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Abstract

Abnormal event detection in video is a challenging vi-

sion problem. Most existing approaches formulate abnor-

mal event detection as an outlier detection task, due to the

scarcity of anomalous data during training. Because of

the lack of prior information regarding abnormal events,

these methods are not fully-equipped to differentiate be-

tween normal and abnormal events. In this work, we for-

malize abnormal event detection as a one-versus-rest bi-

nary classification problem. Our contribution is two-fold.

First, we introduce an unsupervised feature learning frame-

work based on object-centric convolutional auto-encoders

to encode both motion and appearance information. Sec-

ond, we propose a supervised classification approach based

on clustering the training samples into normality clusters. A

one-versus-rest abnormal event classifier is then employed

to separate each normality cluster from the rest. For the

purpose of training the classifier, the other clusters act as

dummy anomalies. During inference, an object is labeled

as abnormal if the highest classification score assigned by

the one-versus-rest classifiers is negative. Comprehensive

experiments are performed on four benchmarks: Avenue,

ShanghaiTech, UCSD and UMN. Our approach provides

superior results on all four data sets. On the large-scale

ShanghaiTech data set, our method provides an absolute

gain of 8.4% in terms of frame-level AUC compared to the

state-of-the-art method [34].

1. Introduction

Abnormal event detection in video has drawn a lot of at-

tention in the past couple of years [7, 11, 12, 13, 14, 21,

22, 24, 27, 28, 31, 33, 34, 36, 37, 38], perhaps because it

is considered a challenging task due to the commonly ac-

cepted definition of abnormal events, which relies on con-

text. An example that illustrates the importance of context

is a scenario in which a truck is being driven on the street

(normal event) versus a scenario in which a truck is being

driven in a pedestrian area (abnormal event). In addition to

the reliance on context, abnormal events rarely occur and

are generally dominated by more familiar (normal) events.

Therefore, it is difficult to obtain a sufficiently representa-

tive set of anomalies, making it hard to employ traditional

supervised learning methods.

Most existing anomaly detection approaches [2, 5, 15,

18, 23, 25, 26, 37, 39] are based on outlier detection and

learn a model of normality from training videos containing

only familiar events. During inference, events are labeled

as abnormal if they deviate from the normality model. Dif-

ferent from these approaches, we address abnormal event

detection by formulating the task as a multi-class classifica-

tion problem instead of an outlier detection problem. Since

the training data contains only normal events, we first ap-

ply k-means clustering in order to find clusters representing

various types of normality (see Figure 1). Next, we train

a binary classifier following the one-versus-rest scheme in

order to separate each normality cluster from the others.

During training, normality clusters are treated as different

categories, leading to the synthetic generation of abnormal

training data. During inference, the highest classification

score corresponding to a given test sample represents the

normality score of the respective sample. If the score is

negative, the sample is labeled as abnormal (since it does

not belong to any normality class). To our knowledge, we

are the first to treat the abnormal event detection task as a

discriminative multi-class classification problem.

In general, existing abnormal event detection frame-

works extract features at a local level [7, 9, 15, 22, 23, 24,

25, 31, 32, 38], global (frame) level [21, 26, 27, 28, 33], or

both [5, 6, 11]. All these approaches extract features with-

out explicitly taking into account the objects of interest. In

this paper, we propose an object-centric approach by apply-

ing a fast yet powerful single-shot detector (SSD) [19] on

each frame, and learning deep unsupervised features using

convolutional auto-encoders (CAE) on top of the detected

objects, as shown in Figure 1. This enables us to explicity

focus only on the objects present in the scene. In addition, it

allows us to accurately localize the anomalies in each frame.

Although auto-encoders have been used before for abnor-

mal event detection [11, 31, 37], to our knowledge, we are

the first to train object-centric auto-encoders.
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Figure 1. Our anomaly detection framework based on training convolutional auto-encoders on top of object detections. In the training phase

(represented in dashed lines), the concatenated motion and appearance latent representations are clustered and a one-versus-rest classifier is

trained to discriminate between the formed clusters. In the inference phase, we label a test sample as abnormal if the highest classification

score is negative, i.e. the sample is not attributed to any class. Best viewed in color.

In summary, the novelty of our paper is two-fold. First,

we train object-centric convolutional auto-encoders for both

motion and appearance. Second, we propose a supervised

learning approach by formulating the abnormal event de-

tection task as a multi-class problem. We conduct exper-

iments on the Avenue [23], the ShanghaiTech [24], the

UCSD [25] and the UMN [26] data sets, and compare our

approach with the state-of-the-art abnormal event detection

methods [6, 7, 9, 11, 12, 13, 14, 15, 21, 22, 23, 24, 25, 26,

27, 28, 31, 32, 33, 34, 36, 37, 38]. The empirical results

clearly show that our approach achieves superior perfor-

mance compared to the state-of-the-art methods on all data

sets. Furthermore, on the Avenue and the ShanghaiTech

data sets, our approach provides considerable absolute gains

of 1.5% and 8.4%, respectively, over the state-of-the-art

methods [14, 34].

We organize the paper as follows. We present related

work on abnormal event detection in Section 2. We describe

our approach in Section 3. We present the abnormal event

detection experiments in Section 4. We draw our final con-

clusions in Section 5.

2. Related Work

Abnormal event detection is commonly formalized as an

outlier detection task [2, 5, 6, 9, 14, 15, 18, 23, 25, 26, 29,

36, 37, 38, 39], in which the main approach is to learn a

model of familiarity from training videos and label the de-

tected outliers as abnormal. Several abnormal event detec-

tion approaches [5, 6, 9, 23, 29] learn a dictionary of atoms

representing normal events during training, then label the

events not represented in the dictionary as abnormal. Some

recent approaches have employed locality sensitive hash-

ing [38] and deep learning [11, 12, 21, 24, 27, 28, 31, 33,

36, 37] to achieve better results. For instance, Smeureanu

et al. [33] employed a one-class Support Vector Machines

(SVM) model based on deep features provided by convolu-

tional neural networks (CNN) pre-trained on the ILSVRC

benchmark [30], while Ravanbakhsh et al. [27] combined

pre-trained CNN models with low-level optical-flow maps.

Similar to our own approach, which learns features in

an unsupervised fashion, there are a few works that have

employed unsupervised steps for abnormal event detec-

tion [9, 11, 29, 31, 36, 37]. Interestingly, some recent

works do not require training data at all, in order to detect

abnormal events [7, 13, 22]. More closely-related to our

work are methods that employ features learned with auto-

encoders [11, 31, 36, 37] or extracted from the classification

branch of Fast R-CNN [12]. In order to learn deep features

without supervision, Xu et al. [36, 37] used Stacked Denois-

ing Auto-Encoders on multi-scale patches. To detect abnor-

mal events, Xu et al. [36, 37] used one-class SVM on top

of the deep features. Hasan et al. [11] employed two auto-

encoders, one that is learned on conventional handcrafted
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features, and another one that is learned in an end-to-end

fashion using a fully convolutional feed-forward network.

On the other hand, Sabokrou et al. [31] combined 3D deep

auto-encoders and 3D convolutional neural networks into a

cascaded framework.

Differences of our approach. Different from these recent

related works [11, 31, 36, 37], we propose to train auto-

encoders on object detections provided by a state-of-the-

art detector [19]. The most similar work to ours is that of

Hinami et al. [12]. They also proposed an object-centric

approach, but our detection, feature extraction and train-

ing stages are different. While Hinami et al. [12] used

geodesic [17] and moving object proposals [10], we em-

ploy a single-shot detector [19] based on Feature Pyramid

Networks (FPN). In the feature extraction stage, Hinami

et al. [12] fine-tuned the classification branch of the Fast

R-CNN model on multiple visual tasks to exploit seman-

tic information that is useful for detecting and recounting

abnormal events. In contrast, we learn unsupervised deep

features with convolutional auto-encoders. Also differing

from Hinami et al. [12] and all other works, we formalize

the abnormal event detection task as a multi-class problem

and propose to train a one-versus-rest SVM on top of k-

means clusters. A similar approach was adopted by Caron

et al. [4] in order to train deep generic visual features in an

unsupervised manner.

3. Method

Motivation. Since the training data contains only normal

events, supervised learning methods that require both posi-

tive (normal) and negative (abnormal) samples cannot be di-

rectly applied for the abnormal event detection task. How-

ever, we believe that including any form of supervision is

an important step towards obtaining better performance in

practice. Motivated by this intuition, we conceive a frame-

work that incorporates two approaches for including super-

vision. The first approach consists of employing a single-

shot object detector [19], which is trained in a supervised

fashion, in order to obtain object detections that are subse-

quently used throughout the rest of the processing pipeline.

The second approach consists of training supervised one-

versus-rest classifiers on artificially-generated classes rep-

resenting different kinds of normality. The classes are gen-

erated by previously clustering the training samples. Our

entire framework is composed of four sequential stages that

are described in detail below. These are the object detection

stage, the feature learning stage, the model training stage,

and the inference stage.

Object detection. We propose to detect objects using a

single-shot object detector based on FPN [19], which of-

fers an optimal trade-off between accuracy and speed. This

object detector is specifically chosen because (i) it can ac-

curately detect smaller objects, due to the FPN architecture,

Figure 2. Normal and abnormal objects (left) and gradients (right)

with reconstructions provided by the appearance (left) and the

motion (right) convolutional auto-encoders. The samples are se-

lected from the Avenue [23], the ShanghaiTech [24], the UCSD

Ped2 [25] and the UMN [26] test videos, and are not seen during

training the auto-encoders.

and (ii) it can process about 13 frames per second on a

GPU. These advantages are of utter importance for devel-

oping a practical abnormal event detection framework. The

object detector is applied on a frame by frame basis in or-

der to obtain a set of bounding boxes for the objects in each

frame t. We use the bounding boxes to crop the objects. The

resulting images are converted to grayscale. Next, the im-

ages are directly passed to the feature learning stage, in or-

der to learn object-centric appearance features. At the same

time, we use the images containing objects in order to com-

pute gradients representing motion. For this step, we addi-

tionally consider the images cropped from a previous and a

subsequent frame. As illustrared in Figure 1, we choose the

frames at index t − 3 and t + 3, with respect to the current

frame t. Since the temporal distance between the frames

is not significant, we do not need to track the objects. In-

stead, we simply consider the bounding boxes determined

at frame t in order to crop the objects at frames t − 3 and

t + 3. For each object, we obtain two image gradients, one

representing the change in motion from frame t−3 to frame

t and one representing the change in motion from frame t

to frame t+ 3. Finally, the image gradients are also passed

to the feature learning stage, in order to learn object-centric

motion features.

Feature learning. In order to obtain a feature vector for

each object detection, we train three convolutional auto-
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encoders. One auto-encoder takes as input cropped images

containing objects, and it inherently learns latent appear-

ance features. The other two auto-econders take as input the

gradients that capture how the object moved before and af-

ter the detection moment, respectively. These auto-encoders

learn latent motion features. All three auto-encoders are

based on the same lightweight architecture, which is com-

posed of an encoder with 3 convolutional and max-pooling

blocks, and a decoder with 3 upsampling and convolutional

blocks and an additional convolutional layer for the final

output. For each CAE, the size of the input is 64× 64× 1,

and the size of the output is the same. All convolutional

layers are based on 3 × 3 filters. Each convolutional layer,

except the very last one, is followed by ReLU activations.

The first two convolutional layers of the encoder contain 32
filters each, while the third convolutional layer contains 16
filters. The max-pooling layers of the encoder are based on

2 × 2 filters with stride 2. The resulting latent feature rep-

resentation of each CAE is composed of 16 activation maps

of size 8×8. In the decoder, each resize layer upsamples the

input activations by a factor of two, using the nearest neigh-

bor approach. The first convolutional layer in the decoder

contains 16 filters. The following two convolutional layers

of the decoder contain 32 filters each. The fourth (and last)

convolutional layer of the decoder contains a single filter

of size 3 × 3. The main purpose of the last convolutional

layer is to reduce the output depth from 64 × 64 × 32 to

64× 64× 1. The auto-encoders are trained with the Adam

optimizer [16] using the pixel-wise mean squared error as

loss function:

L(I,O) =
1

h · w

h∑

i=1

w∑

j=1

(Iij −Oij)
2
, (1)

where I and O are the input and the output images, each of

size h× w pixels (in our case, h = w = 64).

The auto-encoders learn to represent objects detected in

the training video containing only normal behavior. When

we provide as input objects with abnormal behavior, the re-

construction error of the auto-encoders is expected to be

higher. Furthermore, the latent features should represent

known (normal) objects in a different and better way than

unknown (abnormal) objects. Some input-output CAE pairs

selected from the test videos in each data set considered in

the evaluation are shown in Figure 2. We notice that the

auto-encoders generally provide better reconstructions for

normal objects, confirming our intuition. The final feature

vector for each object detection sample is a concatenation

of the latent appearance features and the latent motion fea-

tures. Since the latent activation maps of each CAE are

8× 8× 16, the final feature vectors have 3072 dimensions.

Model training. We propose a novel training approach by

formalizing the abnormal event detection task as a multi-

class classification problem. The proposed approach aims

to compensate for the lack of truly abnormal training sam-

ples, by constructing a context in which a subset of nor-

mal training samples can play the role of dummy abnormal

samples with respect to another subset of normal training

samples. This is achieved by clustering the normal training

samples into k clusters using k-means. We consider that

each cluster represents a certain kind of normality, differ-

ent from the other clusters. From the perspective of a given

cluster i, the samples belonging to the other clusters (from

the set {1, 2, ...., k} \ i) can be viewed as (dummy) abnor-

mal samples. Therefore, we can train a binary classifier gi,

in our case an SVM, to separate the positively-labeled data

points in a cluster i from the negatively-labeled data points

in clusters {1, 2, ...., k} \ i, as follows:

gi(x) =

m∑

j=1

wj · xj + b, (2)

where x ∈ R
m is a test sample that must be classified either

as normal or abnormal, w is the vector of weights and b is

the bias term. We note that the negative samples can actu-

ally be considered as more closely-related to the samples in

cluster i than truly abnormal samples. Hence, the discrim-

ination task is more difficult, and it can help the SVM to

select better support vectors. For each cluster i, we train

an independent binary classifier gi. The final classification

score for one data sample is the highest score among the

scores returned by the k classifiers. In other words, the clas-

sification score for one data sample is selected according to

the one-versus-rest scheme, commonly used when binary

classifiers are employed for solving multi-class problems.

Inference. In the inference phase, each test sample x is

classified by the k binary SVM models. The highest classi-

fication score is used (with a change of sign) as the abnor-

mality score s for the respective test sample x:

s(x) = −max
i

{gi(x)}, ∀i ∈ {1, 2, ...., k}. (3)

By putting together the scores of the objects cropped from

a given frame, we obtain a pixel-level anomaly prediction

map for the respective frame. If the bounding boxes of two

objects overlap, we keep the maximum abnormality score

for the overlapping region. To obtain frame-level predic-

tions, we take the highest score in the prediction map as

the anomaly score of the respective frame. Finally, we ap-

ply a Gaussian filter to temporally smooth the frame-level

anomaly scores.

4. Experiments

4.1. Data Sets

Avenue. The Avenue data set [23] consists of 16 training

videos with a total 15328 frames and 21 test videos with a

total of 15324. The resolution of each video frame is 360×
640 pixels. For each test frame, ground-truth locations of

anomalies are provided using pixel-level masks.
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ShanghaiTech. The ShanghaiTech Campus data set [24]

is among the largest data sets for abnormal event detection.

Unlike other data sets, it contains 13 different scenes with

various lighting conditions and camera angles. There are

330 training videos and 107 test videos. The test set con-

tains a total of 130 abnormal events annotated at the pixel-

level. There are 316154 frames in the whole data set. The

resolution of each video frame is 480× 856 pixels.

UCSD. The UCSD Pedestrian data set [25] is composed of

two subsets, namely Ped1 and Ped2. As Hinami et al. [12],

we exclude Ped1 from the evaluation, because it has a sig-

nificantly lower frame resolution of 158 × 238. Another

problem with Ped1 is that some recent works report re-

sults only on a subset of 16 videos [27, 28, 36], while oth-

ers [13, 25, 21, 22] report results on all 36 test videos. We

thus consider only UCSD Ped2, which contains 16 train-

ing and 12 test videos. The resolution of each frame is

240 × 360 pixels. There are 2550 frames for training and

2010 for testing. The videos illustrate various crowded

scenes, and anomalies include bicycles, vehicles, skate-

boarders and wheelchairs crossing pedestrian areas.

UMN. The UMN Unusual Crowd Activity data set [26]

consists of three independent crowded scenes of different

lengths. The three scenes consist of 1453 frames, 4144
frames and 2144 frames, respectively. The resolution of

each video frame is 240× 320 pixels. The normal behavior

is represented by people walking around, while the abnor-

mal behavior is represented by people running in different

directions.

4.2. Evaluation

As evaluation metric, we employ the area under the

curve (AUC) computed with regard to ground-truth annota-

tions at the frame-level. The frame-level AUC metric used

in most previous works [6, 7, 13, 14, 21, 22, 23, 24, 25, 34,

36] considers a frame as being a correct detection, if it con-

tains at least one abnormal pixel. We adopt the same frame-

level AUC definition as these previous works. In order to

obtain the final abnormality maps, our pixel-level detection

maps are smoothed using a similar technique as [7, 13, 23].

4.3. Parameter and Implementation Details

In the object detection stage, we employ a single-shot de-

tector based on FPN [19] that is pre-trained on the COCO

data set [20]. The detector is downloaded from the Tensor-

Flow detection model zoo. For the training set, we keep the

detections with a confidence level higher than 0.5, and for

the test set, we keep those with a confidence level higher

than 0.4. The convolutional auto-encoders used in the fea-

ture learning stage are implemented in TensorFlow [1]. We

train the auto-encoders for 100 epochs with the learning rate

set to 10−3, and for another 100 epochs with the learning

rate set to 10−4. We use mini-batches of 64 samples. We

train independent auto-encoders for each of the four data

Method Avenue Shanghai UCSD UMN

Tech Ped2

Kim et al. [15] - - 69.3 -

Mehran et al. [26] - - 55.6 96.0

Mahadevan et al. [25] - - 82.9 -

Cong et al. [6] - - - 97.8

Saligrama et al. [32] - - - 98.5

Lu et al. [23] 80.9 - - -

Dutta et al. [9] - - - 99.5

Xu et al. [36, 37] - - 90.8 -

Hasan et al. [11] 70.2 60.9 90.0 -

Del Giorno et al. [7] 78.3 - - 91.0

Zhang et al. [38] - - 91.0 98.7

Smeureanu et al. [33] 84.6 - - 97.1

Ionescu et al. [13] 80.6 - 82.2 95.1

Luo et al. [24] 81.7 68.0 92.2 -

Hinami et al. [12] - - 92.2 -

Ravanbakhsh et al. [28] - - 93.5 99.0

Sabokrou et al. [31] - - - 99.6

Ravanbakhsh et al. [27] - - 88.4 98.8

Liu et al. [21] 85.1 72.8 95.4 -

Liu et al. [22] 84.4 - 87.5 96.1

Sultani et al. [34] - 76.5 - -

Ionescu et al. [14] 88.9 - - 99.3

Ours 90.4 84.9 97.8 99.6

Table 1. Abnormal event detection results (in %) in terms of frame-

level AUC on the Avenue [23], the ShanghaiTech [24], the UCSD

Ped2 [25] and the UMN [26] data sets. Our framework is com-

pared with several state-of-the-art approaches [6, 7, 9, 11, 12, 13,

14, 15, 21, 22, 23, 24, 25, 26, 27, 28, 31, 32, 33, 34, 36, 37, 38],

which are listed in temporal order. The results of Sultani et al. [34]

on ShanghaiTech are based on their pre-trained model.

sets considered in the evaluation. To cluster the training

samples with k-means, we employ the VLFeat [35] imple-

mentation, which is based on the Lloyd algorithm [8]. We

adopt k-means++ [3] initialization. We repeat the clustering

10 times, selecting the partitioning with the minimum en-

ergy. In all the experiments, we set the number of k-means

clusters to k = 10. We set the regularization parameter of

the linear SVM (implemented in VLFeat [35]) to C = 1.

4.4. Results

We evaluate our approach in comparison with a series of

state-of-the-art methods [6, 7, 9, 11, 12, 13, 15, 21, 22, 23,

24, 25, 26, 27, 28, 31, 32, 33, 36, 37, 38] on the Avenue,

the ShanghaiTech, the UCSD Ped2 and the UMN data sets.

The corresponding results are presented in Table 1.

Avenue. On the Avenue data set, we are able to surpass the

results reported in all previous works. Compared to most of

the recent works [13, 21, 22, 24, 33], our method provides

an absolute gain of more than 5% in terms of frame-level

AUC. With a frame-level AUC of 88.9%, Ionescu et al. [14]

is the best and most recent baseline. We surpass their score

by 1.5%. Remarkably, with a frame-level AUC of 90.4%,

our approach is the only method that surpasses the threshold
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Figure 3. Frame-level anomaly detection scores between 0 and 1

(on the horizontal axis) provided by our approach, for various test

videos selected from the Avenue [23], the ShanghaiTech [24], the

UCSD Ped2 [25] and the UMN [26] data sets. Ground-truth ab-

normal events are represented in cyan and our scores are illustrated

in red. Best viewed in color.

of 90% on the Avenue data set.

Notably, Hinami et al. [12] did not compare with other

approaches on the official Avenue test set, arguing that there

are five test videos (01, 02, 08, 09 and 10) containing static

abnormal objects that are not properly labeled. Therefore,

they only evaluated their method on Avenue17, a subset that

excludes the respective five videos. We also compare our

performance with that reported by Hinami et al. [12], being

sure to exclude the same five test videos for a fair compari-

son. Our frame-level AUC score on the Avenue17 subset is

91.6%, which is almost 2% better than the frame-level AUC

of 89.8% reported in [12]. With respect to the complete Av-

enue test set, we note that our framework attains a better

frame-level AUC score on the Avenue17 subset, suggesting

that the removed test videos are indeed more problematic

than the videos left in Avenue17. As observed by Hinami

et al. [12], the removed videos include some abnormal ob-

jects that are not labeled accordingly. Methods detecting

these objects as abnormal are destined to reach higher false

positive rates, which is unfair.

In Figure 3 (a), we present the frame-level anomaly

scores provided by our method on test video 06 from Av-

enue. According to the ground-truth labels, which are also

illustrated in Figure 3 (a), we note that there are four ab-

normal events in the respective test video. Our approach

seems to be able to identify three of the four events, without

including any false positive detections. Figure 4 (top row)

illustrates a few examples of true positive and false posi-

tive abnormal event detections. From left to right, the true

positive detections are a person running, a person walking

in the wrong direction, a person picking up an object and

a person throwing an object. The first false positive ex-

ample consists of two people that are detected in the same

bounding box by the object detector. The other false pos-

itive detection is a person walking in the wrong direction

that is labeled as abnormal too soon.

ShanghaiTech. Since ShanghaiTech is the newest data set

for abnormal event detection, there are only a few recent

approaches reporting results on this data set [21, 24]. Be-

sides these, Luo et al. [24] additionally evaluated a previ-

ously published method [11] when they introduced the data

set. On the ShanghaiTech data set, the state-of-the-art per-

formance of 72.8% is reported by Liu et al. [21]. We out-

perform their approach by a large margin of 12.1%. In or-

der to compare with Sultani et al. [34] in standard formula-

tion of the abnormal event detection task, we used the open

source code provided by Sultani et al. [34] to compute their

anomaly scores for the large-scale ShanghaiTech data set.

As shown in Table 1, the approach of Sultani et al. [34] ob-

tains a frame-level AUC of 76.5%, outperforming the best

existing method [21]. Our approach significantly outper-

forms both Sultani et al. [34] and Liu et al. [21], achieving

a frame-level AUC of 84.9%. With a frame-level AUC of

84.9%, our approach is the only one to surpass the 80%
threshold on ShanghaiTech.

In Figure 3 (b), we display our frame-level anomaly

scores against the ground-truth labels on a ShanghaiTech

test video with three abnormal events. On this video, we can

clearly observe a strong correlation between our anomaly

scores and the ground-truth labels. Some localization re-

sults from different scenes in the ShanghaiTech data set are

illustrated in the second row of Figure 4. The true positive

abnormal events detected by our framework are (from left

to right) two bikers in a pedestrian area, a person robbing

another person, a person jumping and two people fighting.

The false positive abnormal events are triggered because, in

each case, there are two people in the same bounding box

and our system labels the unusual appearance and motion

generated by the two objects as abnormal.

UCSD Ped2. While older approaches [15, 26] report frame-

level AUC scores under 70%, most approaches proposed

in the last three years [11, 12, 21, 22, 24, 27, 28, 37, 38]

reach frame-level AUC scores between 87% and 94% on

UCSD Ped2. For instance, the frameworks based on auto-

encoders [11, 36, 37] attain results of around 90%. Liu et

al. [21] recently outperformed the previous works, report-

ing a frame-level AUC of 95.4%. We further surpass their
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Figure 4. True positive (left) versus false positive (right) detections of our framework. Examples are selected from the Avenue [23] (first

row), the ShanghaiTech [24] (second row), the UCSD Ped2 [25] (third row) and the UMN [26] (fourth row) data sets. Best viewed in color.

state-of-the-art result, reaching the top frame-level AUC of

97.8% on UCSD Ped2. Our score is 2.4% above the score

reported by Liu et al. [21], 4.3% above the second-best

score reported by Ravanbakhsh et al. [28], and more than

7% higher than the scores reported by other frameworks

based on auto-encoders [11, 36, 37].

As for the other data sets, we compare our frame-level

anomaly scores against the ground-truth labels on a test

video from UCSD Ped2 in Figure 3 (c). On this particu-

lar video, our frame-level AUC is above 99%, indicating

that our approach can precisely detect the abnormal event.

Furthermore, the qualitative results presented in the third

row of Figure 4, show that our approach can also localize

the abnormal events from UCSD Ped2. From left to right,

the true positive detections are a biker in a pedestrian area,

two bikers in a pedestrian area, two bikers and a skater in

a pedestrian area and a biker and a skater in a pedestrian

area. As for ShanghaiTech, the false positive abnormal de-

tections are caused by two people in the same bounding box.

UMN. It appears that UMN is the easiest abnormal event

detection data set, because almost all works report frame-

level AUC scores higher than 95%, with some works [9,

28, 31] even surpassing 99%. The top score of 99.6% is

reported by Sabokrou et al. [31], and we reach the same

performance on the UMN data set. We note that the sec-

ond scene seems to be slightly more difficult than the other

two scenes, since our frame-level AUC score on this scene

is 99.1%, while the frame-level AUC scores on the other

scenes are 99.9% and 99.8%, respectively. For this rea-

son, we choose to illustrate the frame-level anomaly scores

against the ground-truth labels for the second scene from

UMN in Figure 3 (d). Overall, our anomaly scores corre-

late well with the ground-truth labels, but there are some

normal frames with high abnormality scores just before the

third abnormal event in the scene.

In the fourth row of Figure 4, we present some localiza-

tion results provided by our framework. The true positive

examples represent people running around in different di-

rections, while the false positive detections are triggered by

two people in the same bounding box and a person bending

down to pick up an object. We note that the false positive

examples are selected from the second scene, as we did not

find false positive detections in the other two scenes.

4.5. Discussion

While the results presented in Table 1 show that our ap-

proach can outperform the state-of-the-art methods on four

evaluation sets, we also aim to address questions about the

robustness of our features and parameter choices, and to dis-

cuss the running time of our framework.

Parameter selection. We present results with vari-

ous parameter choices on the largest and most difficult

evaluation set, namely ShanghaiTech. We first vari-

ate the number of clusters k by selecting values in the

set {5, 10, 15, 20, 25, 30}. The corresponding frame-level

AUC scores are presented in Figure 5. The results pre-

sented in Figure 5 indicate that the number of clusters does
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Figure 5. Frame-level AUC scores on ShanghaiTech obtained

by selecting values for the number of clusters k from the set

{5, 10, 15, 20, 25, 30}.

Figure 6. Frame-level AUC scores on ShanghaiTech obtained by

selecting values for the SVM regularization parameter C from the

set {0.1, 1, 10, 100}.

not play a significant role in our multi-class classification

framework, since the accuracy variations are lower than

1.1%. With only one exception (for k = 25), our results

are always higher than 84%. We also variate the regular-

ization parameter of the SVM, by considering values in the

set {0.1, 1, 10, 100}. The corresponding frame-level AUC

scores are presented in Figure 6. The results presented in

Figure 6 show that the performance variation is lower than

0.3%, and the frame-level AUC scores are always higher

than 84.6%. We believe that this happens because the

classes are linearly separable, since they are generated by

clustering the samples with k-means into disjoint clusters.

Overall, we conclude that our high improvement (12.1%)

over the state-of-the-art approach [21], cannot be explained

by a convenient choice of parameters.

Ablation results. In Table 2, we present feature ablation

results, as well as results for a one-class SVM based on

our full object-centric feature set, on the ShanghaiTech data

set. When we remove the object detector and train auto-

encoders at the frame-level, we obtain a frame-level AUC

of 72.4%, which demonstrates the importance of extracting

object-centric features and using the one-versus-rest SVM.

We note that the frame-level auto-encoders have an addi-

tional convolutional layer and the input resolution is in-

creased to 192× 192. When we replace the one-class SVM

with our multi-class approach based on k-means and one-

versus-rest SVM, while keeping the features computed on

full frames, the frame-level AUC grows to 78.7%. This

demonstrates that our approach based on k-means and one-

versus-rest SVM is indeed helpful. When we replace the

object-centric CAE features with pre-trained SSD features

(extracted right before the SSD class predictor), the frame-

Method Score

Frame-level CAE features + one-class SVM (baseline) 72.4

Frame-level CAE features + one-versus-rest SVM 78.7

Pre-trained SSD features + one-versus-rest SVM 81.3

CAE appearance features + one-versus-rest SVM 82.2

CAE motion features + one-versus-rest SVM 83.0

Combined CAE features + one-class SVM 79.2

Combined CAE features + one-versus-rest SVM 84.9

Table 2. Frame-level AUC scores (in %) on ShanghaiTech [24] ob-

tained by removing various components from our framework ver-

sus a baseline based on frame-level features and one-class SVM.

level AUC is only 81.3%, which shows the importance of

learning features with auto-encoders. By removing either

the appearance or the motion object-centric CAE features

from our model, the results drop by less than 3%. This

shows that both appearance and motion features are rele-

vant for the abnormal event detection task. By replacing

our multi-class approach based on k-means and one-versus-

rest SVM with a one-class SVM, while keeping the com-

bined object-centric CAE features, the performance drops

by 5.7%. This result indicates that formalizing the abnor-

mal event detection task as a multi-class problem is indeed

useful. We conclude that both of our contributions are cru-

cial to obtain superior results.

Running time. The single-shot object detector [19] re-

quires about 74 milliseconds to process a single frame.

Hence, it can run at about 13.5 frames per second (FPS).

With a reasonable average of 5 objects per frame, our fea-

ture extraction and inference stages require about 16 mil-

liseconds per frame. Thus, we can process about 62.5
frames per second. However, the entire pipeline requires

about 90 milliseconds to infer the anomaly scores for a sin-

gle frame, which translates to 11 FPS. We note that more

than 80% of the processing time is spent detecting objects

on a frame by frame basis. The running time can be im-

proved by replacing the current object detector with a faster

one. We note that all running times were measured on an

Nvidia Titan Xp GPU with 12 GB of RAM.

5. Conclusion and Future Work

We introduced a novel method for abnormal event de-

tection in video, which is based on (i) training object-

centric convolutional auto-encoders and on (ii) formaliz-

ing abnormal event detection as a multi-class problem. The

empirical results obtained on four data sets indicate that

our approach outperforms a series of state-of-the-art ap-

proaches [6, 7, 9, 11, 12, 13, 14, 15, 21, 22, 23, 24, 25,

26, 27, 28, 31, 32, 33, 34, 36, 37, 38]. In future work, we

aim to improve our framework by segmenting and tracking

objects.
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