
Object Calibration for

Augmented Reality

Ross T. Whitaker
Chris Crampton
David E. Breen
M ihran Tuceryan
Eric Rose ECRC-95-04



Technical report ECRC-95-04

(To be published in Eurographics ’95 Proceedings, Maastricht, NL, August 1995)

Object Calibration for Augmented Reality

Ross T. Whitaker
Chris Crampton
David E. Breen
Mihran Tuceryan
Eric Rose

European Computer-Industry

Research Centre GmbH

(Forschungszentrum)

Arabellastrasse 17

D-81925 Munich

Germany

Tel. +49 89 9 26 99-0

Fax. +49 89 9 26 99-170

Tlx. 52 69 10

I



cEuropean Computer-Industry Research Centre, 1995

Although every effort has been taken to ensure the accuracy of this report,

neither the authors nor the European Computer-Industry Research Centre

GmbH make any warranty, express or implied, or assume any legal liability for

either the contents or use to which the contents may be put, including any

derived works. Permission to copy this report in whole or in part is freely

given for non-profit educational and research purposes on condition that such

copies include the following:

1. a statement that the contents are the intellectual property of the

European Computer-Industry Research Centre GmbH

2. this notice

3. an acknowledgement of the authors and individual contributors to

this work

Copying, reproducing or republishing this report by any means, whether

electronic or mechanical, for any other purposes requires the express written

permission of the European Computer-Industry Research Centre GmbH. Any

registered trademarks used in this work are the property of their respective

owners.

For more

information

please

contact : Ross T. Whitaker

ross@ecrc.de

II



Abstract

Augmented reality involves the use of models and their associated renderings

to supplement information in a real scene. In order for this information to be

relevant or meaningful, the models must be positioned and displayed in such a

way that they align with their corresponding real objects. For practical reasons

this alignment cannot be known a priori, and cannot be hard-wired into a

system. Instead a simple, reliable alignment or calibration process is performed

so that computer models can be accurately registered with their real-life

counterparts. We describe the design and implementation of such a process

and we show how it can be used to create convincing interactions between

real and virtual objects.

III



1 Introduction

Augmented reality (AR) is a technology in which a user’s view (or vision) of

the real world is enhanced or augmented with additional information generated

from a computer model. In contrast to virtual reality, augmented reality brings

the computer into the “world” of the user rather than immersing the user in the

world of the computer.

Augmented reality is dynamic; as the “view” of the user or camera changes, the

computer-generated image does likewise. This computer-generated image is

not simply a graphical overlay but is a representation of data that is closely tied

to the real-life scene and rendered in such a way that the relationship between

the real and virtual entities is made apparent. Indeed, an important goal of AR

is that the real-world objects and virtual entities should blend together in a

manner that appears natural to the user. In many AR applications, this

representation takes the form of a photo-realistic rendering of virtual entities,

modeled using attribute values that correspond to the “reality” of the user. The

success of this illusion depends on a number of factors including:

 the quality of the computer graphics,

 the modeling of the geometry and the optics of the video camera (or

see-through display),

 the modeling of the scene’s lighting and other environmental attributes,

and

 the modeling of the geometry of the real-life scene, including the

alignment or registration of that geometry with the scene it represents.

We consider the latter of these factors to be crucial to the success of an AR

system, especially if we want to incorporate interaction between the real and

virtual objects. Such interactions add greatly to the realism of the users’

experience and are a focus of on-going research [6].

An augmented reality system can be complex, consisting of a variety of

computer graphics, computer vision, and video components. The locations and

internal parameters for each component are not guaranteed to remain constant

from one application to another. There are a number of unknown variables

that must be determined, including the non-uniform scaling of the scan

converter, the intrinsic parameters of the camera, the dimensions of pointing

devices, and the location of tracked and stationary objects.

In this paper, we address the problem of registering or calibrating a geometric

model to a single rigid real-world object. We use object calibration to mean the

calculation of the transformation between an object, as represented by a

geometric model, and some other known coordinate system, which we

1



generally call world coordinates. We assume that object calibrations are

performed infrequently, most likely at application set-up time. Once a

calibration is complete, the registration of a moving object can be maintained

with a real-time tracking technology, such as those relying upon optics,

ultrasound, or magnetics. These tracking technologies are likely to require the

initial positioning or determination of the relative position of the object with

respect to some kind of mark, perhaps a magnetic receiver or a set of

light-emitting diodes.

Such an alignment might be obtained, for instance, by fixing a tracker rigidly to

an object and making precise physical measurements of its location and

orientation. However, this approach is impractical for two reasons. First,

measurements of sufficiently high precision are difficult and time-consuming to

obtain. While such an approach might suffice for a one-time demonstration, it

does not provide a general, reusable solution. The second problem of physical

measurements is that many tracking devices, such as the Ascension “Flock of

Birds” system we are using, do not have a well-defined intrinsic coordinate

system that can be located on the hardware. For example, precisely where in

the 50cm � 50cm � 50cm transmitter is the origin of the tracking system?

Indeed, we have found that the position of the origin and the orientation of the

axis vary when changing the parameters of the tracking equipment. This

problem is unique to augmented reality and is not comprehensively addressed

in the work on VR. To deal with these calibration issues, we have constructed a

system that is flexible and reusable, allowing different models to be

interchanged and calibrated on the fly. Our methods also provide mechanisms

for positioning static objects, such as furniture or buildings, that do not lend

themselves to physical measurement or conventional tracking technologies.

In order to produce a general object calibration capability, we have developed

two separate techniques for determining the location of objects in a real

environment and aligning geometric models to them. The first technique

utilizes algorithms originally developed for computer vision and involves

manually picking known landmarks in images obtained from a video camera.

The second technique utilizes a 3D pointing device to locate the position of

the landmarks in world coordinates. In both approaches the calibration

procedure consists of establishing the rigid transformation that maps the local

coordinates of a set of landmarks points into the associated measured world

coordinate system. Noise in the input data and the landmarks is an important

issue that complicates the computation of a final result.

This paper proceeds by reviewing some of the previous work in augmented

reality which highlights the importance of calibration. We then describe the

Grasp system, an augmented reality system being developed at ECRC, and

review some of the calibrations that make this system effective. We then focus

on the mathematics and the methodology for calibrating geometric models and

rigid objects and show how these calibrations can give rise to a convincing

blend of graphics and real-world images.

2



2 Previous Work

A number of researchers have investigated specific augmented reality

applications. Feiner et al. [9] have used augmented reality in a laser printer

maintenance task. In their example, the augmented reality system aids the user

in the steps required to open the printer and replace various parts. Wellner [20]

has demonstrated an augmented reality system for office work in the form of a

virtual desk top on a physical desk. He interacts on a physical desk both with

real and virtual documents. Bajura et al. [5] have used augmented reality in

medical applications in which the ultrasound imagery of a patient is

superimposed on the patient’s video image. Lorensen et al. [15] use an

augmented reality system in surgical planning applications. Drasic et al. [8] use

augmented reality with computer-generated stereo graphics to perform

telerobotics tasks. Each of these applications involves overlaying graphics on

video images and interacting with real-world objects. These applications

highlight the need for accurate and robust methods for registering geometric

models to objects in a real environment.

Calibration has been an important aspect of research in augmented reality, as

well as in other fields, including robotics and computer vision. Deering [7] has

explored the methods required to produce accurate high resolution

head-tracked stereo display in order to achieve sub-centimeter virtual to

physical registration. Azuma and Bishop [4], and Janin et al. [14] describe

techniques for calibrating a see-through head-mounted display. Gottschalk and

Hughes [11] present a method for auto-calibrating tracking equipment used in

AR and VR applications. Gleicher and Witkin [10] state that their

through-the-lens controls may be used to register 3D models with objects in

images. Grimson et al. [13] have explored vision techniques to automate the

process of registering medical data to a patient’s head.

3 The Grasp System

The Grasp system has been developed at ECRC as a platform for research in

augmented reality [1, 2]. It has been used to develop several prototype AR

applications, including a mechanic’s assistant [18] and a collaborative tool for

interior design [3]. The system provides functionalities in the areas of 3D

graphics, image processing, six degrees-of-freedom (in 3-space) tracking, and

real-time 3D interaction.

A schematic of the Grasp hardware configuration is shown in Figure 3.1. The

graphical image is generated by the workstation hardware and displayed on the

workstation’s high resolution monitor along with auxiliary control information,

i.e., buttons and panels. A scan converter takes the relevant portion of the

graphical image and converts it to a standard video resolution and format. The

scan converter also mixes this generated video signal with the video input from

3



Scene

Video Monitor

High-Resolution
Workstation

Monitor

Keyboard

Mouse

Scan Converter
and 

Video Mixer

Workstation
Video

Frame Grabber

PAL

Video Camera

6D Pointing Device

6D Tracker
Hardware

6D Tracker
Transmitter

PAL

Receiver

Object

RS-232

Figure 3.1: The Grasp system hardware configuration.

the camera. A 3D tracker, which is capable of sensing the three translational

and the three rotational degrees of freedom, provides the workstation with

continually updated values for the position and orientation of the tracked

objects including the video camera, a pointing device, and other objects of

interest. A frame grabber is used to grab digital video images for processing

within the system. The Grasp system currently uses Sun workstations with

“Flock of Birds” magnetic trackers from Ascension Technologies, an Otto scan

converter from Folsom Research, and Sun VideoPix frame grabber hardware.

The software has been implemented using the C++ programming language.

For an AR system such as Grasp to be effective it must include complete and

accurate calibration methodologies. For example, objects rendered by the

computer using a virtual camera whose intrinsic parameters do not match those

of the real camera will result in images that are not realistic when viewed in the

context of an AR application. Likewise, the mis-registration of a model with the

object it represents can cause artifacts that undermine the intended visual effect.

3.1 Required Transformations

A list of the various coordinate systems in a typical Grasp application helps us

to understand the calibration steps that are required to establish a complete

mapping between the real and virtual worlds.

4



B

A

C

D

Tracker

Coordinates

Camera

Coordinates

Object

Coordinates

World

Coordinates

Pointer

Coordinates

Object

Object Mark

Coordinates

Pointer Mark

Coordinates

Camera Mark

Coordinates

E

TM1

TM2

TM3

OM1

OM2

Xmtr

fu fv
, )(

r0 c0
( , )

Figure 3.2: Grasp coordinate systems and their relationships.

Transform Description Persistence Calculation Process

A world-to-camera varying landmark point correspondence

B pointer-mark-to-pointer fixed orientation measurement

C world-to-tracker fixed from B and TM1

D world-to-pointer varying from B, C and TM1

E world-to-object varying landmark point correspondence

TMx tracker-to-mark varying from tracker system

OMx object-to-mark fixed from C, E (or A), and TMx

Table 3.1: Key transforms between Grasp coordinate systems.

Figure 3.2 shows each of the main coordinate systems used by Grasp and their

relationship to each other. Table 3.1 lists the important transforms between

these coordinate systems, their persistence over time, and how they are

originally obtained. The central reference is the world coordinate system which

is at a fixed and known location relative to the operating environment.

The camera has an associated coordinate system which determines the

formation of images. The location of this coordinate system within the world

coordinate system must be calculated in order for the virtual or digital camera

to produce renderings of virtual objects that are consistent with the incoming

video images. The world-to-camera transform relating the two coordinate

systems is labeled “A” in the diagram.

The reference coordinate system used by the 3D tracker is referred to as the

5



“Tracker” coordinate system and remains at a fixed location while the system is

operating. Its relationship to world coordinates is defined by the

world-to-tracker transform which is labeled “C” in Figure 3.2. Tracked objects

have a receiver (or mark) rigidly attached to them, and the tracking system

generates data describing the tracker-to-mark transforms, represented by the

arcs labeled “TM1”, “TM2” and “TM3” (TMx) in the diagram.

This paper focuses on the computation needed to determine “E”. In the case of

a moving object being tracked, “E” is combined with tracker readings at the

time of calibration to yield “OM2”, which is constant over time as long as the

tracker is rigidly fastened to the object.

For each real object that interacts with entities in the virtual world, we need a

model to act as its virtual counterpart. Each model is defined within its own

coordinate system. In order to register a virtual object with its real-world

counterpart, we need to know the world-to-object transform for that object.

Therefore, during the execution of applications, transforms “A”, “D” and “E” are

of primary interest. However, the application is able to measure only transforms

“TMx” directly (from the tracker). Updated values for “A”, “D” and “E” can be

computed by combining the tracker data with the other transforms that have

been calculated during the calibration procedures such as “B” and “OMx”. The

object to world transforms are calculated during the object calibration process.

For tracking real objects we calculate the fixed, object-to-mark (OMx) transform

by combining the world-to-object with tracker readings (TMx) taken at the

same time. Once we have the object-to-mark transform, we can continually

update the object-to-world transform as TMx varies. Note that in some

applications not all world-to-object transforms are varying because in some

applications real objects may be “static” within the scene.

The pointer object is a particular case of a tracked object with its coordinate

system centered on the pointer tip, and transform “B” representing the

transform between the coordinate system of the pointer and that of the tracker

mark. Because the pointer is used as part of the process of locating the tracker

transmitter within the world coordinate system, the procedure for calibrating

the pointer is somewhat different from the procedures for other tracked

objects. It relies on several orientation measurements around a fixed point[2].

3.2 Calibration Procedures

The following is a sequence of calibration processes for calculating each of the

transforms discussed in the previous section:

1. image calibration,

2. camera calibration (transform A),

3. pointer calibration (transform B),

6



4. tracker transmitter calibration (transforms D and C),

5. object calibration (transform E),

6. tracker mark calibration, one per tracked entity (all transforms OMx).

The image calibration determines the 2D image distortion introduced into the

system by the scan converter and frame grabber. Subsequent calibration

procedures that use “grabbed” images from the camera require a model of this

distortion. More detailed descriptions of the techniques used for this and the

other calibration procedures that are not given in this paper are described

elsewhere[2][19].

The camera calibration process determines the camera location and orientation

as well as the intrinsic camera parameters (focal length, image center and

aspect ratio). This process calculates the transform labeled “A” in Figure 3.2.

Pointer calibration calculates the geometry of 3D pointing device used within

an application. In our current system, this pointer object is a wand with a

tracking mark (receiver) attached at the base. In particular, this calibration step

calculates the position of the tip of the pointer relative to the tracker mark (the

transform labeled “B”). This calibration is important because several other

calibration steps rely on the 3D pointing device.

Tracker transmitter calibration calculates the position and orientation of the

tracker’s coordinate system within the world coordinate system (the transform

represented by the arc labeled “C” in Figure 3.2). This transform is calculated

indirectly after calculating the transforms “D” and “B” and measuring transform

“TM1”.

The mark calibration calculates the transform between the coordinate system of

the tracker mark and the coordinate system of an object (transforms “OMx”)

using the measured transform “TMx”, along with the previously calculated

world-to-object transforms (“E”, for example). This transform is fixed for as

long as the object and mark are rigidly attached to one another. Non-tracked

real-world objects are expected to remain static so their virtual counterparts can

function as “scenery” in the virtual world.

Object calibration is the process whereby the location and orientation of a

real-world object is calculated such that a virtual counterpart can be placed at

the corresponding location, with the appropriate orientation, within the virtual

world (transform “E” in the diagram). Some real-world objects will

subsequently have their movements tracked by their virtual “shadows”, in

which case the corresponding tracker marks must also be calibrated.

7



4 Object Calibration

Object calibration is the procedure whereby the virtual entities within the

computer’s world are registered with their real-world counterparts. There are

two particular cases where this is necessary:

 to support “direct” interactions between the user and real-world objects

via a computer model (counterpart) of the real object, and

 to support interactions between real and virtual objects that use computer

models of the real objects.

An example of the former would be a mechanic querying the status of a

component by pointing at the real object and clicking. The application must

map the mechanic’s action into a logical “pick” on the virtual data in order that

the real component can be correctly identified and the user provided with the

data requested. An example of the latter would be the occlusion of virtual

objects by real-world objects. For instance, if a virtual chair goes behind a real

table, the table should occlude appropriate parts of the chair. To support the

above functionalities, we first need a computer model of the object and then a

calibration procedure to locate the real object so that the virtual model can be

registered to it.

The calibration procedures described here require a number of landmark points

– points whose positions are known in the coordinate system of the object

model. Geometric models of objects might be created piece-by-piece from a

set of geometric primitives or they might come from a CAD system. Regardless

of their origin, models are generally stored as files on disk for subsequent use.

Therefore files describing real objects must contain, in addition to the geometric

and attribute data, the 3D positions and labels of the landmark points. These

points should correspond to features on the object, such as corners or creases,

that can be easily identified by a user. The registration procedure consists of

locating the corresponding points on the real object and the model, and then

calculating the object-to-world transformation from these point pairs.

4.1 Image-based Object Calibration

The goal of an image-based object registration is to start with a calibrated

camera and compute the object-to-camera transformation of a single object for

which there is a known geometric model. The position of an object is

determined “through the lens” of the camera. The camera can be the same

camera that is used to capture the video signal that is combined with the

graphics. The calibration begins by capturing an image of the real-world object

and locating a set of landmark points in the image.

8



There has been extensive research in pose determination in the computer

vision literature [12, 16], but most of these techniques apply to only limited

classes of models and scenes. The focus of the computer vision research is

typically automation and recognition, concepts that are interesting, but not

essential to AR. In our work, the locations of landmark points in the image are

found manually by a user with a mouse. We assume that the points are

mapped from known locations in 3-space to the image via a rigid 3D

transformation and a projection.

4.1.1 Camera Model

We model the camera with a pinhole camera model shown in Figure 4.1. This

model defines the basic projective imaging geometry with which the object

landmarks are mapped onto the 2D image plane. This model is a simplification

of the optics of a real camera and is used often in computer graphics and

computer vision to describe the formation of images in a camera. There are

different ways of setting up the coordinate systems; we use a right-handed

coordinate system, where the center of projection is at the origin and the image

plane is at a distance f (focal length) away from it.

The image of a point in 3D is formed by passing a ray through the point and

the center of projection, OC , and then by computing the intersection of this ray

with the image plane. The equations for this case are obtained by using similar

triangles:

u = fx=z and v = fy=z: (1)

The camera model used for the generation of the graphical images must be

related to the pixel coordinate system of the display device. The relationships

between the screen coordinates, the pinhole model, and the world coordinates

(shown in Figure 4.2) must be clearly defined in order to establish the precise

relationship between a pixel location in an image and the 3D ray which

projects to that point.

The position and orientation of the camera with respect to the world

coordinate system (O; x; y; z) is defined by a rigid transformation consisting of

a rotation R and a translation ~T :
0
B@

xc
yc
zc

1
CA = R

0
B@

x

y

z

1
CA+ ~T : (2)

Finally, the pixel coordinates are related to the image plane coordinates by the

following equations (r stands for row and c for column):

r � r0 = suu;

c� c0 = svv; (3)

9



f

v

u

z

x

y

P=(x,y,z)

Image plane

P
i
= (u,v,f)

Center of

projection

O
C

Figure 4.1: The geometry of the simple pinhole camera model for perspective

transformation.

x
C

O
C

y
C

z
C

x

z

y

O

u

vO’

c

r

f

Camera Coordinate System

(u,v): image plane coordinate system

(r,c): row and column pixel coordinates in image

World coordinate system

image plane

Figure 4.2: The various imaging coordinate systems with respect to each other.

10



where (r0; c0) are the pixel coordinates of the image plane origin O0. The terms

su and sv serve two purposes. First, they account for the proper sign (note that

the r-axis and u-axis are pointing in opposite directions) of the coordinate axis.

Second, they allow for the non-isotropic nature of some cameras thereby

capturing the aspect ratio. Let fu = suf and fv = svf . Then the four quantities

fu, fv, r0 and c0 are called the intrinsic camera parameters. The

transformations R and T are known as the extrinsic camera parameters.

4.1.2 Numerical Solutions

The goal of our work is to determine the position of the object, which contains

a set of landmark points, in some known coordinate system. Because the

camera is assumed to be calibrated, its coordinate system is known. Therefore,

finding the position of the object in camera coordinates is identical to the

camera calibration problem (which has been studied extensively in the

literature [17]), except that we assume the internal parameters, fu, fv, r0, and c0,

are known. The result is a linear system which follows from Equations 2 and 3,

(ri � r0)xir31 + (ri � r0)yir32 + (ri � r0)zir33 + (ri � r0)t3

�fuxir11 � fuyir12 � fuzir13 � fut1 = 0 and (4)

(ci � c0)xir31 + (ci � c0)yir32 + (ci � c0)zir33 + (ci � c0)t3

�fvxir21 � fvyir22 � fvzir23 � fvt2 = 0; (5)

where (ri; ci; xi; yi; zi) are the pixel and 3D coordinates of the landmark points.

There are numerous methods for solving this system. The simplest is to divide

by t3 and treat it as a non-homogeneous linear system and solving for the 11

unknowns, r11, r12, r13, r21, r22, r23, r31, r32, r33, t1, and t2, to within a scale

factor t3. We can assume t3 > 0 (the object is in front of the camera), and use

the fact R is a rotation matrix (i.e., r2
31
+ r2

32
+ r2

33
= 1) to find t3 after we have

solved for the other eleven parameters. The linear system can be

over-constrained to account for error by choosing more than six landmarks and

finding a least-squares solution.

We have found, in practice, that this approach does not work. The errors

introduced by the mouse clicks in the image, the measurements of the model,

and the camera calibration give solutions that are not rigid transformations,

even with as many as 15 points. A subsequent fix of R that forces it to be rigid

results in excessive error.

Thus, Equations 4 and 5 must be solved while accounting for the fact that R is

a rotation matrix. One approach is to express R in terms of three degrees of

freedom which span the space of rotation matrices (Euler angles for instance).

However, this produces a nonlinear system with singularities that make finding

a solution difficult. Instead we treat Equations 4 and 5 as a homogeneous

linear system with 12 unknowns and simultaneously enforce rigidity by solving

11



the nonlinear optimization problem

min
~x

jjA~xjj2 + �jjRRT � Ijj2; (6)

where ~x is the set of twelve unknowns in the rigid transformation (R and ~T ),

and � is a term which controls the amount of rigidity. The 2n� 12 matrix A

comes directly from equations 4 and 5, and n is the number of landmark points.

In practice, the precise value of � (� = 1 is chosen for our work) has very little

effect on the solutions. With the solution from the unconstrained linear system

as an initial condition, either a gradient descent or Newton-Raphson algorithm

solves this optimization problem in a reasonable amount of time (fractions of a

second). We have found this method produces rigid transformations (to within

0.1% which can be corrected afterwards without noticeable side effects) and

point matches that are within 2-3 pixels when solutions are re-projected onto

the image plane.

Despite good pointwise alignment in the image plane, the image-based

calibration can produce significant error in the t3 term which is not seen in the

re-projected solutions. For instance, in the case of the engine model shown in

Figure 4.3(a), the image-based approach can produce a rigid transformation

which matches landmark points in the image to within about 2 pixels. Yet the

error in the z-direction (distance from the camera) can be as much as 2-3

centimeters. This error becomes evident as the object is turned as in Figure

4.3(b). We attribute this error primarily to error in the camera calibration, and

better camera models and calibration procedures are a topic of ongoing

research. Because of this problem, we have developed the procedure described

in the next section for calibrating objects using a 3D pointing device.

4.2 Pointer-Based Object Registration

For this method we assume a pointing device which is capable of generating

the world coordinates of 3D positions in the real world. In our case, the

pointing device (which itself must already be calibrated) is a magnetic tracker

attached to a wooden cone which, when calibrated, has an accuracy of about

�1cm. Over half of this error is bias and transfers directly into object

calibration error.

The problem here is to compute the rigid transformation between a set of 3D

point pairs. Using the 3D pointer and several keystrokes the user indicates the

world coordinates (or some other known coordinate system), Pw

i
, of landmark

points on the object, which are given in the object’s local coordinate system as

P l

i
. The relationship between these sets of points,

Pw

i
= P l

i
R+ ~T (7)

gives rise to a linear system of 12 unknowns (~x). For a unique solution 4 points

12



are needed, but in most cases we use more than 4 points and solve for the

least-squares error.

As with the image-based object calibration, error in the measurements can

produce solutions that represent non-rigid transformations. Such non-rigidities

can produce undesirable artifacts when this transformation is combined with

others in the graphics system. As in the case of image-based calibration, we

force R to be a rotation matrix by solving the following non-linear optimization

problem:

min
~x

jjPw

i
� P l

i
R� ~T jj2 + �jjRRT � Ijj2: (8)

This procedure provides the object-to-world transformation that is needed for

object registration within a small number of seconds. Figure 4.4(a) shows a

model engine which has been calibrated in such a manner. Rotations of the

engine (Figure 4.4(b)) show that this calibration does not suffer from the depth

problem of the image-based approach.

5 Results

The calibration procedures outlined above have been implemented as an

integral part of the Grasp system. Several applications have been developed

that utilize the object registration procedures, including a mechanics’ assistant

[18] and an interior design tool [3]. Figure 5.1 presents the results of a

successful object calibration. A geometric model of an automobile engine has

been registered to a real model engine using a calibrated pointer. Correct

registration allows us to properly label the visible components of the real

engine. As the engine is rotated, visibility calculations are performed on the

underlying model, informing the system which components are visible. Only

the visible components are subsequently labeled.

When dealing with large physical objects, such as the furniture used in the

interior design application, the image-based calibration proves more practical.

Figure 5.2(a) shows a wireframe model of a table overlaid on the image of a

real table after registration. In this case, image-based registration has been

performed by picking known calibration points in an image grabbed by a

calibrated camera. The landmark points, which are the corners and legs of the

table, have been highlighted with circles to show that they were chosen. Figure

5.2(b) shows the same real table occluding two virtual chairs as an example of

augmented reality with interaction between real and virtual objects [6]. This

effect is obtained by properly aligning the 3D model of the table with the

physical table as shown in Figure 5.2(a) and using the graphics system to

perform the occlusion shown in Figure 5.2(b).

13



(a) (b)

Figure 4.3: Calibration and tracking of an engine model: A wireframe engine

model registered to a real model engine using an image-based calibration (a),

but when the model is turned and its movements tracked (b), the graphics show

the misalignment in the camera’s z-direction.

(a) (b)

Figure 4.4: (a) A wireframe engine model registered to a real model engine using

an pointer-based calibration. (b) When the model is turned and its movements

tracked, the graphics show the correct alignment in the camera’s z-direction.

14



(a) (b)

Figure 5.1: (a) A real model engine annotated in augmented reality and (b) As

the model is turned only visible components are annotated.

(a) (b)

Figure 5.2: (a) A wireframe table model registered to a real table and (b) A real

table occluding two virtual chairs.

15



6 Conclusion

Augmented reality is a powerful technology that provides new paradigms for

human-computer interaction and communication. The calibration of devices

and objects is an essential component of augmented reality. Without reliable

and accurate calibration procedures, convincing augmented reality effects are

not possible. In this paper we have focused on one of these calibration

procedures: object calibration. Here, we calculate the transformation that maps

a geometric model, in a local coordinate system, into the world coordinate

system such that the model and the real-world object are precisely registered.

With this registration, after blending the computer-generated graphical images

with the live video signal, we can produce effects such as occlusion and

collision detection.

We have presented the procedures and mathematics for two object calibration

techniques. The first technique utilizes computer vision algorithms to determine

the pose of the object. A user manually identifies known landmarks in a digital

image of the object that has been grabbed through a calibrated camera. These

point correspondences are used to calculate the rigid 3D transformation that

aligns the object and the model. We have found that this technique suffers

from excessive error in the direction perpendicular to the focal plane of the

camera. In the second technique, a calibrated pointing device is used to locate

the object landmarks in the world coordinate space. Correlating the two sets of

3D points produces accurate transformations. In both techniques noise in the

input data is a problem, and we have demonstrated methods for coping with it.

An accurate calibration can be used to produce a variety of powerful visual

effects. Our future work will focus on automating and improving the

calibration procedures. This will involve automatically locating landmarks in

images, and improving the accuracy and stability of our numerical procedures.

7 Acknowledgments

The AutoCAD model of the automobile engine was initially produced by Anne

Bachy. The plastic automobile engine model was generously provided by

Revell, Inc. This work is financially supported by Bull SA, ICL PLC, and

Siemens AG.

16



Bibliography

[1] K. Ahlers, D. Breen, C. Crampton, E. Rose, M. Tuceryan, R. Whitaker, and

D. Greer. An Augmented Vision System for Industrial Applications. In

SPIE Photonics for Industrial Applications Conference Proceedings,

October 1994.

[2] K. Ahlers, C. Crampton, D. Greer, E. Rose, and M. Tuceryan. Augmented

Vision: A Technical Introduction to the Grasp 1.2 System. Technical Report

ECRC-94-14, ECRC, Munich, Germany, 1994.

[3] K. Ahlers, A. Kramer, D. Breen, P.-Y. Chevalier, C. Crampton, E. Rose,

M. Tuceryan, R. Whitaker, and D. Greer. Distributed Augmented Reality for

Collaborative Design Applications. Technical Report ECRC-95-03, ECRC,

Munich, Germany, 1995. To appear in: Proceedings of Eurographics ’95,

Maastricht, NL.

[4] R. Azuma and G. Bishop. Improving Static and Dynamic Registration in an

Optical See-through Display. In Computer Graphics (Proc. SIGGRAPH),

pages 194–204, July 1994.

[5] M. Bajura, H. Fuchs, and R. Ohbuchi. Merging Virtual Objects with the

Real World: Seeing Ultrasound Imagery within the Patient. In Computer

Graphics (Proc. SIGGRAPH), pages 203–210, Chicago, IL, July 1992.

[6] D. Breen, E. Rose, and R. Whitaker. Interactive Occlusion and Collision of

Real and Virtual Objects in Augmented Reality. Technical Report

ECRC-95-02, ECRC, Munich, Germany, 1995.

[7] M. Deering. High Resolution Virtual Reality. Computer Graphics (Proc.

SIGGRAPH), 26(2):195–202, July 1992.

[8] D. Drascic, J. J. Grodski, P. Milgram, K. Ruffo, P. Wong, and S. Zhai. Argos:

A Display System for Augmenting Reality. In Formal Video Programme and

Proceedings of Conference on Human Factors in Computing Systems

(INTERCHI'93), page 521, Amsterdam, Netherlands, 1993.

[9] S. Feiner, B. MacIntyre, and D. Seligmann. Knowledge-Based Augmented

Reality. Communications of the ACM, 36(7):53–62, July 1993.

[10] M. Gleicher and A. Witkin. Through-the-Lens Camera Control. In Computer

Graphics (Proc. SIGGRAPH), pages 331–340, Chicago, IL, July 1992.

[11] S. Gottschalk and J. Hughes. Autocalibration for Virtual Environments

Tracking Hardware. In Computer Graphics (Proc. SIGGRAPH), pages

65–72, August 1993.

17



[12] W.E. Grimson. Object Recognition by Computer. The MIT Press,

Cambridge, MA, 1990.

[13] W.E. Grimson, T. Lozano-Perez, W. M. Wells, G. J. Ettinger, S. J. White, and

R. Kikinis. An automatic registration method for frameless stereotaxy,

image guided surgery, and enhanced reality visualization. In Proceedings of

the IEEE Conference on Computer Vision and Pattern Recognition, pages

430–436, Seattle, WA, June 1994.

[14] A. Janin, D. Mizell, and T. Caudell. Calibration of Head-Mounted Displays

for Augmented Reality Applications. In Proceedings of IEEE VRAIS '93,

pages 246–255, September 1993.

[15] W. Lorensen, H. Cline, C. Nafis, R. Kikinis, D. Altobelli, and L. Gleason.

Enhancing Reality in the Operating Room. In Visualization '93 Conference

Proceedings, pages 410–415, Los Alamitos, CA, October 1993. IEEE

Computer Society Press.

[16] D. Lowe. Perceptual Organization and Visual Recognition. Kluwer

Academic Publishers, Norwell, MA, 1985.

[17] S. J. Maybank and O. D. Faugeras. A Theory of Self Calibration of a Moving

Camera. International Journal of Computer Vision, 8(2):123–151, 1992.

[18] E. Rose, D. Breen, K.H. Ahlers, C. Crampton, M. Tuceryan, R. Whitaker,

and D. Greer. Annotating Real-World Objects using Augmented Vision.

Technical Report ECRC-94-41, ECRC, Munich, Germany, 1994. To appear

in: Proceedings of Computer Graphics International ’95, Leeds, UK.

[19] M. Tuceryan, D. Greer, R. Whitaker, D. Breen, C. Crampton, E. Rose, and

K. Ahlers. Calibration Requirements and Procedures for Augmented

Reality. Technical Report ECRC-95-14, ECRC, Munich, Germany, 1995.

[20] P. Wellner. Interacting with Paper on the Digital Desk. Communications of

the ACM, 36(7):87–96, July 1993.

18


