheduling real-time transactions: A performance
evaluation. In 14th VLDB Conference, August 1988.

Agrawal, D., J.L. Bruno, A. El Abbadi, and V. Krishnaswamy. Relative serializability: An approach

for relaxing the atomicity of transactions. In Proceedings of the 13th Principles of Database Systems,
pages 139{149, 1994.

Agrawal, Rakesh, Michael J. Carey, and Miron Livny. Concurrency control performance modeling:
Alternatives and implications. ACM Transactions on Database Systems, 12(4):609{654, December

1987.

Badrinath, B.R., and Krithi Ramamritham. Synchronizing transactions on objects. IEEE Transac-

tions on Computers, 37(5):541{547, May 1988.

Badrinath, B.R., and Krithi Ramamritham. Semantics-based concurrency control: Beyond commu-
tativity. ACM Transaction on Database Systems, 17(1):163{199, March 1992.

Baker, Ted, and O�er Pazy. Real-time features for Ada 9x. In Proceedings of IEEE Real-Time

Systems Symposium, December 1991.

Bernstein, Phillip A., Vassos Hadzilacos, and Nathan Goodman. Concurrency Control and Recovery

in Database Systems. Addison Wesley, New York, 1986.

Bussier, Gregory A., James Oblinger, and Victor Fay Wolfe. Real-time considerations in submarine
target motion analysis. In Proceedings of First IEEE Workshop on Real-Time Applications, May
1993.

Cheng, S., J. Stankovic, and K.Ramamritham. Scheduling algorithms for hard real-time systems -

a brief survey. In IEEE Real-Time Systems Symposium, pages 150{173, 1988.

Cordon, Richardo, and Hector Garcia-Molina. The performance of a concurrency control mechanism
that exploits semantic knowledge. In IEEE 5th International Conference on Distributed Computing

Systems, May 1985.

Date, C. J. An Introduction to Database Systems - Volume I. Addison-Wesley Publishing Company,

Reading, MA, 1986.

Deitel,Harvey M. An Introduction to Operating Systems. Addison-Wesley Publishing Company,
Reading, MA, 1984.

DiPippo, Lisa B. Cingiser, and Victor Fay Wolfe. Object-based semantic real-time concurrency
control. In Proceedings of IEEE Real-Time Systems Symposium, December 1993.

Donohoe,Patrick, Ruth Shapiro, and Nelson Weiderman. Hartstone Benchmark User's Guide, Ver-
sion 1.0. Carnegie Mellon University, Software Engineering Institute, March 1990.

Drew, Pamela, and Calton Pu. Asynchronous consistency restoration under epsilon serializabil-

ity. Technical Report OGI-CSE-93-004, Department of Computer Science and Engineering, Oregon
Graduate Institute, 1993.

85

Farrag, Abdel Aziz, and M. Tamer Ozsu. Using semantic knowledge of transactions to increase
concurrency. ACM Transactions on Database Systems, 14(4):503{525, December 1989.

Garcia-Molina, Hector. Using semantic knowledge for transaction processing in a distributed
database system. ACM Transactions on Database Systems, 8(2):186{213, June 1983.

Haritsa, Jayant R., Michael J. Carey, and Miron Livny. On being optimistic about real-time con-
straints. In ACM PODS Symposium, April 1990.

Haritsa, Jayant R., Michael J. Carey, and Miron Livny. Dynamic real-time optimistic concurrency

control. In Proceedings of IEEE Real-Time Systems Symposium, December 1990.

Huang, Jiandong, John Stankovic, D. Towsley, and Krithi Ramamritham.Experimental evaluation of
real-time transaction processing. In Proceedings of IEEE Real-Time Systems Symposium, December
1989.

Hung, S.L., and K.Y. Lam. Locking protocols for concurrency control in real-time database systems.

SIGMOD Record, 21(4):22{27, December 1992.

Klingerman, Eugene, and Alexander Stoyenko. Real-time Euclid: A language for reliable real-time
systems. IEEE Transactions on Software Engineering, SE-12(9):941{949, September 1986.

Kung, H.T., and J.T. Robinson. On optimistic methods for concurrency control. ACM Transactions

on Database Systems, Jume 1981.

Kuo, Tei-Wei, and Aloysius K. Mok. Application semantics and concurrency control of real-time
data-intensive applications. In Proceedings of IEEE Real-Time Systems Symposium, December 1992.

Kuo, Tei-Wei, and Aloysius K. Mok. SSP: A semantics-based protocol for real-time data access. In

Proceedings of IEEE Real-Time Systems Symposium, December 1993.

Lee, Juhnyoung, and Sang H. Son. Using dynamic adjustment of serialization order for real-time
database systems. In Proceedings of IEEE Real-Time Systems Symposium, December 1993.

Lin, Yi, and Sang Son. Concurrency control in real-time databases by dynamic adjustment of
serialization order. In Proceedings of IEEE Real-Time Systems Symposium, December 1990.

Liu, J., K. Lin, W. Shih, A. Yu, J. Chung, and W. Zhao. Algorithms for scheduling imprecise

computation. IEEE Computer, 24(5), May 1991.

Lynch, Nancy A. Multilevel concurrency { a new correctness criterion for database concurrency
control. ACM Transactions on Database Systems, 8(4):484{502, December 1983.

Prichard, J.J., Lisa Cingiser DiPippo, Joan Peckham, and Victor Fay Wolfe. RTSORAC: A real-
time object-oriented database model. In The 5th International Conference on Database and Expert

Systems Applications, Sept. 1994.

Pu, Calton, Wenwey Hseush, Gail E. Kaiser, Kun-Lung Wu, and Philip S. Yu. Distributed diver-

gence control for epsilon serializability. In Proceedings of 13th International Distributed Computing

Conference, June 1993.

Pugh, W., and T. Marlow (Editors). Proceedings of the ACM SIGPLAN workshop on language,
compiler and tool support for real-time systems. June 1994. held in conjunction with ACM SIGPLAN

PLDI Conference.

Rajkumar, R. Task Synchronization in Real-Time systems. PhD thesis, Carnegie Mellon University,
1989.

Ramamritham, Krithi. Real-time databases. International Journal of Distributed and Parallel

Databases, 1(2), 1993.

Ramamritham, Krithi, and Calton Pu. A formal characterization of epsilon serializability. To appear

in IEEE Transactions on Knowledge and Data Engineering. Also available as technical report No.
CUCS-044-91 at Department of Computer Science, Columbia University.

86

Schwartz, Peter M., and Alfred Z. Spector. Synchronizing shared abstract types. ACM Transactions

on Computer Systems, 2(3):223{250, 1984.

Sha, Lui, R. Rajkumar, Sang Son, and C. Chang. A real-time locking protocol. IEEE Transactions

on Computers, 40(7):793{800, July 1991.

Song, Xiaohui. Data Temporal Consistency in Hard Real-Time Systems. PhD thesis, University of
Illinois at Urbana-Champaign, 1992. Technical Report UIUCDCS-R-92-1753.

U.S. Department of Defense. Ada Programming Language, 1983. ANSI/MIL-STD-1815A-1983.

Weihl, William. Commutativity-based concurrency control for abstract data types. IEEE Transac-

tions on Computers, 37(12):1488{1505, December 1988.

Wells, David L., Jos�e A. Blakely, and Craig W. Thompson. Architechture of an open object-oriented
database management system. IEEE Computer, 25(10):74{82, October 1992.

Wolfe, V.F., J.J. Prichard, L.C. DiPippo, J. Black, J. Peckham, and P.J. Fortier. The RTSORAC
real-time object-oriented database model and prototype. Information Systems. submitted.

Wolfe, Victor, Susan Davidson, and Insup Lee. RTC: Language support for real-time concurrency.

Real-Time Systems, 5(1):63{87, March 1993.

Wong, M.H., and D. Agrawal. Tolerating bounded inconsistency for increasing concurrency in
database systems. In Proceedings of the 11th Principles of Database Systems, pages 236{245, 1992.

Wu, Kun-Lung, Philip S. Yu, and Calton Pu. Divergence control for epsilon-serializability. In
Proceedings of International Conference on Data Engineering, 1992.

Yu, Philip S., Kun-Lung Wu, Kwei-Jay Lin, and Sang H. Son. On real-time databases: Concurrency
control and scheduling. Proceedings of the IEEE, 82(1):140{157, January 1994.

Zdonik, Stanley, and David Maier. Readings in Object Oriented Database Systems. Morgan Kau�-

man, San Mateo, CA, 1990.

87

