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Abstract

Learning object-centric representations of complex scenes is a promising step
towards enabling efficient abstract reasoning from low-level perceptual features.
Yet, most deep learning approaches learn distributed representations that do
not capture the compositional properties of natural scenes. In this paper, we
present the Slot Attention module, an architectural component that interfaces with
perceptual representations such as the output of a convolutional neural network
and produces a set of task-dependent abstract representations which we call slots.
These slots are exchangeable and can bind to any object in the input by specializing
through a competitive procedure over multiple rounds of attention. We empirically
demonstrate that Slot Attention can extract object-centric representations that
enable generalization to unseen compositions when trained on unsupervised object
discovery and supervised property prediction tasks.

1 Introduction

Object-centric representations have the potential to improve sample efficiency and generalization of
machine learning algorithms across a range of application domains, such as visual reasoning [1], mod-
eling of structured environments [2], multi-agent modeling [3–5], and simulation of interacting physi-
cal systems [6–8]. Obtaining object-centric representations from raw perceptual input, such as an im-
age or a video, is challenging and often requires either supervision [1, 3, 9, 10] or task-specific architec-
tures [2, 11]. As a result, the step of learning an object-centric representation is often skipped entirely.
Instead, models are typically trained to operate on a structured representation of the environment that is
obtained, for example, from the internal representation of a simulator [6, 8] or of a game engine [4, 5].

To overcome this challenge, we introduce the Slot Attention module, a differentiable interface
between perceptual representations (e.g., the output of a CNN) and a set of variables called slots.
Using an iterative attention mechanism, Slot Attention produces a set of output vectors with
permutation symmetry. Unlike capsules used in Capsule Networks [12, 13], slots produced by Slot
Attention do not specialize to one particular type or class of object, which could harm generalization.
Instead, they act akin to object files [14], i.e., slots use a common representational format: each
slot can store (and bind to) any object in the input. This allows Slot Attention to generalize in a
systematic way to unseen compositions, more objects, and more slots.

Slot Attention is a simple and easy to implement architectural component that can be placed, for
example, on top of a CNN [15] encoder to extract object representations from an image and is trained
end-to-end with a downstream task. In this paper, we consider image reconstruction and set prediction
as downstream tasks to showcase the versatility of our module both in a challenging unsupervised
object discovery setup and in a supervised task involving set-structured object property prediction.
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Figure 1: (a) Slot Attention module and example applications to (b) unsupervised object discovery
and (c) supervised set prediction with labeled targets yi. See main text for details.

Our main contributions are as follows: (i) We introduce the Slot Attention module, a simple architec-
tural component at the interface between perceptual representations (such as the output of a CNN) and
representations structured as a set. (ii) We apply a Slot Attention-based architecture to unsupervised
object discovery, where it matches or outperforms relevant state-of-the-art approaches [16, 17], while
being more memory efficient and significantly faster to train. (iii) We demonstrate that the Slot At-
tention module can be used for supervised object property prediction, where the attention mechanism
learns to highlight individual objects without receiving direct supervision on object segmentation.

2 Methods

In this section, we introduce the Slot Attention module (Figure 1a; Section 2.1) and demonstrate how
it can be integrated into an architecture for unsupervised object discovery (Figure 1b; Section 2.2)
and into a set prediction architecture (Figure 1c; Section 2.3).

2.1 Slot Attention Module

The Slot Attention module (Figure 1a) maps from a set of N input feature vectors to a set of K
output vectors that we refer to as slots. Each vector in this output set can, for example, describe
an object or an entity in the input. The overall module is described in Algorithm 1 in pseudo-code1.

Slot Attention uses an iterative attention mechanism to map from its inputs to the slots. Slots are
initialized at random and thereafter refined at each iteration t = 1 . . . T to bind to a particular part
(or grouping) of the input features. Randomly sampling initial slot representations from a common
distribution allows Slot Attention to generalize to a different number of slots at test time.

At each iteration, slots compete for explaining parts of the input via a softmax-based attention
mechanism [18–20] and update their representation using a recurrent update function. The final
representation in each slot can be used in downstream tasks such as unsupervised object discovery
(Figure 1b) or supervised set prediction (Figure 1c).

We now describe a single iteration of Slot Attention on a set of input features, inputs ∈ R
N×Dinputs ,

with K output slots of dimension Dslots (we omit the batch dimension for clarity). We use learnable
linear transformations k, q, and v to map inputs and slots to a common dimension D.

Slot Attention uses dot-product attention [19] with attention coefficients that are normalized over
the slots, i.e., the queries of the attention mechanism. This choice of normalization introduces
competition between the slots for explaining parts of the input.

1An implementation of Slot Attention is available at: https://github.com/google-research/
google-research/tree/master/slot_attention.
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Algorithm 1 Slot Attention module. The input is a set of N vectors of dimension Dinputs which is
mapped to a set of K slots of dimension Dslots. We initialize the slots by sampling their initial values
as independent samples from a Gaussian distribution with shared, learnable parameters µ ∈ R

Dslots

and σ ∈ R
Dslots . In our experiments we set the number of iterations to T = 3.

1: Input: inputs ∈ R
N×Dinputs , slots ∼ N (µ, diag(σ)) ∈ R

K×Dslots

2: Layer params: k, q, v: linear projections for attention; GRU; MLP; LayerNorm (x3)

3: inputs = LayerNorm (inputs)

4: for t = 0 . . . T

5: slots_prev = slots

6: slots = LayerNorm (slots)

7: attn = Softmax ( 1√
D
k(inputs) · q(slots)T , axis=‘slots’) # norm. over slots

8: updates = WeightedMean (weights=attn+ ǫ, values=v(inputs)) # aggregate

9: slots = GRU (state=slots_prev, inputs=updates) # GRU update (per slot)

10: slots += MLP (LayerNorm (slots)) # optional residual MLP (per slot)

11: return slots

We further follow the common practice of setting the softmax temperature to a fixed value of
√
D [20]:

attni,j :=
eMi,j

∑
l e

Mi,l
where M :=

1√
D
k(inputs) · q(slots)T ∈ R

N×K . (1)

In other words, the normalization ensures that attention coefficients sum to one for each individual
input feature vector, which prevents the attention mechanism from ignoring parts of the input. To
aggregate the input values to their assigned slots, we use a weighted mean as follows:

updates := WT · v(inputs) ∈ R
K×D where Wi,j :=

attni,j
∑N

l=1
attnl,j

. (2)

The weighted mean helps improve stability of the attention mechanism (compared to using a
weighted sum) as in our case the attention coefficients are normalized over the slots. In practice
we further add a small offset ǫ to the attention coefficients to avoid numerical instability.

The aggregated updates are finally used to update the slots via a learned recurrent function, for which
we use a Gated Recurrent Unit (GRU) [21] with Dslots hidden units. We found that transforming the
GRU output with an (optional) multi-layer perceptron (MLP) with ReLU activation and a residual
connection [22] can help improve performance. Both the GRU and the residual MLP are applied
independently on each slot with shared parameters. We apply layer normalization (LayerNorm) [23]
both to the inputs of the module and to the slot features at the beginning of each iteration and before
applying the residual MLP. While this is not strictly necessary, we found that it helps speed up
training convergence. The overall time-complexity of the module is O (T ·D ·N ·K).

We identify two key properties of Slot Attention: (1) permutation invariance with respect to the input
(i.e., the output is independent of permutations applied to the input and hence suitable for sets) and
(2) permutation equivariance with respect to the order of the slots (i.e., permuting the order of the
slots after their initialization is equivalent to permuting the output of the module). More formally:

Proposition 1. Let SlotAttention(inputs, slots) ∈ R
K×Dslots be the output of the Slot Attention

module (Algorithm 1), where inputs ∈ R
N×Dinputs and slots ∈ R

K×Dslots . Let πi ∈ R
N×N and

πs ∈ R
K×K be arbitrary permutation matrices. Then, the following holds:

SlotAttention(πi · inputs, πs · slots) = πs · SlotAttention(inputs, slots) .

The proof is in the supplementary material. The permutation equivariance property is important to
ensure that slots learn a common representational format and that each slot can bind to any object in
the input.

2.2 Object Discovery

Set-structured hidden representations are an attractive choice for learning about objects in an unsuper-
vised fashion: each set element can capture the properties of an object in a scene, without assuming
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a particular order in which objects are described. Since Slot Attention transforms input represen-
tations into a set of vectors, it can be used as part of the encoder in an autoencoder architecture for
unsupervised object discovery. The autoencoder is tasked to encode an image into a set of hidden rep-
resentations (i.e., slots) that, taken together, can be decoded back into the image space to reconstruct
the original input. The slots thereby act as a representational bottleneck and the architecture of the de-
coder (or decoding process) is typically chosen such that each slot decodes only a region or part of the
image [16, 17, 24–27]. These regions/parts are then combined to arrive at the full reconstructed image.

Encoder Our encoder consists of two components: (i) a CNN backbone augmented with positional
embeddings, followed by (ii) a Slot Attention module. The output of Slot Attention is a set of slots,
that represent a grouping of the scene (e.g. in terms of objects).

Decoder Each slot is decoded individually with the help of a spatial broadcast decoder [28], as used
in IODINE [16]: slot representations are broadcasted onto a 2D grid (per slot) and augmented with
position embeddings. Each such grid is decoded using a CNN (with parameters shared across the
slots) to produce an output of size W ×H × 4, where W and H are width and height of the image,
respectively. The output channels encode RGB color channels and an (unnormalized) alpha mask.
We subsequently normalize the alpha masks across slots using a Softmax and use them as mixture
weights to combine the individual reconstructions into a single RGB image.

2.3 Set Prediction

Set representations are commonly used in tasks across many data modalities ranging from point
cloud prediction [29, 30], classifying multiple objects in an image [31], or generation of molecules
with desired properties [32, 33]. In the example considered in this paper, we are given an input
image and a set of prediction targets, each describing an object in the scene. The key challenge
in predicting sets is that there are K! possible equivalent representations for a set of K elements,
as the order of the targets is arbitrary. This inductive bias needs to be explicitly modeled in the
architecture to avoid discontinuities in the learning process, e.g. when two semantically specialized
slots swap their content throughout training [31, 34]. The output order of Slot Attention is random
and independent of the input order, which addresses this issue. Therefore, Slot Attention can be used
to turn a distributed representation of an input scene into a set representation where each object can
be separately classified with a standard classifier as shown in Figure 1c.

Encoder We use the same encoder architecture as in the object discovery setting (Section 2.2),
namely a CNN backbone augmented with positional embeddings, followed by Slot Attention, to
arrive at a set of slot representations.

Classifier For each slot, we apply a MLP with parameters shared between slots. As the order of both
predictions and labels is arbitrary, we match them using the Hungarian algorithm [35]. We leave the
exploration of other matching algorithms [36, 37] for future work.

3 Related Work

Object discovery Our object discovery architecture is closely related to a line of recent work on
compositional generative scene models [16, 17, 24–27, 38–44] that represent a scene in terms of a
collection of latent variables with the same representational format. Closest to our approach is the
IODINE [16] model, which uses iterative variational inference [45] to infer a set of latent variables,
each describing an object in an image. In each inference iteration, IODINE performs a decoding
step followed by a comparison in pixel space and a subsequent encoding step. Related models
such as MONet [17] and GENESIS [27] similarly use multiple encode-decode steps. Our model
instead replaces this procedure with a single encoding step using iterated attention, which improves
computational efficiency. Further, this allows our architecture to infer object representations and
attention masks even in the absence of a decoder, opening up extensions beyond auto-encoding, such
as contrastive representation learning for object discovery [46] or direct optimization of a downstream
task like control or planning. Our attention-based routing procedure could also be employed in
conjunction with patch-based decoders, used in architectures such as AIR [26], SQAIR [40], and
related approaches [41–44], as an alternative to the typically employed autoregressive encoder [26, 40].
Our approach is orthogonal to methods using adversarial training [47–49] or contrastive learning [46]
for object discovery: utilizing Slot Attention in such a setting is an interesting avenue for future work.
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Neural networks for sets A range of recent methods explore set encoding [34, 50, 51], genera-
tion [31, 52], and set-to-set mappings [20, 53]. Graph neural networks [54–57] and in particular the
self-attention mechanism of the Transformer model [20] are frequently used to transform sets of ele-
ments with constant cardinality (i.e., number of set elements). Slot Attention addresses the problem of
mapping from one set to another set of different cardinality while respecting permutation symmetry of
both the input and the output set. The Deep Set Prediction Network (DSPN) [31, 58] respects permuta-
tion symmetry by running an inner gradient descent loop for each example, which requires many steps
for convergence and careful tuning of several loss hyperparmeters. Instead, Slot Attention directly
maps from set to set using only a few attention iterations and a single task-specific loss function. In
concurrent work, both the DETR [59] and the TSPN [60] model propose to use a Transformer [20] for
conditional set generation. Most related approaches, including DiffPool [61], Set Transformers [53],
DSPN [31], and DETR [59] use a learned per-element initialization (i.e., separate parameters for each
set element), which prevents these approaches from generalizing to more set elements at test time.

Iterative routing Our iterative attention mechanism shares similarlities with iterative routing mech-
anisms typically employed in variants of Capsule Networks [12, 13, 62]. The closest such variant
is inverted dot-product attention routing [62] which similarly uses a dot product attention mecha-
nism to obtain assignment coefficients between representations. Their method (in line with other
capsule models) however does not have permutation symmetry as each input-output pair is assigned a
separately parameterized transformation. The low-level details in how the attention mechanism is
normalized and how updates are aggregated, and the considered applications also differ significantly
between the two approaches.

Interacting memory models Slot Attention can be seen as a variant of interacting memory models [9,
39, 46, 63–68], which utilize a set of slots and their pairwise interactions to reason about elements in
the input (e.g. objects in a video). Common components of these models are (i) a recurrent update
function that acts independently on individual slots and (ii) an interaction function that introduces
communication between slots. Typically, slots in these models are fully symmetric with shared
recurrent update functions and interaction functions for all slots, with the exception of the RIM
model [67], which uses a separate set of parameters for each slot. Notably, RMC [63] and RIM [67]
introduce an attention mechanism to aggregate information from inputs to slots. In Slot Attention,
the attention-based assignment from inputs to slots is normalized over the slots (as opposed to solely
over the inputs), which introduces competition between the slots to perform a clustering of the input.
Further, we do not consider temporal data in this work and instead use the recurrent update function
to iteratively refine predictions for a single, static input.

Mixtures of experts Expert models [67, 69–72] are related to our slot-based approach, but do not
fully share parameters between individual experts. This results in the specialization of individual
experts to, e.g., different tasks or object types. In Slot Attention, slots use a common representational
format and each slot can bind to any part of the input.

Soft clustering Our routing procedure is related to soft k-means clustering [73] (where slots
corresponds to cluster centroids) with two key differences: We use a dot product similarity with
learned linear projections and we use a parameterized, learnable update function. Variants of soft
k-means clustering with learnable, cluster-specific parameters have been introduced in the computer
vision [74] and speech recognition communities [75], but they differ from our approach in that
they do not use a recurrent, multi-step update, and do not respect permutation symmetry (cluster
centers act as a fixed, ordered dictionary after training). The inducing point mechanism of the Set
Transformer [53] and the image-to-slot attention mechanism in DETR [59] can be seen as extensions
of these ordered, single-step approaches using multiple attention heads (i.e., multiple similarity
functions) for each cluster assignment.

Recurrent attention Our method is related to recurrent attention models used in image modeling
and scene decomposition [26, 40, 76–78], and for set prediction [79]. Recurrent models for set
prediction have also been considered in this context without using attention mechanisms [80, 81].
This line of work frequently uses permutation-invariant loss functions [79, 80, 82], but relies on
inferring one slot, representation, or label per time step in an auto-regressive manner, whereas Slot
Attention updates all slots simultaneously at each step, hence fully respecting permutation symmetry.
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CLEVR6 Multi-dSprites Tetrominoes

Slot Attention 98.8± 0.3 91.3± 0.3 99.5± 0.2*
IODINE [16] 98.8± 0.0 76.7± 5.6 99.2± 0.4
MONet [17] 96.2± 0.6 90.4± 0.8 —
Slot MLP 60.4± 6.6 60.3± 1.8 25.1± 34.3

Table 1 & Figure 2: (Left) Adjusted Rand Index (ARI) scores (in %, mean ± stddev for 5 seeds) for
unsupervised object discovery in multi-object datasets. In line with previous works [16, 17, 27], we
exclude background labels in ARI evaluation. *denotes that one outlier was excluded from evaluation.
(Right) Effect of increasing the number of Slot Attention iterations T at test time (for a model trained
on CLEVR6 with T = 3 and K = 7 slots), tested on CLEVR6 (K = 7) and CLEVR10 (K = 11).

4 Experiments

The goal of this section is to evaluate the Slot Attention module on two object-centric tasks—one
being supervised and the other one being unsupervised—as described in Sections 2.2 and 2.3. We
compare against specialized state-of-the-art methods [16, 17, 31] for each respective task. We provide
further details on experiments and implementation, and additional qualitative results and ablation
studies in the supplementary material.

Baselines In the unsupervised object discovery experiments, we compare against two recent
state-of-the-art models: IODINE [16] and MONet [17]. For supervised object property prediction,
we compare against Deep Set Prediction Networks (DSPN) [31]. DSPN is the only set prediction
model that respects permutation symmetry that we are aware of, other than our proposed model.
In both tasks, we further compare against a simple MLP-based baseline that we term Slot MLP.
This model replaces Slot Attention with an MLP that maps from the CNN feature maps (resized and
flattened) to the (now ordered) slot representation. For the MONet, IODINE, and DSPN baselines,
we compare with the published numbers in [16, 31] as we use the same experimental setup.

Datasets For the object discovery experiments, we use the following three multi-object datasets [83]:
CLEVR (with masks), Multi-dSprites, and Tetrominoes. CLEVR (with masks) is a version of the
CLEVR dataset with segmentation mask annotations. Similar to IODINE [16], we only use the first
70K samples from the CLEVR (with masks) dataset for training and we crop images to highlight
objects in the center. For Multi-dSprites and Tetrominoes, we use the first 60K samples. As in [16],
we evaluate on 320 test examples for object discovery. For set prediction, we use the original CLEVR
dataset [84] which contains a training-validation split of 70K and 15K images of rendered objects
respectively. Each image can contain between three and ten objects and has property annotations for
each object (position, shape, material, color, and size). In some experiments, we filter the CLEVR
dataset to contain only scenes with at maximum 6 objects; we call this dataset CLEVR6 and we refer
to the original full dataset as CLEVR10 for clarity.

4.1 Object Discovery

Training The training setup is unsupervised: the learning signal is provided by the (mean squared)
image reconstruction error. We train the model using the Adam optimizer [85] with a learning
rate of 4 × 10−4 and a batch size of 64 (using a single GPU). We further make use of learning
rate warmup [86] to prevent early saturation of the attention mechanism and an exponential decay
schedule in the learning rate, which we found to reduce variance. At training time, we use T = 3
iterations of Slot Attention. We use the same training setting across all datasets, apart from the
number of slots K: we use K = 7 slots for CLEVR6, K = 6 slots for Multi-dSprites (max. 5 objects
per scene), and K = 4 for Tetrominoes (3 objects per scene). Even though the number of slots in
Slot Attention can be set to a different value for each input example, we use the same value K for all
examples in the training set to allow for easier batching.

Metrics In line with previous works [16, 17], we compare the alpha masks produced by the decoder
(for each individual object slot) with the ground truth segmentation (excluding the background)
using the Adjusted Rand Index (ARI) score [87, 88]. ARI is a score to measure clustering similarity,
ranging from 0 (random) to 1 (perfect match). To compute the ARI score, we use the implementation
provided by Kabra et al. [83].
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(a) Decomposition across datasets.

(b) Attention iterations.

(c) Reconstructions per iteration.

Figure 3: (a) Visualization of per-slot reconstructions and alpha masks in the unsupervised training
setting (object discovery). Top rows: CLEVR6, middle rows: Multi-dSprites, bottom rows: Tetro-
minoes. (b) Attention masks (attn) for each iteration, only using four object slots at test time on
CLEVR6. (c) Per-iteration reconstructions and reconstruction masks (from decoder). Border colors
for slots correspond to colors of segmentation masks used in the combined mask visualization (third
column). We visualize individual slot reconstructions multiplied with their respective alpha mask,
using the visualization script from [16].

Figure 4: Visualization of (per-slot) reconstructions and masks of a Slot Attention model trained
on a greyscale version of CLEVR6, where it achieves 98.5 ± 0.3% ARI. Here, we show the full
reconstruction of each slot (i.e., without multiplication with their respective alpha mask).

Results Quantitative results are summarized in Table 1 and Figure 2. In general, we observe that
our model compares favorably against two recent state-of-the-art baselines: IODINE [16] and
MONet [17]. We also compare against a simple MLP-based baseline (Slot MLP) which performs
better than chance, but due to its ordered representation is unable to model the compositional nature
of this task. We note a failure mode of our model: In rare cases it can get stuck in a suboptimal
solution on the Tetrominoes dataset, where it segments the image into stripes. This leads to a
significantly higher reconstruction error on the training set, and hence such an outlier can easily
be identified at training time. We excluded a single such outlier (1 out of 5 seeds) from the final score
in Table 1. We expect that careful tuning of the training hyperparameters particularly for this dataset
could alleviate this issue, but we opted for a single setting shared across all datasets for simplicity.

Compared to IODINE [16], Slot Attention is significantly more efficient in terms of both memory
consumption and runtime. On CLEVR6, we can use a batch size of up to 64 on a single V100 GPU
with 16GB of RAM as opposed to 4 in [16] using the same type of hardware. Similarly, when using
8 V100 GPUs in parallel, model training on CLEVR6 takes approximately 24hrs for Slot Attention
as opposed to approximately 7 days for IODINE [16].

In Figure 2, we investigate to what degree our model generalizes when using more Slot Attention
iterations at test time, while being trained with a fixed number of T = 3 iterations. We further
evaluate generalization to more objects (CLEVR10) compared to the training set (CLEVR6). We
observe that segmentation scores significantly improve beyond the numbers reported in Table 1 when
using more iterations. This improvement is stronger when testing on CLEVR10 scenes with more
objects. For this experiment, we increase the number of slots from K = 7 (training) to K = 11 at
test time. Overall, segmentation performance remains strong even when testing on scenes that contain
more objects than seen during training.
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Figure 5: (Left) AP at different distance thresholds on CLEVR10 (with K = 10). (Center) AP for
the Slot Attention model with different number of iterations. The models are trained with 3 iterations
and tested with iterations ranging from 3 to 7. (Right) AP for Slot Attention trained on CLEVR6
(K = 6) and tested on scenes containing exactly N objects (with N = K from 6 to 10).

Figure 6: Visualization of the attention masks on CLEVR10 for two examples with 9 and 4 objects,
respectively, for a model trained on the property prediction task. The masks are upsampled to
128× 128 for this visualization to match the resolution of input image.

We visualize discovered object segmentations in Figure 3 for all three datasets. The model learns
to keep slots empty (only capturing the background) if there are more slots than objects. We find
that Slot Attention typically spreads the uniform background across all slots instead of capturing
it in just a single slot, which is likely an artifact of the attention mechanism that does not harm
object disentanglement or reconstruction quality. We further visualize how the attention mechanism
segments the scene over the individual attention iterations, and we inspect scene reconstructions from
each individual iteration (the model has been trained to reconstruct only after the final iteration). It
can be seen that the attention mechanism learns to specialize on the extraction of individual objects
already at the second iteration, whereas the attention map of the first iteration still maps parts of
multiple objects into a single slot.

To evaluate whether Slot Attention can perform segmentation without relying on color cues, we further
run experiments on a binarized version of multi-dSprites with white objects on black background, and
on a greyscale version of CLEVR6. We use the binarized multi-dSprites dataset from Kabra et al. [83],
for which Slot Attention achieves 69.4± 0.9% ARI using K = 4 slots, compared to 64.8± 17.2%
for IODINE [16] and 68.5 ± 1.7% for R-NEM [39], as reported in [16]. Slot Attention performs
competitively in decomposing scenes into objects based on shape cues only. We visualize discovered
object segmentations for the Slot Attention model trained on greyscale CLEVR6 in Figure 4, which
Slot Attention handles without issue despite the lack of object color as a distinguishing feature.

As our object discovery architecture uses the same decoder and reconstruction loss as IODINE [16],
we expect it to similarly struggle with scenes containing more complicated backgrounds and textures.
Utilizing different perceptual [49, 89] or contrastive losses [46] could help overcome this limitation.
We discuss further limitations and future work in Section 5 and in the supplementary material.

Summary Slot Attention is highly competitive with prior approaches on unsupervised scene de-
composition, both in terms of quality of object segmentation and in terms of training speed and
memory efficiency. At test time, Slot Attention can be used without a decoder to obtain object-centric
representations from an unseen scene.

4.2 Set Prediction

Training We train our model using the same hyperparameters as in Section 4.1 except we use a
batch size of 512 and striding in the encoder. On CLEVR10, we use K = 10 object slots to be in line
with [31]. The Slot Attention model is trained using a single NVIDIA Tesla V100 GPU with 16GB
of RAM.
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Metrics Following Zhang et al. [31], we compute the Average Precision (AP) as commonly used
in object detection [90]. A prediction (object properties and position) is considered correct if there is
a matching object with exactly the same properties (shape, material, color, and size) within a certain
distance threshold (∞ means we do not enforce any threshold). The predicted position coordinates
are scaled to [−3, 3]. We zero-pad the targets and predict an additional indicator score in [0, 1]
corresponding to the presence probability of an object (1 means there is an object) which we then
use as prediction confidence to compute the AP.

Results In Figure 5 (left) we report results in terms of Average Precision for supervised object
property prediction on CLEVR10 (using T = 3 for Slot Attention at both train and test time). We
compare to both the DSPN results of [31] and the Slot MLP baseline. Overall, we observe that our
approach matches or outperforms the DSPN baseline. The performance of our method degrades
gracefully at more challenging distance thresholds (for the object position feature) maintaining a
reasonably small variance. Note that the DSPN baseline [31] uses a significantly deeper ResNet
34 [22] image encoder. In Figure 5 (center) we observe that increasing the number of attention
iterations at test time generally improves performance. Slot Attention can naturally handle more
objects at test time by changing the number of slots. In Figure 5 (right) we observe that the AP
degrades gracefully if we train a model on CLEVR6 (with K = 6 slots) and test it with more objects.

Intuitively, to solve this set prediction task each slot should attend to a different object. In Figure 6,
we visualize the attention maps of each slot for two CLEVR images. In general, we observe that the
attention maps naturally segment the objects. We remark that the method is only trained to predict the
property of the objects, without any segmentation mask. Quantitatively, we can evaluate the Adjusted
Rand Index (ARI) scores of the attention masks. On CLEVR10 (with masks), the attention masks
produced by Slot Attention achieve an ARI of 78.0%± 2.9 (to compute the ARI we downscale the
input image to 32× 32). Note that the masks evaluated in Table 1 are not the attention maps but are
predicted by the object discovery decoder.

Summary Slot Attention learns a representation of objects for set-structured property prediction
tasks and achieves results competitive with a prior state-of-the-art approach while being significantly
easier to implement and tune. Further, the attention masks naturally segment the scene, which can be
valuable for debugging and interpreting the predictions of the model.

5 Conclusion

We have presented the Slot Attention module, a versatile architectural component that learns object-
centric abstract representations from low-level perceptual input. The iterative attention mechanism
used in Slot Attention allows our model to learn a grouping strategy to decompose input features into
a set of slot representations. In experiments on unsupervised visual scene decomposition and super-
vised object property prediction we have shown that Slot Attention is highly competitive with prior
related approaches, while being more efficient in terms of memory consumption and computation.

A natural next step is to apply Slot Attention to video data or to other data modalities, e.g. for
clustering of nodes in graphs, on top of a point cloud processing backbone or for textual or speech
data. It is also promising to investigate other downstream tasks, such as reward prediction, visual
reasoning, control, or planning.

Broader Impact

The Slot Attention module allows to learn object-centric representations from perceptual input. As
such, it is a general module that can be used in a wide range of domains and applications. In our
paper, we only consider artificially generated datasets under well-controlled settings where slots
are expected to specialize to objects. However, the specialization of our model is implicit and fully
driven by the downstream task. We remark that as a concrete measure to assess whether the module
specialized in unwanted ways, one can visualize the attention masks to understand how the input
features are distributed across the slots (see Figure 6). While more work is required to properly
address the usefulness of the attention coefficients in explaining the overall predictions of the network
(especially if the input features are not human interpretable), we argue that they may serve as a step
towards more transparent and interpretable predictions.
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David Farhi, Quirin Fischer, Shariq Hashme, Chris Hesse, et al. Dota 2 with large scale deep reinforcement
learning. arXiv preprint arXiv:1912.06680, 2019.

[5] Oriol Vinyals, Igor Babuschkin, Wojciech M Czarnecki, Michaël Mathieu, Andrew Dudzik, Junyoung
Chung, David H Choi, Richard Powell, Timo Ewalds, Petko Georgiev, et al. Grandmaster level in StarCraft
II using multi-agent reinforcement learning. Nature, 575(7782):350–354, 2019.

[6] Peter Battaglia, Razvan Pascanu, Matthew Lai, Danilo Jimenez Rezende, et al. Interaction networks for
learning about objects, relations and physics. In Advances in Neural Information Processing Systems,
pages 4502–4510, 2016.

[7] Damian Mrowca, Chengxu Zhuang, Elias Wang, Nick Haber, Li Fei-Fei, Josh Tenenbaum, and Daniel
L K Yamins. Flexible neural representation for physics prediction. In Advances in Neural Information
Processing Systems, pages 8799–8810, 2018.

[8] Alvaro Sanchez-Gonzalez, Jonathan Godwin, Tobias Pfaff, Rex Ying, Jure Leskovec, and Peter W Battaglia.
Learning to simulate complex physics with graph networks. In International Conference on Machine
Learning, 2020.

[9] Nicholas Watters, Daniel Zoran, Theophane Weber, Peter Battaglia, Razvan Pascanu, and Andrea Tacchetti.
Visual interaction networks: Learning a physics simulator from video. In Advances in Neural Information
Processing Systems, pages 4539–4547, 2017.

[10] Boris Knyazev, Harm de Vries, Cătălina Cangea, Graham W Taylor, Aaron Courville, and Eugene
Belilovsky. Graph density-aware losses for novel compositions in scene graph generation. arXiv preprint
arXiv:2005.08230, 2020.

[11] Coline Devin, Pieter Abbeel, Trevor Darrell, and Sergey Levine. Deep object-centric representations for
generalizable robot learning. In 2018 IEEE International Conference on Robotics and Automation, pages
7111–7118. IEEE, 2018.

[12] Sara Sabour, Nicholas Frosst, and Geoffrey E Hinton. Dynamic routing between capsules. In Advances in
Neural Information Processing Systems, pages 3856–3866, 2017.

[13] Geoffrey E Hinton, Sara Sabour, and Nicholas Frosst. Matrix capsules with em routing. In International
Conference on Learning Representations, 2018.

[14] Daniel Kahneman, Anne Treisman, and Brian J Gibbs. The reviewing of object files: Object-specific
integration of information. Cognitive psychology, 24(2):175–219, 1992.

[15] Yann LeCun, Yoshua Bengio, et al. Convolutional networks for images, speech, and time series. The
handbook of brain theory and neural networks, 1995.

[16] Klaus Greff, Raphaël Lopez Kaufman, Rishabh Kabra, Nick Watters, Christopher Burgess, Daniel Zoran,
Loic Matthey, Matthew Botvinick, and Alexander Lerchner. Multi-object representation learning with
iterative variational inference. In International Conference on Machine Learning, pages 2424–2433, 2019.

10



[17] Christopher P Burgess, Loic Matthey, Nicholas Watters, Rishabh Kabra, Irina Higgins, Matt Botvinick,
and Alexander Lerchner. MONet: Unsupervised scene decomposition and representation. arXiv preprint
arXiv:1901.11390, 2019.

[18] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine translation by jointly learning
to align and translate. In International Conference on Learning Representations, 2015.

[19] Minh-Thang Luong, Hieu Pham, and Christopher D Manning. Effective approaches to attention-based
neural machine translation. In Proceedings of the 2015 Conference on Empirical Methods in Natural
Language Processing, pages 1412–1421, 2015.

[20] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in Neural Information Processing
Systems, pages 5998–6008, 2017.

[21] Kyunghyun Cho, Bart van Merriënboer, Caglar Gulcehre, Dzmitry Bahdanau, Fethi Bougares, Holger
Schwenk, and Yoshua Bengio. Learning phrase representations using rnn encoder–decoder for statistical
machine translation. In Proceedings of the 2014 Conference on Empirical Methods in Natural Language
Processing (EMNLP), pages 1724–1734, 2014.

[22] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition.
In Proceedings of the IEEE conference on Computer Vision and Pattern Recognition, pages 770–778, 2016.

[23] Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. Layer normalization. arXiv preprint
arXiv:1607.06450, 2016.

[24] Klaus Greff, Antti Rasmus, Mathias Berglund, Tele Hao, Harri Valpola, and Jürgen Schmidhuber. Tagger:
Deep unsupervised perceptual grouping. In Advances in Neural Information Processing Systems, pages
4484–4492, 2016.

[25] Klaus Greff, Sjoerd van Steenkiste, and Jürgen Schmidhuber. Neural expectation maximization. In
Advances in Neural Information Processing Systems, pages 6691–6701, 2017.

[26] SM Ali Eslami, Nicolas Heess, Theophane Weber, Yuval Tassa, David Szepesvari, Geoffrey E Hinton, et al.
Attend, infer, repeat: Fast scene understanding with generative models. In Advances in Neural Information
Processing Systems, pages 3225–3233, 2016.

[27] Martin Engelcke, Adam R Kosiorek, Oiwi Parker Jones, and Ingmar Posner. GENESIS: Generative scene
inference and sampling with object-centric latent representations. In International Conference on Learning
Representations, 2020.

[28] Nicholas Watters, Loic Matthey, Christopher P Burgess, and Alexander Lerchner. Spatial broadcast decoder:
A simple architecture for learning disentangled representations in VAEs. arXiv preprint arXiv:1901.07017,
2019.

[29] Panos Achlioptas, Olga Diamanti, Ioannis Mitliagkas, and Leonidas Guibas. Learning representations and
generative models for 3D point clouds. In International Conference on Machine Learning, pages 40–49,
2018.

[30] Haoqiang Fan, Hao Su, and Leonidas J Guibas. A point set generation network for 3D object reconstruction
from a single image. In Proceedings of the IEEE conference on Computer Vision and Pattern Recognition,
pages 605–613, 2017.

[31] Yan Zhang, Jonathon Hare, and Adam Prugel-Bennett. Deep set prediction networks. In Advances in
Neural Information Processing Systems, pages 3207–3217, 2019.

[32] Nicola De Cao and Thomas Kipf. MolGAN: An implicit generative model for small molecular graphs.
arXiv preprint arXiv:1805.11973, 2018.

[33] Martin Simonovsky and Nikos Komodakis. GraphVAE: Towards generation of small graphs using
variational autoencoders. In International Conference on Artificial Neural Networks, pages 412–422.
Springer, 2018.

[34] Yan Zhang, Jonathon Hare, and Adam Prügel-Bennett. FSPool: Learning set representations with
featurewise sort pooling. In International Conference on Learning Representations, 2020.

[35] Harold W Kuhn. The Hungarian method for the assignment problem. Naval research logistics quarterly, 2
(1-2):83–97, 1955.

[36] Marco Cuturi. Sinkhorn distances: Lightspeed computation of optimal transport. In Advances in Neural
Information Processing Systems, pages 2292–2300, 2013.

[37] Xiaohui Zeng, Renjie Liao, Li Gu, Yuwen Xiong, Sanja Fidler, and Raquel Urtasun. Dmm-net: Differen-
tiable mask-matching network for video object segmentation. In Proceedings of the IEEE International
Conference on Computer Vision, pages 3929–3938, 2019.

[38] Charlie Nash, SM Ali Eslami, Chris Burgess, Irina Higgins, Daniel Zoran, Theophane Weber, and Peter
Battaglia. The multi-entity variational autoencoder. In NIPS Workshops, 2017.

11



[39] Sjoerd van Steenkiste, Michael Chang, Klaus Greff, and Jürgen Schmidhuber. Relational neural expectation
maximization: Unsupervised discovery of objects and their interactions. In International Conference on
Learning Representations, 2018.

[40] Adam Kosiorek, Hyunjik Kim, Yee Whye Teh, and Ingmar Posner. Sequential attend, infer, repeat:
Generative modelling of moving objects. In Advances in Neural Information Processing Systems, pages
8606–8616, 2018.

[41] Karl Stelzner, Robert Peharz, and Kristian Kersting. Faster attend-infer-repeat with tractable probabilistic
models. In International Conference on Machine Learning, pages 5966–5975, 2019.

[42] Eric Crawford and Joelle Pineau. Spatially invariant unsupervised object detection with convolutional
neural networks. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 33, pages
3412–3420, 2019.

[43] Jindong Jiang, Sepehr Janghorbani, Gerard de Melo, and Sungjin Ahn. SCALOR: Generative world
models with scalable object representations. In International Conference on Learning Representations,
2020.

[44] Zhixuan Lin, Yi-Fu Wu, Skand Vishwanath Peri, Weihao Sun, Gautam Singh, Fei Deng, Jindong Jiang,
and Sungjin Ahn. SPACE: Unsupervised object-oriented scene representation via spatial attention and
decomposition. In International Conference on Learning Representations, 2020.

[45] Joe Marino, Yisong Yue, and Stephan Mandt. Iterative amortized inference. In International Conference
on Machine Learning, pages 3403–3412, 2018.

[46] Thomas Kipf, Elise van der Pol, and Max Welling. Contrastive learning of structured world models. In
International Conference on Learning Representations, 2020.

[47] Sjoerd van Steenkiste, Karol Kurach, Jürgen Schmidhuber, and Sylvain Gelly. Investigating object
compositionality in generative adversarial networks. Neural Networks, 130:309 – 325, 2020.

[48] Mickaël Chen, Thierry Artières, and Ludovic Denoyer. Unsupervised object segmentation by redrawing.
In Advances in Neural Information Processing Systems, pages 12705–12716, 2019.

[49] Yanchao Yang, Yutong Chen, and Stefano Soatto. Learning to manipulate individual objects in an image.
arXiv preprint arXiv:2004.05495, 2020.

[50] Zhouhan Lin, Minwei Feng, Cicero Nogueira dos Santos, Mo Yu, Bing Xiang, Bowen Zhou, and Yoshua
Bengio. A structured self-attentive sentence embedding. In International Conference on Learning
Representations, 2017.

[51] Manzil Zaheer, Satwik Kottur, Siamak Ravanbakhsh, Barnabas Poczos, Russ R Salakhutdinov, and
Alexander J Smola. Deep sets. In Advances in Neural Information Processing Systems, pages 3391–3401,
2017.

[52] Hamid Rezatofighi, Roman Kaskman, Farbod T Motlagh, Qinfeng Shi, Anton Milan, Daniel Cremers,
Laura Leal-Taixé, and Ian Reid. Learn to predict sets using feed-forward neural networks. arXiv preprint
arXiv:2001.11845, 2020.

[53] Juho Lee, Yoonho Lee, Jungtaek Kim, Adam Kosiorek, Seungjin Choi, and Yee Whye Teh. Set transformer:
A framework for attention-based permutation-invariant neural networks. In International Conference on
Machine Learning, pages 3744–3753, 2019.

[54] Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Hagenbuchner, and Gabriele Monfardini. The
graph neural network model. IEEE Transactions on Neural Networks, 20(1):61–80, 2008.

[55] Yujia Li, Daniel Tarlow, Marc Brockschmidt, and Richard Zemel. Gated graph sequence neural networks.
In International Conference on Learning Representations, 2016.

[56] Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional networks. In
International Conference on Learning Representations, 2017.

[57] Peter W Battaglia, Jessica B Hamrick, Victor Bapst, Alvaro Sanchez-Gonzalez, Vinicius Zambaldi, Mateusz
Malinowski, Andrea Tacchetti, David Raposo, Adam Santoro, Ryan Faulkner, et al. Relational inductive
biases, deep learning, and graph networks. arXiv preprint arXiv:1806.01261, 2018.

[58] Qian Huang, Horace He, Abhay Singh, Yan Zhang, Ser-Nam Lim, and Austin Benson. Better set
representations for relational reasoning. arXiv preprint arXiv:2003.04448, 2020.

[59] Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas Usunier, Alexander Kirillov, and Sergey
Zagoruyko. End-to-end object detection with transformers. In European Conference on Computer Vision,
2020.

[60] Adam R Kosiorek, Hyunjik Kim, and Danilo J Rezende. Conditional set generation with transformers.
arXiv preprint arXiv:2006.16841, 2020.

12



[61] Zhitao Ying, Jiaxuan You, Christopher Morris, Xiang Ren, Will Hamilton, and Jure Leskovec. Hierarchical
graph representation learning with differentiable pooling. In Advances in Neural Information Processing
Systems, pages 4800–4810, 2018.

[62] Yao-Hung Hubert Tsai, Nitish Srivastava, Hanlin Goh, and Ruslan Salakhutdinov. Capsules with inverted
dot-product attention routing. In International Conference on Learning Representations, 2020.

[63] Adam Santoro, Ryan Faulkner, David Raposo, Jack Rae, Mike Chrzanowski, Theophane Weber, Daan
Wierstra, Oriol Vinyals, Razvan Pascanu, and Timothy Lillicrap. Relational recurrent neural networks. In
Advances in neural information processing systems, pages 7299–7310, 2018.

[64] Vinicius Zambaldi, David Raposo, Adam Santoro, Victor Bapst, Yujia Li, Igor Babuschkin, Karl Tuyls,
David Reichert, Timothy Lillicrap, Edward Lockhart, et al. Relational deep reinforcement learning. arXiv
preprint arXiv:1806.01830, 2018.

[65] Nicholas Watters, Loic Matthey, Matko Bosnjak, Christopher P Burgess, and Alexander Lerchner. Cobra:
Data-efficient model-based rl through unsupervised object discovery and curiosity-driven exploration.
arXiv preprint arXiv:1905.09275, 2019.
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