
Object Categorization using Kernels combining Graphs

and Histograms of Gradients

F. Suard, A. Rakotomamonjy, A. Bensrhair

Email : frederic.suard@insa-rouen.fr

LITIS, PSI, INSA de Rouen

Avenue de l’université

76801 Saint Etienne du Rouvray, FRANCE

Abstract. This paper presents a method for object categorization. This problem

is difficult and can be solved by combining different information sources such

as shape or appearance. In this paper, we aim at performing object recognition

by mixing kernels obtained from different cues. Our method is based on two

complementary descriptions of an object. First, we describe its shape thanks to

labeled graphs. This graph is obtained from morphological skeleton, extracted

from the binary mask of the object image. The second description uses histograms

of oriented gradients which aim at capturing objects appearance. The histogram

descriptor is obtained by computing local histograms over the complete image

of the object. These two descriptions are combined using a kernel product. Our

approach has been validated on the ETH80 database which is composed of 3280

images gathered in 8 classes. The results we achieved show that this method can

be very efficient.

1 Introduction

Object categorization problem is difficult and still presents open issues. Many researches

have focused on this topic and yet it has been solved only for particular situations. An

object categorization system contains two main parts. First, feature extraction has to be

the most exhaustive object representation in order to keep maximum information con-

cerning the object. The second part consists of a classifier which should be able to learn

the category of an object from this representation and then to predict the most correctly

as possible the category of a new unseen object.

Representing a static object can be done along two ways [14], globally and locally.

The first way consists in representing the general shape of an object. The other way

can brings information about the object appearance for a stronger discrimination. Then

for a categorization purpose these two global representations have to be appropriately

combined with an objective of perfomance enhancement. One way for mixing these

representations has been presented in Leibe et al. [14] and is based on a decision tree.

Another way of combination resides in the properties of the SVM classifier, which can

deal with mixture of kernels [5, 1].

Recently, there has been a growing interest around object representation based on

graphs. One major interest of graph resides in its property which keeps the object shape

topology. This property has been used in different methods for object categorization

2

using graphs : [16, 17, 21, 13], where graph classification is achieved by measuring their

similarity [16, 17].

The result of similarity measure obtained from graph matching algorithms [3, 16, 9]

is a metric. This metric is then used to find the most similar object, or to cluster objects,

according to the distance between them. So that efficiency of these methods depends on

the quality of the similarity measure.

A weakness of graph matching algorithms is that they essentially deal with labelled

graphs for which labels are a single numerical value. On top of that, information is

mainly brought on edges and rarely on vertices [16, 21].

Another way to compare or to classify graphs is to use kernel methods and the

so-called kernel trick.

Hence, measuring graph similarity can be addressed by considering kernels func-

tion on graphs. In [12], Kashima et al. defined a kernel function for labeled graphs. This

function can be interpreted as an inner product on two graphs, obtained by comparing

edges and vertices that have been crossed during random walks on the graphs. Then

a major particularity of this kernel is the use of kernels between vertices and edges.

It means that labels can be complex structures, like vectors, histograms or set of his-

tograms, instead of a single real values, which is the case for most of graph matching

algorithms.

One other representation of an object consists in describing the object appearance

[11, 14, 8]. Recents works have shown that efficient and robust appearance-based cues

can be obtained from histogram of oriented gradient (HOG) in images [15]. One ad-

vantage of this method is to bring information on both object appearance and object

contours. On top of that, this method is an answer to the variability problem. Repre-

senting an image thanks to histogram of gradient is very robust for scale invariance, or

different lighting conditions.

Recently, Dalal and Triggs have further developed this idea of histogram of gradient

and have achieved excellent recognition rate of human detection in images [7]. This

work pointed out the problem of variability, and used an efficient way to solve it.

In this paper we present a method for object categorization using a combination of

representations based on kernels and a SVM classifier [20]. We decided to take advan-

tage of graph properties for a global shape representation of an object. However, instead

of using graph matching algorithms, we introduce the use of graph kernels for object

recognition problem. The object shape representation is combined with an appearance

representation based on local histogram of gradients. We build an appropriate kernel

that mixes kernels from these two representations by a product. The resulting kernel

is then fed into a SVM classifier for categorization. Our paper aims at analysing the

categorization performance of the overall approach.

This paper is organized as follows. The first section 2.1 presents our method to

design a graph. Starting from an image, the morphological skeleton is obtained thanks

to the image binary mask. When the graph structure is complete, we add some labels on

both vertices and edges, regard the orignal image. The second part 2.2 presents the HOG

descriptor. The third part 2.3 presents briefly the SVM classifier used for multiclass.

Next, we describe the graph kernel of Kashima 2.4. Finally, we depict some results in

3

section 3. The test has been accomplished on the ETH-80 database, which has already

been used in different approaches to test their efficiency [11, 21, 14].

2 Method description

2.1 Graph

In this part, we will describe briefly our method used to transform an image into a graph.

The aim is to keep the main information contained in a shape, that is to say geometric

properties or topologic properties. This last property is particularly interesting in our

case. If a shape is made of a set of sub-parts, the skeleton will preserve the connectivity

and the shape arrangement.

Graph designing As we mentioned before, we tackle the problem of object recognition

represented with an image. In our case, one image corresponds to a single object. The

first step consists in extracting the morphological skeleton from the binary mask, that

is to say the general shape in white, placed on a dark background. We used the same

method which is described in [16]

A skeleton can be defined as a line representation of an object, that is to say it :

– is one-pixel large

– is around the middle of the object

– preserves the geometry and topology object

Given the definition of Lantuejoul [4], a skeleton subset of a black and white image

Sk(A) is defined as : Sk(A) = E(A, kB) − [E(A, kB) o B] k = 0, 1, ...K where B

is a structuring element, and K is the largest value of k before the set Sk(A) becomes

empty. The skeleton is then the union of the skeleton subsets : S(A) = ∪K
k=0Sk(A)

Skeleton to graph Once the skeleton is obtained, we can build the graph. A graph G

is made up of vertices and edges G = (V,E) . A vertex is a junction between different

edges. We can differentiate two types of vertices : nodes (Vn), which are a junction of

many edges and vertices which are edge ending (Vs).

To build the graph we look at the type of each skeleton pixel. If the pixel as only one

neighbor, this is an edge ending. If the neighoring corresponds to a defined mask, for

example

0�0 1 0
1 1 1
0 0 0

1A , then this pixel is defined as a vertex.

Once all of the skeleton pixels have been tested, we can build the graph. The first

step is to search each unique edge associated with each edge ending, since only one

vertex is linked with an edge ending. When all edge ending vertices are linked, we can

search all links existing between nodes vertices. This method is different, because in the

precedent search, the stopping condition was reached when a node was found, but now,

if another vertex is reached, it does not mean that all possible ways were tried. So the

stopping condition is different, and there exists at least one way to link a node vertex

to a pixel of the skeleton, it is possible to reach another node vertex. The course of the

4

skeleton is facilitated, because the skeleton is one pixel thin, so when the skeleton does

not fill this condition, it means that a vertex is reached and the path is ended. An edge

between the two nodes is established and other ways are continued until they reach a

vertex.

Apple Cow Cup Pear

Image

Skeleton

Graph

Fig. 1. Example of objects coming from the database ETH-80, their skeleton, and their graph.

Graph labeling One important aspect in our work, is that we deal with attributed

graphs. It means that graph components are labeled. A particularity is that we could

have a vector of labels for each component, since we have no limitation when we com-

pare two graphs (see 2.4).

– For a vertex, for instance, we can compute the following labels :

• node coordinates,

• size of the structured element at node,

• color mean and variance of the region described by the structured element.

– For edges :

• length,

• orientation,

• area defined by the intersection of all structured elements placed on the edge,

• luminosity, colour mean, variance and texture characteristics (homogeneity,

dissimilarity, contrast, entrophy, energy) of the region defining above.

As we can see, we could obtain various information concerning shape. Some fea-

tures are able to describe the shape topology, like edge’s length, orientation and area.

We could complete them with information about the shape texture.

2.2 Histograms of Oriented Gradients

In the context of object recognition, the use of edge orientation histogram has gain pop-

ularity [18, 7]. However, the concept of dense and local histogram of oriented gradients

(HOG) is a method introduced by Dalal et al.[7]. The aim of such method is to describe

5

an image by a set of local histograms. These histograms count occurences of gradient

orientation in a local part of the image. In this work, in order to obtain a complete de-

scriptor of an image, we have computed such local histograms of gradient according to

the following steps :

1. compute gradients of the image,

2. build histogram of orientation for each cell,

3. normalize histograms within each block of cells.

Gradient computation The gradient of an image has been simply obtained by filtering

it with two one-dimensional filters :

– horizontal :
(

−1 0 1
)

– vertical :
(

−1 0 1
)T

Gradient could be signed or unsigned. This last case is justified by the fact that the

direction of the contrast has no importance. In other words, we would have the same

results with a white object placed on a black background, compared with a black object

placed on a white background. In our case, we have considered an unsigned gradient

which value goes from 0 to π.

The next step is orientation binning, that is to say to compute the histogram of

orientation. One histogram is computed for each cell according to the number of bins.

Fig. 2. This figure shows the gradient computation of an image. (left) is the original image, (mid-

dle) shows the direction of the gradient, (right) depicts the original image according to the gradi-

ent norm.

1 2 3 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
4

1 2 3 4 5 6 7 8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
8

0 2 4 6 8 10 12 14 16 18
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
16

Fig. 3. This figure shows the histograms of gradient orientation for (left) 4 bins, (middle) 8 bins

(right) 16 bins.

Cell and block descriptors The particularity of this method is to split the image into

different cells. A cell can be defined as a spatial region like a square with a predefined

size in pixels. For each cell, we then compute the histogram of gradient by accumu-

lating votes into bins for each orientation. Votes can be weighted by the magnitude of

a gradient, so that histogram takes into account the importance of gradient at a given

6

point. This can be justified by the fact that a gradient orientation around an edge should

be more significant than the one of a point in a nearly uniform region. Some examples

of histogram obtained for the square region given in the middle image of figure 2 are

shown in figure 3. As expected, the larger the number of bins is, the more detailed the

histogram is.

Block Normalization When all histograms have been computed for each cell, we can

build the descriptor vector of an image concatenating all histograms in a single vector.

However, due to the illumination variations and other variability in the images, it is

necessary to normalize cells histograms. Cells histograms are locally normalized, ac-

cording to the values of the neighboured cells histograms. The normalization is done

among a group of cells, which is called a block.

A normalization factor is then computed over the block and all histograms within

this block are normalized according to this normalization factor. Once this normaliza-

tion step has been performed, all the histograms can be concatenated in a single feature

vector.

Different normalization schemes are possible for a vector V containing all his-

tograms of a given block. The normalization factor nf could be obtained along these

schemes :

– none : no normalization is applied on the cells, nf = 1.

– L1-norm : nf = V
‖V ‖

1
+ε

– L2-norm : nf = V√
‖V ‖2

2
+ε2

ε is a small regularization constant. It is needed as we sometime evaluate empty gradi-

ents. The value of ε has no influence on the results.

Note that according to how each block has been built, a histogram from a given

cell can be involved in several block normalization. In this case, the final feature vector

contains redundant information which has been normalized in a different way. This is

especially the case if blocks of cells have overlapping.

2.3 SVM Classifier

Support Vector Machine The Support Vector Machines classifier is a binary classi-

fier algorithm that looks for an optimal hyperplane as a decision function in a high-

dimensional space [2, 20, 5]. Thus, consider one has a training data set {xk, yk} ∈
X × {−1, 1} where xk are the training examples and yk the class label. At first, the

method consists in mapping xk in a high dimensional space owing to a function Φ.

Then, it looks for a decision function of the form : f(x) = w · Φ(x) + b and f(x) is

optimal in the sense that it maximizes the distance between the nearest point Φ(xi) and

the hyperplane. The class label of x is then obtained by considering the sign of f(x).
This optimization problem can be turned, in the case of L2 soft-margin SVM classifier

(misclassified examples are quadratically penalized), in this following one :

min
w,ξ

1

2
‖w‖2 + C

m
∑

k=1

ξk (1)

7

under the constraint ∀k, ykf(xk) ≥ 1 − ξk. The solution of this problem is obtained

using the Lagrangian theory and it is possible to show that the vector w is of the form :

w =
m

∑

k=1

α∗
kykΦ(xk) (2)

where α∗
i is the solution of the following quadratic optimization problem :

max
α

W (α) =

m
∑

k=1

αk − 1

2

m
∑

k,ℓ

αkαℓykyℓK(xk, xℓ) (3)

subject to
∑m

k=1 ykαk = 0 and ∀k, 0 ≤ αk ≤ C, where K(xk, xℓ) = 〈xk, xℓ〉. Accord-

ing to equation (2) and (3), the solution of the SVM problem depends only on the Gram

matrix K. Hence, in our case, the classification with SVMs only needs a kernel, which

is, in our case, a combined kernel.

Kernels combination In our method, we use a combination of kernels [5, 1]. A kernel

can be defined as a combination of positive-definite kernels.

Let K1 and K2 be kernels over X × X , 0 ≤ λ ≤ 1, a ≥ 0, the following functions

are kernels :

– K(x, y) = λK1(x, y) + (1 − λ)K2(x, y)
– K(x, y) = aK1(x, y)
– K(x, y) = K1(x, y) × K2(x, y)

2.4 Graph Kernel

We use the inner product between graphical representations based on Kashima et al.

paper’s [12]. The idea is to compare two label sequences generated by two synchronized

random walks on the two graphs. The operation is repeated until there is convergence

of the result.

Given :

1. h1
i and h2

j the nodes i and j of graphs G1 and G2,

2. p(hi|hi−1) the transition probability from node hi−1 to node hi,

3. pq(hℓ) the probability to stop at node ℓ,

4. Kn(h1
k, h2

k) the inner product between two nodes of the graphs G1 and G2,

5. et Ka(a1
h1

k−1
h1

k

, a2
h2

k−1
h2

k

) the inner product between 2 arcs a1 and a2 of G1 and G2.

The comparison of all paths, of all lengths, from all nodes in the two graphs,

weighted by the path probability leads to :

K(G1, G2) =

∞
∑

ℓ=1

∑

h1

∑

h2

p(h1
1)

ℓ
∏

i=2

p(h1
i |h1

i−1)pq(h
1
ℓ) × p(h2

1)

∏ℓ

j=2 p(h2
j |h2

j−1)pq(h
2
ℓ) × Kn(h1

1, h
2
1)

ℓ
∏

k=2

Ka(a1
h1

k−1
h1

k

, a2
h2

k−1
h2

k

)Kn(h1
k, h2

k)

(4)

8

Computation of this formula gives the comparison of each vertices values and edges

values, which are encountered for each ways starting from each vertex of graphs. This

formula shows that computation could be exhaustiv and test every possible path combi-

nation.

The detailed computation of K(G1, G2) is in the paper of Kashima et al. [12] .

The complexity of this computation is O
(

(|G1||G2|)2
)

, with |Gi| the number of

nodes in graph Gi. For this reason the number of vertices in each graph have to be as

small as possible.

The graph kernel suggests that a kernel between vertices and a kernel between edges

have to be defined. In our case, we have chosen to use a classical gaussian kernel since

nodes and edges are labeled with vectorial values :

Kn(x, y) = Ka(x, y) = exp

(

−||x − y||2
2σ2

)

(5)

where σ is the bandwidth of the gaussian kernel.

Note that the graph kernel depends only on the probability transition between ver-

tices and kernels between vertices and kernel between edges. This means that the label

information of edges and vertices can be richer than it is at the present time. In fact,

since we only need an inner product values, labels can be a non-vectorial data which

admit a kernel.

n1

n2

n3

n4

n5

a1

a2

a3

a4

a1

a2

a3

a4

n1

n2 n3

n4

n5

n6

a3

a1 a2

a4

a1 a2

a5

a3 a4

a5

n1

n2 n3

n4

n5

n6

a1

a3 a4

a2a1 a2

a5

a3 a4

a5

n1

n2 n3

n4

n5

n6

a1

a3 a4

a2a1 a2

a5

a3 a4

a5

n1

n2 n3

n4

n5

n6

a3

a1 a2

a4

a1 a2

a5

a3 a4

a5

n1

n2 n3

n4

n5

n6

a3

a1 a2

a4

a1 a2

a5

a3 a4

a5

n1

n2
n3

n4

n5

n6

a3

a1 a2

a4

a1 a2

a5

a3 a4

a5

n1

n2
n3

n4

n5

n6

a3

a1 a2

a4

a1 a2

a5

a3 a4

a5

n1

n2

n3

n4

a1

a2

a3a1

a2

a3

n1

n2

n3

n4

n5

a1

a2

a3

a4

a1

a2

a3

a4 1.000 0.954 0.946 0.932 0.911 0.892 0.856 0.866 0.943

n1

n2 n3

n4

n5

n6

a3

a1 a2

a4

a1 a2

a5

a3 a4

a5

0.911 0.975 0.989 0.996 1.000 0.997 0.983 0.979 0.925

Fig. 4. Inner product between a square graph and a trapezoid graph coming from the transform of

a square to a triangle.

In order to evaluate the pertinence of this method, we have computed values of

the inner product between the graph of a square with graphs of objects coming from

the progressive transformation of a square (�) to a triangle (△). Results are shown on

figure 4. We conclude from that :

– when we compare the inner product K(G(�), G(�)) with K(G(�), G(N)) and

K(G(�), G()), we can see that the triangle graph seems to be closer of the square

graph than the trapezoid graph, but the trapezoid graph seems to be closer of the

square graph. This can be explained by the fact that the graphs of square and triangle

are adjacent, compared with the graph of trapezoid. In fact, trapezoid graph has a

central branch which is not present in the other graphs. So the triangle graph differs

from square graph only by one missing branch.

9

– We also can notice a symmetry concerning the trapezoid result. In our example, the

triangle and the square are equally placed from the central trapezoid.

– the result is symmetric : K(G1, G2) = K(G2, G1).

Compared with graph matching algorithms, [3, 16, 9], the method proposed by Kashima

has a great interest. It can be used by a SVM classifier, since some similarity measures

have not the required properties, in particular symmetry of the measure. This method

can also deal with complex structures as labels, when other methods only treat single

numerical value.

3 Results

We now have to evaluate the efficiency of this method.

The test was accomplished on a complete database : ETH-80 (http://www.mis.

informatik.tu-darmstadt.de/Research/Projects/categorization/index_

html). This base contains 80 objects, dispatched over 8 classes : apple, pear, cow, dog,

horse, cup, car, tomatoe. Each object has been captured from different points of view to

produce 41 views for each object.

Our SVM is used for multi-class, with one-against-one method: we trained (n(n−1)
2)

binary classifiers for n classes. The weight for missclassified points C (1) was estab-

lished at 1000. For classification, vectors are tested in all models giving a vote of be-

longing to a class, finally, it will be labeled as the class that has more votes. The fol-

lowing results are given for a leave-one-object-out crossvalidation method. We remove

41 images corresponding to the same object at a time. The learning set is composed of

all remaining objects, and we classify each view of the tested object. To evaluate each

efficiency of the different methods, we first studied independantly the graph kernel and

the HOG method.

3.1 Graph kernel

The aim of graph is mainly to discriminate object shape. To fill this condition, we chose

to use the labels which are pertinent for a shape description. In other words, we conserve

labels which give information about the object shape topology.

We retain the following parameters :

– for vertices : size of structured element, coordinates,

– for edges : orientation, length, strength, area,

Each characteric was normalized to have a mean equal to 0, and a standard deviation

equal to 1.

Figure 5 shows our results. We obtained a recognition rate of 78%. This low rate

can be explained by the fact that classes dog, horse and cow are strongly mixed.

10

3.2 HOG results

As we saw in section 2.2, the HOG descriptor actually involves many parameters. To
tune these parameters correctly, we completed a test to evaluate optimal set of parame-
ters, retrieve this following set :

– image size : 96 × 96 pixels,

– size of cell : 4 × 4 pixels,

– size of block : 2 × 2 cells,

– overlap of blocks : 1 cell,

– normalization factor for block : L2,

– number of bins for histogram : 4.

It should be noticed that the majority of these parameters have a small influence, like block

overlap, size of block, number of bins for histogram, and results are less than 5% better compared

with non-optimal set of parameters. On the contrary, the normalization factor and size of cell have

more influence on the result which are up to 10% better.

The rate obtained with the HOG descriptor is up to 90%.

HOG
PPPPPPPTrue

Prediction

402 0 0 0 0 0 0 8

0 409 0 0 1 0 0 0

0 5 323 0 38 43 1 0

0 0 0 410 0 0 0 0

0 2 30 0 354 24 0 0

0 1 59 0 24 326 0 0

0 0 0 0 0 0 410 0

5 0 0 0 0 0 0 405

Graph

❅
❅❅T

P

296 0 0 28 0 0 0 86

0 386 12 1 3 1 7 0

0 28 258 0 83 41 0 0

13 6 1 379 0 0 1 10

0 8 66 0 231 105 0 0

0 6 34 0 90 280 0 0

0 10 0 1 0 0 399 0

100 0 0 25 0 0 1 284

Fig. 5. Left :Results obtained for the HOG Kernel, with leave-one-object-out crossvalidation test.

Good recognition rate : 90,1%. Right :Results obtained for the Graph Kernel, with leave-one-

object-out crossvalidation test. Good recognition rate : 78%
1 8 3 6 3 6 3 6

5 3 5 6 6 3 6 5

1 8 1 8 3 5 4 1

5 6 6 2 6 2 8 1

Fig. 6. Left : misclassified object with HOG method. Right : misclassified objects with graph

method.

11

3.3 Kernel combination

We notice a certain complementarity between these methods, since some objects are badly dis-

criminated by a method, but well recognized with the other. Figure 6 shows some examples of

misclassified objects with the graph representation and with the HOG descriptor.

We now describe the final test realized over the complete database. We combine kernels with

a product : K(x, y) = KHOG(x, y) × Kgraph(x, y).

Each kernel KHOG and Kgraph was normalized previously : kn(x, y) = k(x,y)√
k(x,x)×(y,y)

Figure 7 shows results for this test, which gives 94,1% of good recognition.

PPPPPPPTrue

Prediction

403 0 0 0 0 0 0 7

0 409 1 0 0 0 0 0

0 1 345 0 37 27 0 0

0 0 0 410 0 0 0 0

0 1 31 0 353 25 0 0

0 0 35 0 21 354 0 0

0 0 0 0 0 0 410 0

7 0 0 0 0 0 0 403

Fig. 7. Results obtained for the combined kernel, with

leave-one-object-out crossvalidation test. Recognition

rate : 94,1%.

1 8 3 6

3 5 3 5

5 3 5 6

Fig. 8. Examples of miss-

classified objects for com-

plete test.

We can compare our results with other methods tested on the same database. In [14], Leibe

and Schiele used 7 classifiers in an optimal-decision tree. They obtained 93% of good recog-

nition rate for a leave-one-object-out crossvalidation method. Results are comparable, but their

method depends on the classes used for the classification, and may not be as efficient with ad-

ditional classes. In our case, we could add other categories, without redefining completely our

classification method.

In [21], results are given for a leave-one-image-out crossvalidation method for only 32 objects

(4 from each class). This query method gave a recognition rate of 95%. In our case, we tested our

method over the complete database. Moreover, we remove completely an object, no image of the

tested object was present in the learning set.

4 Conclusion

This paper presents a method for object categorization. The aim is to depict images thanks to

labeled graphs and histograms of oriented gradients.

The first representation is a labeled graph, which enables us to describe the global shape of

an object. The second representation is based on histograms of oriented gradients, which brings

more information concerning the appearance of the object. A graph kernel is obtained by random

walk on graphs, and we combine this kernel with a linear kernel obtained from HOG descriptors.

We combined these kernels to use them with the SVM classifier.

12

The advantage of this method is to combine two kinds of representations to categorize an

object. Using a classifier like SVM is well adapted to this combination which clearly improves

recognition performance, compared when only one representation is used.

A complete test of this method on the ETH-80 database has proved that this approach is very

promising, with 94% of good recognition rate for a leave-one-object-out crossvalidation test. This

result proved that our method is efficient compared with existing methods [14, 21]. Our results

could also be improved by combining additional object representations.

We have also some perspectives to improve this method. First, we would like to integrate his-

tograms into the graph, and define a kernel for the vertices which deals with these histogramms.

Another point resides in using multiple kernels. This point could help us to improve classification

results.

References

1. Francis R. Bach, Gert R. G. Lanckriet, and Michael I. Jordan. Multiple kernel learning, conic

duality, and the smo algorithm. In ICML ’04: Proceedings of the twenty-first international

conference on Machine learning, page 6, New York, NY, USA, 2004. ACM Press.

2. B. E. Boser, I. M. Guyon, and V. N. Vapnik. A training algorithm for optimal margin clas-

sifiers. In D. Haussler, editor, 5th Annual ACM Workshop on COLT, pages 144–152, Pitts-

burgh, PA, 1992. ACM Press.

3. Horst Bunke and Kim Shearer. A graph distance metric based on the maximal common

subgraph. Pattern Recogn. Lett., 19(3-4):255–259, 1998.

4. S. Beucher C. Lantuejoul. On the use of the geodesic metric in image analysis. Journal of

miscrocopy, 121(1):39–49, 1981.

5. N. Cristianini and J. Shawe-Taylor. Introduction to Support Vector Machines. Cambridge

Univeristy Press, 2000.

6. Nello Cristianini and John Shawe-Taylor. An introduction to support Vector Machines: and

other kernel-based learning methods. Cambridge University Press, New York, NY, USA,

2000.

7. Navneet Dalal and Bill Triggs. Histograms of oriented gradients for human detection. In

Cordelia Schmid, Stefano Soatto, and Carlo Tomasi, editors, International Conference on

Computer Vision and Pattern Recognition, volume 2, pages 886–893, INRIA Rhone-Alpes,

ZIRST-655, av. de l’Europe, Montbonnot-38334, June 2005.

8. J. Eichhorn and O. Chapelle. Object categorization with svm: kernels for local features.

Technical report, MPIK, July 2004.

9. Steven Gold and Anand Rangarajan. A graduated assignment algorithm for graph matching.

IEEE Transactions on Pattern Analysis and Machine Intelligence, 18(4):377–388, 1996.

10. Thorsten Joachims, Nello Cristianini, and John Shawe-Taylor. Composite kernels for hyper-

text categorisation. In Carla Brodley and Andrea Danyluk, editors, Proceedings of ICML-01,

18th International Conference on Machine Learning, pages 250–257, Williams College, US,

2001. Morgan Kaufmann Publishers, San Francisco, US.

11. T. Darrell K. Grauman. The pyramid match kernel: Discriminative classification with sets of

image features. In Proceedings of the IEEE International Conference on Computer Vision,

Beijing, China, 2005.

12. H. Kashima, K. Tsuda, and A. Inokuchi. Marginalized kernels between labeled graphs. In

Proceedings of the Twentieh International Conference on Machine Learning, 2003.

13. Borgwardt K.M., Ong C.S., Schnauer S., Vishwanathan S.V.N., Smola A.J., and Kriegel H.-

P. Protein function prediction via graph kernels. In Intelligent Systems in Molecular Biology,

2005.

13

14. B. Leibe and B. Schiele. Analyzing appearance and contour based methods for object cat-

egorization. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR’03),

Madison, WI, June 2003.

15. David G. Lowe. Distinctive image features from scale-invariant keypoints. International

Journal of Computer Vision, 60(2):91–110, 2004.

16. C. Di Ruberto. Recognition of shapes by attributed skeletal graphs. Pattern Recognition,

37(1):21–31, 2004.

17. D. Sharvit, J. Chan, H. Tek, and B. Kimia. Symmetry-based indexing of image databases,

1998.

18. A. Shashua, Y. Gdalyahu, and G. Hayon. Pedestrian detection for driving assistance systems:

Single-frame classification and system level performance. In Proceedings of IEEE Intelligent

Vehicles Symposium, 2004.

19. Andrea Torsello. Matching Hierarchical Structures for Shape Recognition. PhD thesis,

University of York, 2004.

20. V. Vapnik. Statistical Learning Theory. Wiley, 1998.

21. F. Demirci Y. Keselman, A. Shokoufandeh and S. Dickinson. Many-to-many feature match-

ing using spherical coding of directed graphs. In Proceedings, 8th European Conference on

Computer Vision, Prague, Czech Republic, pages 322–335, May 2004.

