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Abstract. Process mining techniques use event data to answer a variety
of process-related questions. Process discovery, conformance checking,
model enhancement, and operational support are used to improve perfor-
mance and compliance. Process mining starts from recorded events that
are each characterized by a case identifier, an activity name, a timestamp,
and optional attributes like resource or costs. In many applications, there
are multiple candidate identifiers leading to different views on the same
process. Moreover, one event may be related to different cases (conver-
gence) and, for a given case, there may be multiple instances of the
same activity within a case (divergence). To create a traditional process
model, the event data need to be “flattened”. There are typically multiple
choices possible, leading to different views that are disconnected. There-
fore, one quickly loses the overview and event data need to be exacted
multiple times (for the different views). Different approaches have been
proposed to tackle the problem. This paper discusses the gap between
real event data and the event logs required by traditional process min-
ing techniques. The main purpose is to create awareness and to provide
ways to characterize event data. A specific logging format is proposed
where events can be related to objects of different types. Moreover, basic
notations and a baseline discovery approach are presented to facilitate
discussion and understanding.

Keywords: Process Mining · Process Discovery · Divergence · Conver-
gence · Artifact-Centric Modeling.

1 Introduction

Operational processes are often characterized by the 80/20 rule, also known as
the Pareto principle. Often, 80% of the observed process executions (cases) can
be described by less than 20% of the observed process variants. This implies that
the remaining 20% of the observed process executions account for 80% of the
observed process variants. Therefore, it is often relatively easy to create a precise
and simple process model describing 80% of the cases. However, to add the
remaining 20% of the cases, discovery techniques create models that are either
complex and overfitting or severely underfitting. Standard processes such as the
Purchase-to-Pay (P2P) and Order-to-Cash (O2C) seem simple at first: Just a
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handful of activities executed in a well-defined order. Although the majority of
P2P and O2C process instances can be described by a simple process model, the
number of process variants may be enormous. There may be thousands of ways
to execute the P2P and O2C process due to exceptions, rework, deviations, and
errors. In some organizations, one can observe close to one million different ways
to perform the O2C process in a single year. Unfortunately, often the 20% least
frequent behavior may cause most of the compliance and performance problems.
This is called organizational friction. Process mining aims to identify and remove
such organizational friction.

The author started to develop the first process mining techniques in the late
1990-ties [2]. Input for process mining is an event log. An event log ‘views’ a
process from a particular angle. Each event in the log refers to (1) a particular
process instance (called case), (2) an activity, and (3) a timestamp. There may be
additional event attributes referring to resources, people, costs, etc., but these
are optional. Events logs are related to process models (discovered or hand-
made). Process models can be expressed using different formalisms ranging from
Directly-Follows Graphs (DFGs) and accepting automata to Petri nets, BPMN
diagrams, and UML activity diagrams. Typically, four types of process mining
are identified:

– Process discovery : Learning process models from event data. A discovery
technique takes an event log and produces a process model without using
additional information [2]. An example is the well-known Alpha-algorithm
[12], which takes an event log as input and produces a Petri net explaining
the behavior recorded in the log. Most of the commercial process mining
tools first discover DFGs before conducting further analysis.

– Conformance checking : Detecting and diagnosing both differences and com-
monalities between an event log and a process model [15]. Conformance
checking can be used to check if reality, as recorded in the log, conforms
to the model and vice versa [2]. The process model used as input may be
descriptive or normative. Moreover, the process model may have been made
by hand or learned using process discovery.

– Process reengineering : Improving or extending the model based on event
data. Like for conformance checking, both an event log and a process model
are used as input. However, now, the goal is not to diagnose differences. The
goal is to change the process model. For example, it is possible to repair
the model to better reflect reality. It is also possible to enrich an existing
process model with additional perspectives. For example, replay techniques
can be used to show bottlenecks or resource usage. Process reengineering
yields updated models. These models can be used to improve the actual
processes.

– Operational support : Directly influencing the process by providing warnings,
predictions, or recommendations [2]. Conformance checking can be done “on-
the-fly” allowing people to act the moment processes deviate. Based on the
model and event data related to running process instances, one can predict
the remaining flow time, the likelihood of meeting the legal deadline, the
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associated costs, the probability that a case will be rejected, etc. The process
is not improved by changing the model, but by directly providing data-driven
support in the form of warnings, predictions, and/or recommendations.

Process mining aims to provide actionable results, e.g., automated alerts, inter-
ventions, reconfigurations, policy changes, and redesign. The uptake of process
mining is industry is accelerating in recent years. Currently, there are more than
30 commercial offerings of process mining software (e.g., Celonis, Disco, Pro-
cessGold, myInvenio, PAFnow, Minit, QPR, Mehrwerk, Puzzledata, LanaLabs,
StereoLogic, Everflow, TimelinePI, Signavio, and Logpickr).

In this paper, we challenge the following two commonly used assumptions:

– There is a single case notion.
– Each event refers to precisely one case.

We assume that there are multiple case notions (called object types) and that an
event may refer to any number of objects corresponding to different object types.
This idea is not new (see Section 2) and was already elaborated in [2]. However,
existing process mining tools and techniques still assume that there is a single
case notion and precisely one case per event.

When extracting an event log from some information system (e.g., the thou-
sands of tables of SAP), the resulting log may suffer from convergence (one event
is related to multiple cases) and divergence (independent, repeated executions
of a group of activities within a single case). This may lead to the replication of
events and thus misleading results (e.g., duplicated events are counted twice).
It may also lead to loops in process models which are not really loops (but
concurrency at the sub-instance level). These problems are partly unavoidable.
However, it is good to be aware of these phenomena and to demand process
mining tools supporting object-centric process mining.
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Fig. 1. A simple example explaining convergence and divergence problems. There are
five activities (left-hand side) and two possible case notions (right-hand side).
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To explain convergence and divergence, consider the example shown in Fig-
ure 1. In a hiring process, we deal with two types of objects: application and
vacancy (see right-hand side). Moreover, assume that there are five different ac-
tivities: apply (new application for an open vacancy), interview (interview with
an applicant for an open vacancy), open (create a vacancy after which people
can apply), hire (hire an applicant for a specific vacancy), and close (close the
vacancy). These activities are shown on the left-hand side of Figure 1. The figure
also shows cardinality constraints that need to hold at the end.

There are two possible case notions when applying traditional process min-
ing approaches: application or vacancy . Assume that we have 100 applications
and 5 vacancies. Each application refers to precisely one vacancy. Ten applica-
tions resulted in an interview and four persons were hired. Figure 1 shows the
frequencies of activities and object types.

Suppose that we want to use application as a case notion and want to include
the opening and closing of the corresponding position in the process model. This
means that, when applying traditional process mining approaches, we need 100
open and close events rather than just five. This is called convergence. One
open or close event is related to multiple cases. The problem is that events are
replicated and process mining results are no longer showing to the actual number
of events.

Suppose that we want to use vacancy as a case notion and want to include the
applications and interviews of the corresponding applicants in the process model.
This means that within a single case there many be many apply and interview
events. Of course each interview event is preceded by precisely one apply event.
However, because we cannot distinguish between the different applicants within
a case, we see seemingly random interleavings of the two activities. However,
there is a clear precedence at the level of individual applications (an interview
never precedes an application). This is called divergence. Ordering information
at the sub-instance level is lost, thus leading to loops in the process model that
do not really exist in the real process.

Later we will show a more elaborate example, but Figure 1 already shows
the problems we encounter when there is just a single one-to-many relationship.
In real-life processes, we often have multiple one-to-many and many-to-many
relationships, thus making process mining challenging. Object-centric process
mining techniques aim to address such convergence and divergence problems.

The remainder is organized as follows. Section 2 briefly discusses related work.
Section 3 introduces the problem using a simple example. Section 4 formalizes
event data in a way that makes the problem explicit: An event may refer to any
number of objects corresponding to different object types. A baseline discovery
approach is presented in Section 5. The baseline approach uses only the directly-
follows relation. Section 6 discusses approaches that go beyond the baseline
approach and that aim to discover concurrency. Section 7 concludes the paper.
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2 Related Work on Object-Centric Process Mining

For a basic introduction to process mining, we refer to [2]. Chapter 5 of the
process mining book focuses on the input side of process mining. Specifically,
Section 5.5 discusses the need to “flatten” event data to produce traditional
process models.

Traditional process models ranging from workflow nets [1, 8] and process trees
[24] to Business Process Modeling Notation (BPMN) models [31] and Event-
driven Process Chains (EPCs) [34] assume a single case notion. This means that
cases are considered in isolation. This is consistent with the standard notion of
event logs where events refer to an activity, a timestamp, and precisely one case
identifier [2].

The problem that many processes cannot be captured using a single case
notion was identified early on. IBM’s FlowMark system already supported the so-
called “bundle” concept to handle cases composed of subcases [22]. This is related
to the multiple instance patterns, i.e., a category of workflow patterns identified
around the turn of the century [9]. One of the first process modeling notations
trying to address the problem were the so-called proclets [6, 7]. Proclets are
lightweight interacting workflow processes. By promoting interactions to first-
class citizens, it is possible to model complex workflows in a more natural manner
using proclets.

This was followed by other approaches such as the artifact-centric modeling
notations [14, 16, 27, 30]. See [19] for an up-to-date overview of the challenges
that arise when instances of processes may interact with each other in a one-to-
many or many-to-many fashion.

Most of the work done on interacting processes with converging and diverging
instances has focused on developing novel modeling notations and supporting the
implementation of such processes. Only a few approaches focused on the problem
in a process mining context. This is surprising since one quickly encounters
the problem when applying process mining to ERP systems from SAP, Oracle,
Microsoft, and other vendors of enterprise software.

In [17] techniques are described to extract “non-flat” event data from source
systems and prepare these for traditional process mining. The eXtensible Event
Stream (XES) format [23] is the current standard which requires a case notion to
correlate events. XES is the official IEEE standard for storing event, supported
by many process mining vendors. Next to the standard IEEE XES format [23],
new storage formats such as eXtensible Object-Centric (XOC) [25] have been
proposed to deal with object-centric data (e.g., database tables) having one-to-
many and many-to-many relations. The XOC format does not require a case
notion to avoid flattening multi-dimensional data. An XOC log can precisely
store the evolution of the database along with corresponding events. An obvious
drawback is that XOC logs tend to be very large.

The approaches described in [20, 21, 28] focus on interacting processes where
each process uses its own case identifiers. In [28] interacting artifacts are discov-
ered from ERP systems. In [20] traditional conformance checking was adapted
to check compliance for interacting artifacts.
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One of the main challenges is that artifact models tend to become complex
and difficult to understand. In an attempt to tackle this problem, Van Eck et
al. use a simpler setting with multiple perspectives, each modeled by a simple
transition system [18, 35]. These are also called artifact-centric process models
but are simpler than the models used in [14, 16, 20, 21, 27, 30, 28]. The state of a
case is decomposed onto one state per perspective, thus simplifying the overall
model. Relations between sub-states are viewed as correlations rather than hard
causality constraints. Concurrency only exists between the different perspectives
and not within an individual perspective. In a recent extension, each perspective
can be instantiated multiple times, i.e., many-to-many relations between artifact
types can be visualized [35].

The above techniques have the drawback that the overall process is not visu-
alized in a single diagram, but shown as a collection of interconnected diagrams
using different (sub-)case notions. The so-called Object-Centric Behavioral Con-
straint (OCBC) models address this problem and also incorporate the data per-
spective in a single diagram [5, 10, 13, 26]. OCBC models extend data models
with a behavioral perspective. Data models can easily deal with many-to-many
and one-to-many relationships. This is exploited to create process models that
can also model complex interactions between different types of instances. Clas-
sical multiple-instance problems are circumvented by using the data model for
event correlation. Activities are related to the data perspective and have order-
ing constraints inspired by declarative languages like Declare [11]. Instead of
LTL-based constraints, simpler cardinality constraints are used. Several discov-
ery techniques have been developed for OCBC models [26]. It is also possible to
check conformance and project performance information on such models. OCBC
models are appealing because they faithfully describe the relationship between
behavior and data and are able to capture all information in a single integrated
diagram. However, OCBC models tend to be too complex and the corresponding
discovery and conformance checking techniques are not very scalable.

The complexity and scalability problems of OCBC models led to the develop-
ment of the so-called Multiple Viewpoint (MVP) models, earlier named StarStar
models [4]. MVP models are learned from data stored in relational databases.
Based on the relations and timestamps in a traditional database, first, a so-called
E2O graph is built that relates events and objects. Based on the E2O graph,
an E2E multigraph is learned that relates events through objects. Finally, an
A2A multigraph is learned to relate activities. The A2A graph shows relations
between activities and each relation is based on one of the object classes used as
input. This is a very promising approach because it is simple and scalable. Al-
though this paper does not present a concrete discovery approach, the ideas are
consistent with the MVP models and discovery techniques developed by Berti
et al. [4].

Although commercial vendors have recognized the problems related to con-
vergence and divergence of event data, there is no real support for concepts
comparable to artifact-centric models, Object-Centric Behavioral Constraint
(OCBC) models, and Multiple Viewpoint (MVP) models. Yet, there are a few ini-
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tial attempts by some vendors. An example is Celonis, which supports the use of
a secondary case identifier to avoid “Spaghetti-like” models where concurrency
between sub-instances is translated into loops. The directly-follows graphs in
Celonis do not consider interactions between sub-instances, thus producing sim-
pler models. Another example is the multi-level discovery technique supported
bymyInvenio. The resulting models can be seen as simplified MVP models where
different activities may correspond to different case notions (but one case notion
per activity). The problem of this approach is that in reality the same event may
refer to multiple case notions and choosing one is often misleading, especially
since it influences the frequencies shown in the diagram.

In spite of the recent progress in process mining, problems related to mul-
tiple interacting process instances have not been solved adequately. One of the
problems is the lack of standardized event data that goes beyond the “flattened”
event data found in XES. Hence, process mining competitions tend to focus on
classical event logs. This paper aims to shift the focus towards object-centric
process mining.

3 The Problem

Event data can be found in any domain, e.g., logistics, manufacturing, finance,
healthcare, customer relationship management, e-learning, and e-government.
The events found in these domains typically refer to activities executed by re-
sources at particular times and for a particular case (i.e., process instances).
Process mining techniques are able to exploit such data. In this paper, we focus
on process discovery. However, conformance checking, performance analysis, de-
cision mining, organizational mining, predictions, and recommendations are also
valuable forms of process mining that can benefit from the insights provided by
this paper.

In a traditional event log, each event refers to a case (process instance), activ-
ity, a timestamp, and any number of additional attributes (e.g., cost, resources,
etc.). The timestamp is used to order events. Since each event refers to precisely
one case, each case can be represented by a sequence of activities (i.e., a trace).
An example trace is 〈a, d, d, d, e〉, i.e., activity a followed by three activities d,
followed by activity e. Different cases may have the same trace. Hence, an event
log is a multiset of traces.3 For example L = [〈a, b, c, e〉40, 〈a, c, b, e〉30, 〈a, d, e〉20,
〈a, d, d, e〉5, 〈a, d, d, d, e〉3, 〈a, d, d, d, d, e〉2] is an event log describing the traces of
100 cases. Traditional process mining techniques use such event data.

Figure 2 shows different process mining results obtained using ProM for an
event log extracted from SAP. ProM provides a range of discovery techniques
able to show the underlying process. Discovered process models may also show

3 Multisets are represented using square brackets, e.g.,M = [x2, y3, z] has six elements.
Unlike sets the same element can appear multiple times: M(x) = 2, M(y) = 3, and
M(z) = 1. [f(x) | x ∈ X] creates a multiset, i.e., if multiple elements x map onto
the same value f(x), these are counted multiple times.
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Fig. 2. Various screenshots of ProM showing discovered process models that can be
used to address performance and compliance problems.

frequencies and bottlenecks. Moreover, it is possible to perform root-cause anal-
ysis for compliance and performance problems and one can drill-down to indi-
vidual cases and events. In Figure 2, we used a specific case notion allowing us
to apply conventional process mining techniques working on “flattened” event
logs.

The assumption that there is just one case notion and that each event refers to
precisely one case is problematic in real-life processes. To illustrate this, consider
the simplified order handling process from an online shop like Amazon, Alibaba,
Bol, Otto, or Walmart. We are interested in the process that starts with a cus-
tomer ordering products and ends with the actual delivery of all items. Figure 3
shows the activities (left-hand side) and object types (right-hand side). The four
main object types are order , item, package, and route. Each order consists of
one or more order lines, called items. A customer can first place an order with
two items followed by an order consisting of three items. Depending on availabil-
ity, items ordered for one customer are wrapped into packages. Note that one
package may contain items from multiple orders. Moreover, items from a single
order may be split over multiple packages. Packages are loaded into a truck that
drives a route to deliver the packages in a particular order. Customers may not
be home resulting in a failed delivery. The undelivered packages are stored and
part of a later route. Hence, a route may involve multiple packages and the same
package can be part of multiple routes.

The right-hand side of Figure 3 shows the cardinalities of the relations be-
tween the four object types. Each item is part of one order and one package.
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Fig. 3. Overview of the relationship between activities (left) and object types (right).

However, orders and packages may contain multiple items. There is a many-to-
many relation between packages and routes. Moreover, implicitly there is also a
many-to-many relation between orders and packages.

The right-hand side of Figure 3 shows the different activities. Most of the
names are self-explanatory. The cardinality constraints between activities and
object types help to understand the semantics of the activities.



10 Wil van der Aalst

– Activity place order is the start of the order. An order is created consisting
of one or more order lines (called items).

– Activity send invoice is executed when all ordered items have been packed.
An invoice refers to the order and the corresponding order lines.

– Activity receive payment (hopefully) occurs after sending the invoice.
– Activity check availability is executed for each ordered item. The check may

fail and, if so, it is repeated later. The check refers to precisely one item (and
the corresponding order).

– Activity pick item is executed if the ordered item is available. A pick action
refers to precisely one item (and the corresponding order).

– Activity pack items involves possibly multiple items of possibly multiple
orders from the same customer. These items are assembled into one package
for a particular customer. The activity refers to one or more items and
precisely one package.

– Activity store package involves one package. After packing the items, the
package is stored.

– Activity load package involves one package and one route. Packages are
loaded into the truck after the route has started.

– Activity start route corresponds to the beginning of a route and involves
multiple packages.

– Activity deliver package corresponds to the successful delivery of a package
on some route.

– Activity failed delivery occurs when it is impossible to deliver a package on
some route because the customer is not at home.

– Activity unload package corresponds to the unloading of a package that
could not be delivered. The package will be stored and later loaded onto
a new route. This is repeated until the package is delivered.

– Activity end route corresponds to the end of a route and involves multiple
packages (delivered or not).

Figure 3 illustrates that there are multiple possible case notions. In principle,
each of the object types order , item, package, and route could serve as a case
notion. However, when picking one of the object types as a case notion, there
may be events that refer to multiple cases and some events do not refer to any
case. Therefore, it is, in general, impossible to reduce the complex reality to a
classical event log.

Table 1 shows a fragment of an example instance of the problem. Each event
is described by an event identifier, an activity name, a timestamp, the objects
involved, and other optional attributes (here customer and costs). Let us focus
on the columns showing which objects are involved. o1, o2, etc. are objects of
type order , i1, i2, etc. are objects of type item, p1, p2, etc. are objects of type
package, and r1, r2, etc. are objects of type route.

Following an object in a column, one can clearly see in which events (and
related activities) the object is involved. For example, order o1 is involved in
events 9911 (activity place order), 9912 (activity check availability), 9914 (an-
other check availability), 9915 (activity pick item), etc. Route r1 is involved in
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Table 1. A fragment of some event log: Each line corresponds to an event.

event activity timestamp objects involved attribute values
identifier name order item package route customer costs

. . . . . . . . . . . . . . . . . . . . . . . . . . .

9911 place order 20-7-2019:08.15 {o1} {i1, i2} ∅ ∅ Apple 3500e
9912 check availability 20-7-2019:09.35 {o1} {i1} ∅ ∅
9913 place order 20-7-2019:09.38 {o2} {i3, i4, i5} ∅ ∅ Google 4129e
9914 check availability 20-7-2019:10.20 {o1} {i2} ∅ ∅
9915 pick item 20-7-2019:11.05 {o1} {i1} ∅ ∅
9916 check availability 20-7-2019:11.19 {o2} {i3} ∅ ∅
9917 pick item 20-7-2019:11.55 {o2} {i3} ∅ ∅
9918 check availability 20-7-2019:13.15 {o2} {i4} ∅ ∅
9919 pick item 20-7-2019:14.25 {o2} {i4} ∅ ∅
9920 check availability 20-7-2019:15.25 {o2} {i5} ∅ ∅
9921 check availability 20-7-2019:16.34 {o1} {i2} ∅ ∅
9922 pick item 20-7-2019:16.38 {o1} {i2} ∅ ∅
9923 pack items 20-7-2019:16.44 ∅ {i1, i2, i3} {p1} ∅
9924 store package 20-7-2019:16.55 ∅ {i1, i2, i3} {p1} ∅
9925 start route 20-7-2019:16.56 ∅ ∅ {p1} {r1}
9926 load package 21-7-2019:08.00 ∅ {i1, i2, i3} {p1} {r1}
9927 send invoice 21-7-2019:08.17 {o1} {i1, i2} ∅ ∅
9928 place order 21-7-2019:08.25 {o3} {i6} ∅ ∅ Microsoft 1894e
9929 failed delivery 21-7-2019:08.33 ∅ ∅ {p1} {r1}
9930 unload package 21-7-2019:08.56 ∅ ∅ {p1} {r1}
9931 end route 21-7-2019:09.15 ∅ ∅ {p1} {r1}
9932 check availability 21-7-2019:10.25 {o3} {i6} ∅ ∅
9933 receive payment 21-7-2019:11.55 {o1} {i1, i2} ∅ ∅
9934 check availability 22-7-2019:08.19 {o2} {i5} ∅ ∅
9935 pick item 22-7-2019:08.44 {o2} {i5} ∅ ∅
9936 send invoice 22-7-2019:08.55 {o2} {i3, i4, i5} ∅ ∅
9937 receive payment 22-7-2019:09.15 {o2} {i3, i4, i5} ∅ ∅
9938 check availability 22-7-2019:10.35 {o3} {i6} ∅ ∅
9939 pick item 22-7-2019:11.23 {o3} {i6} ∅ ∅
9941 pack items 23-7-2019:09.11 ∅ {i4, i5, i6} {p2} ∅
9942 send invoice 22-7-2019:11.45 {o3} {i6} ∅ ∅
9943 store package 23-7-2019:09.19 ∅ {i4, i5, i6} {p2} ∅
9944 start route 23-7-2019:09.28 ∅ ∅ {p1, p2} {r2}
9945 load package 23-7-2019:10.05 ∅ {i1, i2, i3} {p1} {r2}
9946 load package 23-7-2019:10.09 ∅ {i4, i5, i6} {p2} {r2}
9947 deliver package 23-7-2019:11.25 ∅ ∅ {p2} {r2}
9948 deliver package 24-7-2019:09.37 ∅ ∅ {p1} {r2}
9949 end route 24-7-2019:09.48 ∅ ∅ {p1, p2} {r2}
9950 receive payment 24-7-2019:09.55 {o3} {i6} ∅ ∅
. . . . . . . . . . . . . . . . . . . . . . . . . . .
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events 9925 (activity start route), 9926 (activity load package), 9929 (activity
failed delivery), etc.

To cast Table 1 into a traditional event log (e.g., in XES format), we would
need to have precisely one case identifier per event. This is impossible without
duplicating events (convergence problem) or ordering unrelated events (diver-
gence problem). Moreover, the example shows that a traditional event log is
merely a view on the more complex reality depicted in Table 1.

4 Defining Event Data

As illustrated by the example in the previous section, we cannot assume that
there is a single case notion and that each event refers to precisely one case.
Therefore, we provide a more realistic event log notion where multiple case no-
tions (called object types) may coexist and where an event may refer to any
number of objects corresponding to different object types. To do this, we start
by defining some universes.

Definition 1 (Universes). We define the following universes to be used through-
out the paper:

– Uei is the universe of event identifiers,
– Uact is the universe of activity names,
– Utime is the universe of timestamps,
– Uot is the universe of object types (also called classes),
– Uoi is the universe of object identifiers (also called entities),
– type ∈ Uoi → Uot assigns precisely one type to each object identifier,
– Uomap = {omap ∈ Uot → P(Uoi) | ∀ot∈Uot

∀oi∈omap(ot)type(oi) = ot} is
the universe of all object mappings indicating which object identifiers are
included per type,4

– Uatt is the universe of attribute names,
– Uval is the universe of attribute values,
– Uvmap = Uatt 6→ Uval is the universe of value assignments,5 and
– Uevent = Uei × Uact × Utime × Uomap × Uvmap is the universe of events.

e = (ei , act , time, omap, vmap) ∈ Uevent is an event with identifier ei , corre-
sponding to the execution of activity act at time time, referring to the objects
specified in omap, and having attribute values specified by vmap. Each row in
Table 1 defines such an event.

Definition 2 (Event Projection). Given e = (ei , act , time, omap, vmap) ∈
Uevent , πei(e) = ei, πact(e) = act, πtime(e) = time, πomap(e) = omap, and
πvmap(e) = vmap.

4 P(Uoi) is the powerset of the universe of object identifiers, i.e., objects types are
mapped onto sets of object identifiers.

5
Uatt 6→ Uval is the set of all partial functions mapping a subset of attribute names
onto the corresponding values.
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Let e9911 be the first event depicted in Table 1. πei(e9911) = 9911, πact(e9911) =
place order , πtime(e9911) = 20-7-2019:08.15, πomap(e9911) = omap9911, and πvmap(e9911)
= vmap9911 such that omap9911(order) = {o1}, omap9911(item) = {i1, i2},
omap9911(package) = ∅, omap9911(route) = ∅, vmap9911(customer) = Apple
and vmap9911(costs) = 3500e.

An event log is a collection of partially ordered events. Event identifiers are
unique, i.e., two events cannot have the same event identifier.

Definition 3 (Event Log). (E,�E) is an event log with E ⊆ Uevent and �E

⊆ E × E such that:

– �E defines a partial order (reflexive, antisymmetric, and transitive),
– ∀e1,e2∈E πei(e1) = πei(e2) ⇒ e1 = e2, and
– ∀e1,e2∈E e1 �E e2 ⇒ πtime(e1) ≤ πtime(e2).

Table 1 shows an example of an event log. Note that the values in the first
column need to be unique and time is non-decreasing. Although Table 1 is totally
ordered, we can also consider partially ordered events logs. There are two main
reasons to use partially ordered event logs:

– When the timestamps are coarse-grained, we may not know the actual order.
For example, event logs may only show the day and not the precise time. In
such cases, we do not want to order the events taking place on the same day.

– We may exploit information about causality. When two causally unrelated
events occur, we may deliberately not use the order in which they occurred.
This makes it easy to create better process models that also capture concur-
rency without seeing all possible interleavings.

1

1

1

1

1..*

place

order

send

invoice

...

end

route

case

1..*

1..*

1..*

Fig. 4. Classical event log where each event refers to precisely one case identifier.

We advocate using event logs that follow Definition 3 rather than flattened,
totally ordered event logs using a single case notion. Note that conventional event
logs are a special case of Definition 3 as illustrated by the following definition.
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Definition 4 (Classical Event Log). An event log (E,�E) is a classical event
log if and only if �E is a total order and there exists an ot ∈ Uot such that for
any e ∈ E: |πomap(e)(ot)| = 1 and for all ot ′ ∈ Uot \ {ot}: πomap(e)(ot

′) = ∅.

By comparing Figure 3 and Figure 4 one can clearly see that in most cases it
does not make any sense to try and straightjacket event data into a conventional
event log. This only makes sense for selected views on the event data.

In Table 1, check availability events refer to an item and an order. One could
argue that the reference to the order is redundant, after a place order event
the items are linked to the order and do not need to be repeated. Similarly,
store package events refer to the items in the corresponding package, but one
could argue that after the pack items event, these are known and the relation
does not need to be repeated in later events related to the package. Compare
Figure 5 to Figure 3. Both show the relation between the activities (left-hand
side) and object types (right-hand side). However, Figure 5 aims to remove some
of the redundancy (i.e., not include information that can be derived from other
events). Table 2 shows the event log where fewer objects are associated with
events (based on Figure 5).

The choice between Table 1 and Table 2 depends on the intended process
scope. For example, are check availability and pick item part of the lifecycle of an
order? Are store package, load package, send invoice, and receive payment part
of the lifecycle of an item? Are start route and end route part of the lifecycle
of a package? These are important scoping choices that influence the models
generated using process mining techniques.

In Table 2, load package, deliver package, failed delivery , and unload package
events still refer to both a package and a route. This is due to the fact that the
same package may be part of multiple routes.

5 A Baseline Discovery Approach

The goal of this paper is to show the challenges related to object-centric process
mining, and not to present a specific process mining algorithm. Nevertheless,
we describe a baseline discovery approach using more realistic event data as
specified in Definition 3, i.e., a collection of events pointing to any number of
objects and a partial order (E,�E).

Any event log (E,�E) can be projected onto a selected object type ot . Just
the events that refer to objects of type ot are kept. The partial order is updated
based on the selected object type ot . In the updated partial order, events are
related when they share a particular object. To ensure that the resulting order
is indeed a partial order, we need to take the transitive closure.

Definition 5 (Object Type Projection). Let (E,�E) be an event log and
ot ∈ Uot an object type. (Eot ,�ot

E ) is the event log projected onto object type
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Table 2. A modified version of the event log in Table 1. Still, each line corresponds to
an event, but events refer to a minimal amount of object types. Also, the additional
attributes are not shown.

event activity timestamp objects involved
identifier name order item package route

. . . . . . . . . . . . . . . . . . . . .

9911 place order 20-7-2019:08.15 {o1} {i1, i2} ∅ ∅
9912 check availability 20-7-2019:09.35 ∅ {i1} ∅ ∅
9913 place order 20-7-2019:09.38 {o2} {i3, i4, i5} ∅ ∅
9914 check availability 20-7-2019:10.20 ∅ {i2} ∅ ∅
9915 pick item 20-7-2019:11.05 ∅ {i1} ∅ ∅
9916 check availability 20-7-2019:11.19 ∅ {i3} ∅ ∅
9917 pick item 20-7-2019:11.55 ∅ {i3} ∅ ∅
9918 check availability 20-7-2019:13.15 ∅ {i4} ∅ ∅
9919 pick item 20-7-2019:14.25 ∅ {i4} ∅ ∅
9920 check availability 20-7-2019:15.25 ∅ {i5} ∅ ∅
9921 check availability 20-7-2019:16.34 ∅ {i2} ∅ ∅
9922 pick item 20-7-2019:16.38 ∅ {i2} ∅ ∅
9923 pack items 20-7-2019:16.44 ∅ {i1, i2, i3} {p1} ∅
9924 store package 20-7-2019:16.55 ∅ ∅ {p1} ∅
9925 start route 20-7-2019:16.56 ∅ ∅ ∅ {r1}
9926 load package 21-7-2019:08.00 ∅ ∅ {p1} {r1}
9927 send invoice 21-7-2019:08.17 {o1} ∅ ∅ ∅
9928 place order 21-7-2019:08.25 {o3} {i6} ∅ ∅
9929 failed delivery 21-7-2019:08.33 ∅ ∅ {p1} {r1}
9930 unload package 21-7-2019:08.56 ∅ ∅ {p1} {r1}
9931 end route 21-7-2019:09.15 ∅ ∅ ∅ {r1}
9932 check availability 21-7-2019:10.25 ∅ {i6} ∅ ∅
9933 receive payment 21-7-2019:11.55 {o1} ∅ ∅ ∅
9934 check availability 22-7-2019:08.19 ∅ {i5} ∅ ∅
9935 pick item 22-7-2019:08.44 ∅ {i5} ∅ ∅
9936 send invoice 22-7-2019:08.55 {o2} ∅ ∅ ∅
9937 receive payment 22-7-2019:09.15 {o2} ∅ ∅ ∅
9938 check availability 22-7-2019:10.35 ∅ {i6} ∅ ∅
9939 pick item 22-7-2019:11.23 ∅ {i6} ∅ ∅
9941 pack items 23-7-2019:09.11 ∅ {i4, i5, i6} {p2} ∅
9942 send invoice 22-7-2019:11.45 {o3} ∅ ∅ ∅
9943 store package 23-7-2019:09.19 ∅ ∅ {p2} ∅
9944 start route 23-7-2019:09.28 ∅ ∅ ∅ {r2}
9945 load package 23-7-2019:10.05 ∅ ∅ {p1} {r2}
9946 load package 23-7-2019:10.09 ∅ ∅ {p2} {r2}
9947 deliver package 23-7-2019:11.25 ∅ ∅ {p2} {r2}
9948 deliver package 24-7-2019:09.37 ∅ ∅ {p1} {r2}
9949 end route 24-7-2019:09.48 ∅ ∅ ∅ {r2}
9950 receive payment 24-7-2019:09.55 {o3} ∅ ∅ ∅
. . . . . . . . . . . . . . . . . . . . .
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Fig. 5. Relating activities (left-hand side) to object types (right-hand side) while min-
imizing redundancy compared to Figure 3.

ot where Eot = {e ∈ E | πomap(e)(ot) 6= ∅} and �ot
E = {(e1, e2) ∈ Eot × Eot |

e1 �E e2 ∧ πomap(e1)(ot) ∩ πomap(e2)(ot) 6= ∅}∗.6

It is easy to verify that �ot
E is indeed reflexive, antisymmetric, and transitive.

Also note that if there are three events e1 �E e2 �E e3 with πomap(e1)(ot) =

6 R∗ is the transitive closure of relation R. Hence, �ot
E is a partial order (reflexive,

antisymmetric, and transitive).
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{o1}, πomap(e2)(ot) = {o1, o2}, and πomap(e3)(ot) = {o2}, then e1 �ot
E e3 al-

though πomap(e1)(ot) ∩ πomap(e3)(ot) = ∅.
Projections can be generalized to multiple object types. For OT ∈ Uot :

EOT = {e ∈ E | ∃ot∈OT πomap(e)(ot) 6= ∅} and �OT
E = {(e1, e2) ∈ EOT ×EOT |

e1 �E e2 ∧ ∃ot∈OT πomap(e1)(ot) ∩ πomap(e2)(ot) 6= ∅}∗.
We would like to discover Directly-Follows Graphs (DFGs) based on the pro-

jections specified in Definition 5. To do this, we use the well-known covering
relation to capture the direct causal relations between events. The covering re-
lation is the equivalent of the transitive reduction of a finite directed acyclic
graph, but applied to relations rather than graphs.

Definition 6 (Covering Relation). Let � be a partial order (reflexive, anti-
symmetric, and transitive). ≺ = {(x, y) ∈ � | x 6= y}. ⋖ is the covering relation
of �, i.e., ⋖ = {(x, y) ∈ ≺ |6 ∃z x ≺ z ≺ y}.

We can construct the covering relation for any partially ordered set of events.
It is known that the covering relation is unique. The graphical representation
of the partial order based on the covering relation is also known as the Hasse
diagram. ⋖E and ⋖

ot
E refer to the covering relations of �E and �ot

E respectively.
Using the covering relation ⋖

ot
E for an event log (E,�E) projected onto an

object type ot , we can construct a variant of the Directly-Follows Graph (DFG).
However, there are two differences with a normal DFG: we consider partial orders
and focus on the projection.

Definition 7 (Directly-Follows Graph). Let (E,�E) be an event log and
ot ∈ Uot an object type. (Aot , Rot) with Aot = [πact(e) | e ∈ Eot ] and Rot =
[(πact(e1), πact(e2)) | (e1, e2) ∈ ⋖

ot
E ] is the Directly-Follows Graph (DFG) for

object type ot.

The resulting DFG (Aot , Rot) has a multiset of activity nodes Aot and a
multiset of arcs Rot . Both are multisets, because we would like to keep track of
frequencies. Given some activity a, Aot(a) is the number of a events that refer to
an object of type ot . Given a pair of activities (a1, a2), R

ot(a1, a2) is the number
times an a1 event was causally followed by an a2 event where both events shared
an object of type ot .

Figure 6 shows an example DFG (without multiplicities) for each object type
using the event log illustrated by Table 1. Note that we also indicate the initial
and final activities (shown using the incoming arcs and outgoing arcs). This can
be achieved by adding a dummy start and end activity to each object type.
The dummy start corresponds to the creation of the object. The dummy end
activity corresponds to its completion. These dummy activities are not shown
in Figure 6, but the corresponding arcs are.

As mentioned before, the scoping of object identifiers greatly influences the
process models that are returned. To illustrate this, consider the reduced event
log shown in Table 2 again. Figure 7 shows the DFGs (again without multiplic-
ities) for each object type using this reduced event log. As before, we indicate
start and end activities.
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Fig. 6. DFGs per object type learned from Table 1. Not all arcs are included and also
note that Table 1 is just an excerpt of the larger event log.

The different DFGs can be simply merged into a labeled multigraph where the
arcs correspond to specific object types. The arcs are now labeled with object
types. For example, (a1, ot , a2) is the arc connecting activities a1 and a2 via
objects of type ot . Two arcs may connect the same pair of activities. As before,
we use multisets to represent cardinalities, i.e., R(a1, ot , a2) is the frequency of
the arc connecting activities a1 and a2 via objects of type ot .

Definition 8 (Overall Directly-Follows Multigraph). Let (E,�E) be an
event log. (A,R) with A = [πact(e) | ∃ot∈Uot

e ∈ Eot ] and R = [(πact(e1), ot ,
πact(e2)) | ∃ot∈Uot

(e1, e2) ∈ ⋖
ot
E ] is the Overall Directly-Follows Multigraph

(ODFM).

In general, the Overall Directly-Follows Multigraph (ODFM) will often be
too complicated to understand easily. Nevertheless, it is valuable to see the
whole event log with multiple case notions in a single diagram. To simplify the
multigraph, it is possible to consider any subset of object types OT ⊆ Uot .

Definition 9 (Selected Directly-Follows Multigraph). Let (E,�E) be an
event log and OT ⊆ Uot a set of object types. (AOT , ROT ) with AOT = [πact(e) |
∃ot∈OT e ∈ Eot ] and ROT = [(πact(e1), ot , πact(e2)) | ∃ot∈OT (e1, e2) ∈ ⋖

ot
E ] is

the Selected Directly-Follows Multigraph (SDFM).
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Fig. 7. DFGs per object type learned from Table 2.

The Selected Directly-Follows Multigraph (SDFM) selects two or more object
types to create a particular view on the event data. As an example, we can take
OT = {order , item, package} as shown in Figure 8. The object types included
are order , item, and package, i.e., only route is excluded to provide the view.
The arcs are colored based on the corresponding object types. For clarity, also
the names have been added. Again we do not show multiplicities on nodes and
arcs. Also note that the start and end activities are indicated.
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Fig. 8. Directly-Follows Multigraph (DFM) learned from Table 2 for the object types
order , item, and package.

An ODFM is a special case of SDFM, i.e., OT = Uot . Therefore, we will use
the term Directly-Follows Multigraph (DFM) to refer to both.
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The DFM shown in Figure 8 illustrates that it is possible to deal with non-
flattened event data. The diagram shows the relationships between different
activities that are connected through various types of objects. DFMs are not as
easy to interpret as traditional DFGs using a single case notion. However, trying
to flatten the model by straightjacketing the event data into a traditional event
log will often lead to convergence and divergence problems.

Given a DFM, it is easy to select a desired case notion, generate a conven-
tional flat event log, and apply standard process mining techniques.

6 Beyond Directly-Follows Graphs

The Directly-Follows Multigraph (DFM) does not use higher-level process model-
ing constructs (e.g., XOR/OR/AND-splits/joins). Note that an event log (E,�E),
as defined in this paper, is a partial order. The partial order can take into account
causality. Assume that �E is the reflexive transitive closure of {(e1, e2), (e1, e3),
(e2, e4), (e3, e4)}. The order of e2 and e3 is not fixed, but both causally depend
on e1. Event e4 causally depends on e2 and e3. Normally, the Directly Follows
Graph (DFG) does not take causality into account. In the example, the temporal
ordering of e2 and e3 influences the graph constructed even though they do not
depend on each other.

Although the partial order can take into account causality, the resulting DFM
does not explicitly show concurrency. However, traditional process mining ap-
proaches can be used starting from event data projected onto a specific object
type. Recall that the DFG for object type ot , i.e., (Aot , Rot), is based on a pro-
jected event log. We can use the same approach in conjunction with existing pro-
cess discovery techniques. Two examples are the Petri-net-based place discovery
technique presented in [3] and the Declare-based discovery techniques presented
in [29, 32, 33]. In [3] monotonicity results are used to exploit finding places that
are constraining behavior to the behavior seen. In [29, 32, 33] LTL-based declar-
ative constraints are learned. Also places can be viewed as constraints. Note that
a Petri net without places allows for any behavior of the transitions (activities)
included. Hence, process discovery can be viewed as learning constraints. This
view is compatible with the orthogonal nature of the different object types in
a DFM. Therefore, it is not difficult to enhance DFMs such as the one shown
in Figure 8 with more sophisticated constraints (e.g., places or LTL-based con-
straints).

7 Conclusion

This paper focused on the limitations of process mining techniques that assume
a single case notion and just one case per event. Yet, existing approaches assume
“flattened event data” (e.g., stored using XES or a CSV file with one column for
the case identifier). Real-life processes are often more complex, not allowing for
these simplifying assumptions. Flattened event data only provide one of many
possible views, leading to convergence and divergence problems.
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To address the problem, we proposed a more faithful event log notion (E,�E)
where events can refer to any number of objects and these may be of different
object types. Hence, events can depend on each other in different ways. Moreover,
we assume partially ordered events. For example, events may refer to mixtures
of orders, items, packages, and delivery routes. The Directly-Follows Multigraph
(DFM) can be used to get a more holistic view on the process.

The paper is also a “call for action”. First of all, it is important to extract
more realistic event logs. Currently, techniques developed in research and the
tools provided by vendors assume “flat” event data (e.g., in XES format), because
it is the information widely available (in public data sets and the data sets used
in competitions). However, the data stored in information systems are not flat.
Availability of more realistic event data will positively influence research and
tools. Second, novel techniques are needed. The DFM is just a starting point
for more sophisticated object-centric process mining techniques. However, it is
vital to keep things simple and avoid the complexity associated with artifact-
centric approaches. Whereas the focus in this paper is on process discovery,
the insights also apply to other forms of process mining such as conformance
checking, bottleneck analysis, and operational support (e.g., prediction).

Acknowledgments: We thank the Alexander von Humboldt (AvH) Stiftung
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