
Object class recognition and localization using sparse features with limited

receptive fields ∗

Jim Mutch †

Department of Brain and Cognitive Sciences

Massachusetts Institute of Technology

Cambridge, MA

jmutch@mit.edu

David G. Lowe

Department of Computer Science

University of British Columbia

Vancouver, B.C., Canada

lowe@cs.ubc.ca

Abstract

We investigate the role of sparsity and localized features in

a biologically-inspired model of visual object classification.

As in the model of Serre, Wolf, and Poggio, we first apply

Gabor filters at all positions and scales; feature complex-

ity and position/scale invariance are then built up by alter-

nating template matching and max pooling operations. We

refine the approach in several biologically plausible ways.

Sparsity is increased by constraining the number of feature

inputs, lateral inhibition, and feature selection. We also

demonstrate the value of retaining some position and scale

information above the intermediate feature level. Our fi-

nal model is competitive with current computer vision algo-

rithms on several standard datasets, including the Caltech

101 object categories and the UIUC car localization task.

The results further the case for biologically-motivated ap-

proaches to object classification.

1. Introduction

The problem of recognizing multiple object classes in nat-

ural images has proven to be a difficult challenge for com-

puter vision. Given the vastly superior performance of hu-

man vision on this task, it is reasonable to look to biology

for inspiration. Recent work by Serre, Wolf, and Poggio

[32] used a computational model based on our knowledge

of visual cortex to obtain promising results on some of the

standard classification datasets. Our paper builds on their

approach by incorporating some additional biologically-

motivated properties, specifically, sparsity and localized

intermediate-level features. We show that these modifica-

tions further improve classification performance, strength-

∗This paper updates and extends an earlier presentation [24] of this

research in CVPR 2006.
†The research described in this paper was carried out at the University

of British Columbia.

ening our understanding of the computational constraints

facing both biological and computer vision systems.

Within machine learning, it has been found that increas-

ing the sparsity of basis functions [9, 17] (equivalent to re-

ducing the capacity of the classifier) plays an important role

in improving generalization performance. Similarly, within

computational neuroscience, it has been found that adding a

sparsity constraint is critical for learning biologically plau-

sible models from the statistics of natural images [25]. In

our object classification model, one way we have found to

increase sparsity is to use a lateral inhibition step that elim-

inates weaker responses that disagree with the locally dom-

inant ones. We further enhance this approach by matching

only the dominant orientation at each position within a fea-

ture rather than comparing all orientation responses. We

also increase sparsity during final classification by discard-

ing features with low weights and using only those that are

found most effective. We show that each of these changes

provides a significant boost in generalization performance.

While some current successful methods for object classi-

fication learn and apply quite precise geometric constraints

on feature locations [8, 3], others ignore geometry and use

a “bag of features” approach that ignores the locations of

individual features [4, 26]. Intermediate approaches retain

some coarsely-coded location information [1] or record the

locations of features relative to the object center [20, 2]. Ac-

cording to models of object recognition in cortex [29], the

brain uses a hierarchical approach, in which simple, low-

level features having high position and scale specificity are

pooled and combined into more complex, higher-level fea-

tures having greater location invariance. At higher levels,

spatial structure becomes implicitly encoded into the fea-

tures themselves, which may overlap, while explicit spatial

information is coded more coarsely. The question becomes

one of identifying the level at which features have become

complex enough that explicit spatial information can be dis-

carded. We investigate retaining some degree of position

and scale sensitivity up to the level of object detection, and

show that this provides a significant improvement in final

classification performance.

We test these improvements on the large Caltech dataset

of images from 101 object categories [7]. Our results

show that there are significant improvements to classifica-

tion performance from each of the changes. Further tests

on the UIUC car database [1] and the Graz-02 datasets [26]

demonstrate that the resulting system can also perform well

on object localization. Our results further strengthen the

case for incorporating concepts from biological vision into

the design of computer vision systems.

2. Models

The model1 presented in this paper is a partial implemen-

tation of the “standard model” of object recognition in cor-

tex (as summarized by [29]), which focuses on the object

recognition capabilities of the ventral visual pathway in an

“immediate recognition” mode, independent of attention or

other top-down effects. The rapid performance of the hu-

man visual system in this mode [28, 33] implies mainly

feedforward processing. While full human-level classifi-

cation performance is almost certain to require feedback,

the feedforward case is the easiest to model and thus repre-

sents an appropriate starting point. Within this immediate

recognition framework, recognition of object classes from

different 3D viewpoints is thought to be based on the learn-

ing of multiple 2D representations, rather than a single 3D

representation [27].

2.1. Previous models

Our model builds on that of Serre et al. [32], which in turn

extends the “HMAX” model of Riesenhuber and Poggio

[29]. These are the latest of a group of models which can

be said to implement parts of the standard model, including

neocognitrons [12] and convolutional networks [19]. All

start with an image layer of grayscale pixels and succes-

sively compute higher layers, alternating “S” and “C” layers

(named by analogy with the V1 simple and complex cells

discovered by Hubel and Wiesel [15]).

• Simple (“S”) layers apply local filters that compute

higher-order features by combining different types of

units in the previous layer.

• Complex (“C”) layers increase invariance by pooling

units of the same type in the previous layer over lim-

ited ranges. At the same time, the number of units is

reduced by subsampling.

Recent models have moved towards greater quantita-

tive fidelity to the ventral stream. HMAX was designed

1Source code and related documentation for our model may be down-

loaded at http://www.mit.edu/∼jmutch/fhlib.html.

[r
1
 r

2
 ... r

d
]

[r
1
 r

2
 ... r

d
]

Figure 1. Overall form of our model. Images are reduced to feature

vectors which are then classified by an SVM.

to account for the tuning and invariance properties [21] of

neurons in IT cortex. Rather than attempting to learn its

bottom-level (“S1”) features, HMAX uses hardwired filters

designed to emulate V1 simple cells. Subsequent “C” layers

are computed using a hard max, in which a C unit’s output

is the maximum value of its afferent S units. This increases

feature invariance while maintaining specificity. HMAX is

also explicitly multiscale: its bottom-level filters are com-

puted at all scales, and subsequent C units pool over both

position and scale.

Serre et al. [32] introduced learning of intermediate-

level shared features, made additional quantitative adjust-

ments, and added a final SVM classifier to make the model

useful for classification.

2.2. Our base model

We start with a “base” model which is similar to [32] and

performs about as well. Nevertheless, it is an independent

implementation, and we give its complete description here.

Its differences from [32] will be listed briefly at the end of

this section. Larger changes, representing the main contri-

bution of this paper, are described in section 2.3.

The overall form of the model (shown in figure 1) is very

simple. Images are reduced to feature vectors, which are

then classified by an SVM. The dictionary of features is

shared across all categories – all images “live” in the same

feature space. The main focus of our work is on the feature

computation stage.

Features are computed hierarchically in five layers: an

initial image layer and four subsequent layers, each built

from the previous by alternating template matching and

max pooling operations. This process is illustrated in fig-

ure 2, and the following subsections describe each layer.

Note that features in all layers are computed at all

positions and scales – interest point detectors are not used.

Image layer. We convert the image to grayscale and scale

the shorter edge to 140 pixels while maintaining the aspect

ratio. Next we create an image pyramid of 10 scales,

each a factor of 21/4 smaller than the last (using bicubic

interpolation).

C2 Layer [r1 r2 ... rd]
d feature
responses

global max

S2 Layer [r1 r2 ... rd]
d feature
responses
per location

2222

9

⊗ d features

C1 Layer []
4 orientations
per location

2525

9

local max

S1 Layer []
4 orientations
per location

130
130

10

⊗ 4 filters

Image

Layer

1 pixel
per location

140
140

10

Figure 2. Feature computation in the base model. Each layer has

units covering three spatial dimensions (x/y/scale), and at each 3D

location, an additional dimension of feature type. The image layer

has only one type (pixels), layers S1 and C1 have 4 types, and the

upper layers have d (many) types per location. Each layer is com-

puted from the previous by applying template matching or max

pooling filters. Image size can vary and is shown for illustration.

Gabor filter (S1) layer. The S1 layer is computed from the

image layer by centering 2D Gabor filters with a full range

of orientations at each possible position and scale. Our base

model follows [32] and uses 4 orientations. While the im-

age layer is a 3D pyramid of pixels, the S1 layer is a 4D

structure, having the same 3D pyramid shape, but with mul-

tiple oriented units at each position and scale (see figure 2).

Each unit represents the activation of a particular Gabor fil-

ter centered at that position/scale. This layer corresponds to

V1 simple cells.

The Gabor filters are 11x11 in size, and are described by:

G(x, y) = exp

(

−
(X2 + γ2Y 2)

2σ2

)

cos

(

2π

λ
X

)

(1)

where X = x cos θ − y sin θ and Y = x sin θ + y cos θ. x
and y vary between -5 and 5, and θ varies between 0 and

π. The parameters γ (aspect ratio), σ (effective width), and

λ (wavelength) are all taken from [32] and are set to 0.3,

4.5, and 5.6 respectively. Finally, the components of each

filter are normalized so that their mean is 0 and the sum of

their squares is 1. We use the same size filters for all scales

(applying them to scaled versions of the image).

It should be noted that the filters produced by these pa-

rameters are quite clipped; in particular, the long axis of

the Gabor filter does not diminish to zero before the bound-

ary of the 11x11 array is reached. However, experiments

showed that larger arrays failed to improve classification

performance, and they were more expensive to compute.

The response of a patch of pixels X to a particular S1

filter G is given by:

R(X, G) =

∣

∣

∣

∣

∣

∑

XiGi
√

∑

X2

i

∣

∣

∣

∣

∣

(2)

Local invariance (C1) layer. This layer pools nearby

S1 units (of the same orientation) to create position and

scale invariance over larger local regions, and as a result

can also subsample S1 to reduce the number of units. For

each orientation, the S1 pyramid is convolved with a 3D

max filter, 10x10 units across in position2 and 2 units

deep in scale. A C1 unit’s value is simply the value of

the maximum S1 unit (of that orientation) that falls within

the max filter. To achieve subsampling, the max filter is

moved around the S1 pyramid in steps of 5 in position (but

only 1 in scale), giving a sampling overlap factor of 2 in

both position and scale. Due to the pyramidal structure of

S1, we are able to use the same size filter for all scales.

The resulting C1 layer is smaller in spatial extent and has

the same number of feature types (orientations) as S1; see

figure 2. This layer provides a model for V1 complex cells.

2Note that the max filter is itself a pyramid, so its size is 10x10 only at

the lowest scale.

Intermediate feature (S2) layer. At every position and

scale in the C1 layer, we perform template matches between

the patch of C1 units centered at that position/scale and each

of d prototype patches. These prototype patches represent

the intermediate-level features of the model.

The prototypes themselves are randomly sampled from

the C1 layers of the training images in an initial feature-

learning stage. (For the Caltech 101 dataset, we use d =

4,075 for comparison with [32].) Prototype patches are like

fuzzy templates, consisting of a grid of simpler features that

are all slightly position and scale invariant.

During the feature learning stage, sampling is performed

by centering a patch of size 4x4, 8x8, 12x12, or 16x16 (x

1 scale) at a random position and scale in the C1 layer of

a random training image. The values of all C1 units within

the patch are read out and stored as a prototype. For a 4x4

patch, this means 16 different positions, but for each posi-

tion, there are units representing each of 4 orientations (see

the “dense” prototype in figure 3). Thus a 4x4 patch actu-

ally contains 4x4x4 = 64 C1 unit values.

Preliminary tests seemed to confirm that multiple feature

sizes worked somewhat better than any single size. Since

we learn the prototype patches randomly from images con-

taining background clutter, some will not actually represent

the object of interest; others may simply not be useful for

the classification task. The weighting of features is left for

the later SVM step. It should be noted that while each

S2 prototype is learned by sampling from a specific image

of a single category, the resulting dictionary of features is

shared, i.e., all features are used by all categories.

During normal operation (after feature learning), each of

these prototypes can be seen as just another filter which

is run over C1. We generate an S2 pyramid with roughly

the same number of positions/scales as C1, but having d
types of units at each position/scale, each representing the

response of the corresponding C1 patch to a specific proto-

type patch; see figure 2. The S2 layer is intended to corre-

spond to cortical area V4 or posterior IT.

The response of a patch of C1 units X to a particular S2

feature/prototype P , of size n × n, is given by a Gaussian

radial basis function:

R(X, P) = exp

(

−
‖X − P‖2

2σ2α

)

(3)

Both X and P have dimensionality n × n × 4, where n ∈
{4, 8, 12, 16}. As in [32], the standard deviation σ is set to

1 in all experiments.

The parameter α is a normalizing factor for different

patch sizes. For larger patches n ∈ {8, 12, 16} we are

computing distances in a higher dimensional space; for the

distance to be small, there are more dimensions that have

to match. We reduce the weight of these extra dimensions

by using α = (n/4)2, which is the ratio of the dimension

of P to the dimension of the smallest patch size.

Global invariance (C2) layer. Finally we create a d-

dimensional vector, each element of which is the maximum

response (anywhere in the image) to one of the model’s

d prototype patches. At this point, all position and scale

information has been removed, i.e., we have a “bag of

features”.

SVM classifier. The C2 vectors are classified using an all-

pairs linear SVM3. Data is “sphered” before classification:

the mean and variance of each dimension are normalized

to zero and one respectively.4 Test images are assigned to

categories using the majority-voting method.

Differences from Serre et al. Our base model, as described

above, performs about as well as that of Serre et al. in [32].

However, in [32]:

• image height is always scaled to 140,

• a pyramid approach is not used (different sized filters

are applied to the full-scale image),

• the S1 parameters σ and λ change from scale to scale,

• S1 filters differ in size additively,

• C1 subsampling ranges do not overlap in scale, and

• S2 has no α parameter.

2.3. Improvements

In this section we describe several changes which introduce

sparsity and localized intermediate-level features into the

model; these changes represent the main contributions

of the paper. Testing results for each modification are

provided in section 3.

Sparsify S2 inputs. In the base model, an S2 unit computes

its response using all the possible inputs in its correspond-

ing C1 patch. Specifically, at each position in the patch, it is

looking at the response to every orientation of Gabor filter

and comparing it to its prototype. Real neurons, however,

are likely to be more selective among potential inputs. To

increase sparsity among an S2 unit’s inputs, we reduce the

number of inputs to an S2 feature to one per C1 position.

In the feature learning phase, we remember the identity and

magnitude of the dominant orientation (maximally respond-

ing C1 unit) at each of the n×n positions in the patch. This

is illustrated in figure 3; the resulting 4x4 prototype patch

now contains only 16 C1 unit values, not 64. When comput-

ing responses to such “sparsified” S2 features, equation 3 is

still used, but with a lower dimensionality: for each position

in the patch, the S2 feature only cares about the value of the

3We use the Statistical Pattern Recognition Toolbox for MATLAB [10].
4Suggested by T. Serre (personal communication).

Dense Prototype Sparse Prototype

Figure 3. Dense vs. sparse S2 features. Dense S2 features in the

base model are sensitive to all orientations of C1 units at each po-

sition. Sparse features are sensitive only to a particular orientation

at each position. A 4x4 S2 feature for a 4-orientation model is

shown here. Stronger C1 unit responses are shown as darker.

C1 unit representing its preferred orientation for that posi-

tion. This makes the S2 unit less sensitive to local clutter,

improving generalization.

In conjunction with this we increase the number of

Gabor filter orientations in S1 and C1 from 4 to 12. Since

we’re now looking at particular orientations, rather than

combinations of responses to all orientations, it becomes

more important to represent orientation accurately. Cells in

visual cortex also have much finer gradations of orientation

than π/4 [15].

Inhibit S1/C1 outputs. Our second modification is similar

– we again ignore non-dominant orientations, but here we

focus not on pruning S2 feature inputs but on suppressing

S1 and C1 unit outputs. In cortex, lateral inhibition refers

to units suppressing their less-active neighbors. We adopt a

simple version of this between S1/C1 units encoding differ-

ent orientations at the same position and scale. Essentially

these units are competing to describe the dominant orienta-

tion at their location.

We define a global parameter h, the inhibition level,

which can be set between 0 and 1 and represents the fraction

of the response range that gets suppressed. At each loca-

tion, we compute the minimum and maximum responses,

Rmin and Rmax, over all orientations. Any unit having

R < Rmin + h(Rmax −Rmin) has its response set to zero.

This is illustrated in figure 4.

As a result, if a given S2 unit is looking for a response to

a vertical filter (for example) in a certain position, but there

is a significantly stronger horizontal edge in that rough

position, the S2 unit will be penalized.

Limit position/scale invariance in C2. Above the S2 level,

the base model becomes a “bag of features” [4], disregard-

ing all geometry. The C2 layer simply takes the maximum

response to each S2 feature over all positions and scales.

This gives complete position and scale invariance, but S2

features are still too simple to eliminate binding problems:

Original Units Inhibited Units

Figure 4. Inhibition in S1/C1. The weaker units (i.e., orientations)

at each position are suppressed. A 4x4 patch of units (at a sin-

gle scale) is shown here for a 4-orientation model. Stronger unit

responses are shown as darker.

Figure 5. Limiting the position/scale invariance of C2 units. The

solid boxes represent S2 features sampled from this training im-

age. In test images, we will limit the search for the maximum

response to each S2 feature to the positions represented by the

corresponding dashed box. Scale invariance is similarly limited

(although not shown here).

we are still vulnerable to false positives due to chance co-

occurrence of features from different objects and/or back-

ground clutter.

We wanted to investigate the option of retaining some

geometric information above the S2 level. In fact, neurons

in V4 and IT do not exhibit full invariance and are known to

have receptive fields limited to only a portion of the visual

field and range of scales [30]. To model this, we simply

restrict the region of the visual field in which a given S2

feature can be found, relative to its location in the image

from which it was originally sampled, to ±tp% of image

size and ±ts scales, where tp and ts are global parameters.

This is illustrated in figure 5.

This approach assumes the system is “attending” close

to the center of the object. This is appropriate for datasets

such as the Caltech 101, in which most objects of interest

are central and dominant. For the more general detection

of objects within complex scenes, as in the UIUC car

database, we augment it with a search for peak responses

over object location using a sliding window.

Select features that are highly weighted by the SVM. Our

S2 features are prototype patches randomly selected from

training images. Many will be from the background, and

others will have varying degrees of usefulness for the clas-

sification task. We wanted to find out how many features

were actually needed, and whether cutting out less-useful

features would improve performance, as we might expect

from machine learning results on the value of sparsity.

We use a simple feature selection technique based on

SVM normals [22]. In fitting separating hyperplanes, the

SVM is essentially doing feature weighting. Our all-pairs

m-class linear SVM consists of m(m− 1)/2 binary SVMs.

Each fits a separating hyperplane between two sets of points

in d dimensions, in which points represent images and each

dimension is the response to a different S2 feature. The d
components of the (unit length) normal vector to this hy-

perplane can be interpreted as feature weights; the higher

the kth component (in absolute value), the more important

feature k is in separating the two classes.

To perform feature selection, we simply drop features

with low weight. Since the same features are shared by

all the binary SVMs, we do this based on a feature’s av-

erage weight over all binary SVMs. Starting with a pool of

12,000 features, we conduct a multi-round “tournament”.

In each round, the SVM is trained, then at most5 half the

features are dropped. The number of rounds depends on the

desired final number of features d. (For performance rea-

sons, earlier rounds are carried out using multiple SVMs,

each containing at most 3,000 features.)

Our experiments show that dropping features (effectively

forcing their weights to zero rather than those assigned by

the SVM) improves classification performance, and the re-

sulting model is more economical to compute.

3. Multiclass experiments (Caltech 101)

The Caltech 101 dataset contains 9,197 images comprising

101 different object categories, plus a background category,

collected via Google image search by Fei-Fei et al. [7].

Most objects are centered and in the foreground, making it

an excellent test of basic classification with a large number

of categories. (The Caltech 101 has become the unofficial

standard benchmark for this task.) Some sample images can

be seen in figures 8 and 9.

First we ran our base model (described in section 2.2)

on the full 102-category dataset. The results are shown in

table 1 and are comparable to those of [32].

Classification scores for our model are averaged over 8

runs. For each run we:

5Depending on the desired number of features it may be necessary to

drop less than half per round.

Model
15 training 30 training

images/cat. images/cat.

Our model (base) 33 41

Serre et al. [32] 35 42

Holub et al. [14] 37 43

Berg et al. [2] 45

Grauman & Darrell [13] 50 58

Our model (final) 51 56

Lazebnik et al. [18] 56 65

Zhang et al. [35] 59 66

Table 1. Published classification results for the Caltech 101

dataset. Results for our model are the average of 8 independent

runs using all available test images. Scores shown are the average

of the per-category classification rates.

1. choose 15 or 30 training images at random from each

category, placing remaining images in the test set,

2. learn features at random positions and scales from the

training images (an equal number from each image),

3. build C2 vectors for the training set,

4. train the SVM (performing feature selection if that op-

tion is turned on),

5. build C2 vectors for the test set and classify the test

images.

Next we successively turned on the improvements de-

scribed in section 2.3. Each has one or two free parameters.

Our goal was to find parameter values that could be used for

any dataset, so we wanted to guard against the possibility

of tuning parameters to unknown properties specific to the

Caltech 101. This large dataset has enough variety to make

this unlikely; nevertheless, we ran these tests independently

on two disjoint subsets of the categories and chose parame-

ter values that fell in the middle of the good range for both

groups (see figure 6). The fact that such values were easy to

find increases our confidence in the generality of the chosen

values. The two groups were constructed as follows:

1. remove the easy faces and background categories,

2. sort the remaining 100 categories by number of im-

ages, then

3. place odd numbered categories into group A and even

into group B.

The complete parameter space is too large to search ex-

haustively, hence we chose an order and optimized each

parameter separately before moving to the next. First we

turned on S2 input sparsification and found a good num-

ber of orientations, then we fixed that number and moved

on to find a good inhibition level, etc. This process is il-

lustrated in figures 6 and 7. The last parameter, number of

features, was optimized for all 102 categories as a single

4 6 8 10 12 14 16

40

41

42

43

44

45

orientations

av
er

ag
e

%
 c

or
re

ct

group A
group B

0 0.25 0.5 0.75

42
43
44
45
46
47
48
49
50

inhibition factor h
1 10 100

45
46
47
48
49
50
51
52
53
54
55
56

allowed % position variation
0 1 2 3 4 5 6 7 8

52

53

54

55

56

57

allowed scale variation

Figure 6. The results of parameter tuning for successive enhancements to the base model using the Caltech 101 dataset. Tests were run

independently on two disjoint groups of 50 categories each. The horizontal lines in the leftmost graph show the performance of the base

model (dense features, 4 orientations) on the two groups. Tuning is cumulative: the parameter value chosen in each graph is marked by a

solid diamond on the x-axis. The results for this parameter value become the starting points (shown as solid data points) for the next graph.

Each data point is the average of 8 independent runs, using 15 training images and up to 100 test images per category.

0 2000 4000 6000 8000 10000 12000

47

48

49

50

51

av
er

ag
e

%
 c

or
re

ct

number of features

Figure 7. Results for the final model on all 102 categories using

various numbers of features, selected from a pool of 12,000 fea-

tures. The horizontal line represents the performance of the same

model but with 4,075 randomly selected features and no feature

selection. Each data point is the average of 4 runs with 15 training

images and up to 100 test images per category.

group. Since models with fewer features can be computed

more quickly, we chose the smallest number of features that

still gave results close to the best.

The parameter values ultimately chosen were 12 orien-

tations, h = 0.5, tp = ±5%, ts = ±1 scale, 1500 features.

Classification scores for the final model, which incorporates

these parameters, are shown in table 1 along with those from

other published studies. Our final results for 15 and 30 train-

ing images, using all 102 categories, are 51% and 56%. 6

Table 2 shows the contribution to performance of each

successive modification, using all 102 categories.

6When originally submitted for publication, these scores exceeded all

previously published results for this dataset. Concurrent work by Lazebnik

et al. [18] and Zhang et al. [35] scored higher. These approaches focus

on improved SVM kernels, as does that of Grauman & Darrell [13]. A

possible future project could involve replacing our simple classifier with

one based on these ideas.

Model version
15 training 30 training

images/cat. images/cat.

Base 33 41

+ sparse S2 inputs 35 (+ 2) 45 (+ 4)

+ inhibited S1/C1 outputs 40 (+ 5) 49 (+ 4)

+ limited C2 invariance 48 (+ 8) 54 (+ 5)

+ feature selection 51 (+ 3) 56 (+ 2)

Table 2. The contribution of our successive modifications to the

overall classification score, using all 102 categories. Each score

is the average of 8 independent runs using all available test im-

ages. Scores shown are the average of the per-category classifica-

tion rates.

Figure 8 contains some examples of categories for which

the system performed well, while figure 9 illustrates some

difficult categories. In general, the harder categories are

those having greater shape variability due to greater intra-

category variation and nonrigidity. Interestingly, the fre-

quency of occurence of background clutter in a category’s

images does not seem to be a significant factor. Note that

performance is worst on the “background” category. This

is not surprising, as our system does not currently have a

special case for “none of the above”. Background is treated

as just another category, and the system attempts to learn it

from at most 30 exemplars.

Table 3 shows the ten most common classification errors.

Notably, most of these errors are not outrageous by human

standards. The most common confusions are schooner vs.

ketch (indistinguishable by non-expert humans) and lotus

vs. water lily (similar flowers).

3.1. The selected features

Figure 10 shows the proportion of S2 features of each size

(4x4, 8x8, etc.) that survived the feature selection process

Figure 8. Examples of Caltech 101 categories on which our system

performed well.

Figure 9. Examples of Caltech 101 categories which our system

found more difficult.

Category Most Common Error Frequency (%)

schooner ketch 19.32

lotus water lilly 18.75

ketch schooner 17.11

scorpion ant 8.80

elephant brontosaurus 8.46

crab crocodile 7.85

crayfish lobster 7.50

ibis emu 7.50

lamp flamingo 6.85

llama kangaroo 6.51

Table 3. The ten most common errors on the Caltech 101 dataset,

for the final model using 30 training images per category, aver-

aged over 8 runs. Only categories having at least 30 remaining test

images are included here.

4 x 4 8 x 8 12 x 12 16 x 16
0
5

10
15
20
25

%
 k

ep
t

Figure 10. Percentage of each size of feature remaining after fea-

ture selection, using the final number of features (1500), averaged

over 8 runs.

for the final model. Among these surviving features, the 4x4

size dominates, suggesting that this size generally yields the

most informative features for this task [34].

Because S2 features are not directly made up of pixels,

but rather C1 units, it is not possible to uniquely show what

they “look like”. However, it is possible to find the image

patches in the test set to which a given feature responds most

strongly. Figures 16 and 17 (end of paper) show two fea-

tures from a particular run on the Caltech 101 dataset. Ac-

cording to the selection criteria, these features were ranked

#1 and #101, respectively.

For most features, the highest-responding patches do not

all come from one object category, although there are often

a few commonly recurring categories. S2 features are still

rather weak classifiers on their own.

4. Localization experiments (UIUC cars)

We ran our final model on the UIUC car dataset [1]. These

experiments served two purposes.

• Our introduction of limited C2 invariance (section 2.3)

sacrificed full invariance to object position and scale

within the image; we wanted to see if we could recover

it and at the same time perform object localization.

• We wanted to demonstrate that the model, and the pa-

rameters learned during the tuning process, could per-

form well on another dataset.

The UIUC car dataset consists of small (100x40) training

images of cars and background, and larger test images in

which there is at least one car to be found. There are two

sets of test images: a single-scale set in which the cars to be

detected are roughly the same size (100x40 pixels) as those

in the training images, and a multi-scale set.

Other than the number of features, all parameters were

unchanged. The number of features was arbitrarily set to

500 and immediately yielded excellent results. We did not

attempt to optimize system speed by reducing this number

as we did in the multiclass experiments. As before, the fea-

tures were selected from a group of randomly-sampled fea-

tures eight times larger, 4000 in this case, and the selection

process comprised 3 rounds. Features were compared in

groups of at most 1000. See section 2.3 for details.

We trained the model using 500 positive and 500 neg-

ative training images; features were sampled from these

same images.

For localization in these larger test images we added a

sliding window. As in [1], the sliding window moves in

steps of 5 pixels horizontally and 2 vertically. In the multi-

scale case this is done at every scale using these same step

sizes. At larger scales there are fewer pixels, each repre-

senting more of the image, hence there are fewer window

positions at larger scales.

Duplicate detections were consolidated using the neigh-

borhood suppression algorithm from [1]. We increase the

width of a “neighborhood” from 71 to 111 pixels to avoid

merging adjacent cars.

Our results are shown in table 4 along with those of other

studies. Our recall at equal-error rates (recall = precision)

is 99.94% for the single-scale test set and 90.6% for the

multiscale set, averaged over 8 runs. Scores were computed

using the scoring programs provided with the UIUC data.

Model Single-scale Multiscale

Agarwal et al. [1] 76.5 39.6

Leibe et al. [20] 97.5

Fritz et al. [11] 87.8

Our model (final) 99.94 90.6

Table 4. Our results (recall at equal-error rates) for the UIUC car

dataset along with those of previous studies. Scores for our model

are the average of 8 independent runs. Scoring methods were those

of [1].

Figure 11. Some correct detections from one run on the single-

scale UIUC car dataset.

Figure 12. The only 2 errors (1 missed detection, 1 false positive)

made in 8 runs on the single-scale UIUC car dataset.

In our single-scale tests, 7 of 8 runs scored a perfect

100% – all 200 cars in 170 images were detected with no

false positives. To be considered correct, the detected posi-

tion must lie inside an ellipse centered at the true position,

having horizontal and vertical axes of 25 and 10 pixels re-

spectively. Repeated detections of the same object count as

false positives. Figure 12 shows the only errors from the 8th

run; figure 11 shows some correct single-scale detections.

For the multiscale tests, the scoring criteria include a

scale tolerance (from [1]). Figures 13 and 14 show some

correct detections and some errors on the multiscale set. Ta-

ble 5 contains a breakdown of the types of errors made.

Even in the multiscale case, outright false positives and

missed detections are uncommon. Most of the errors are

due to the following two reasons.

1. Two cars are detected correctly, but their bounding

boxes overlap. This is more common in the multi-

scale case; see for example figure 14, bottom left. The

Figure 13. Some correct detections from one run on the multiscale

UIUC car dataset.

Figure 14. Examples of the kinds of errors made for one run on

the multiscale UIUC car dataset. Top left: a simple false positive.

Top right: a simple false negative. Bottom left: the second car is

suppressed due to overlapping bounding boxes. Bottom right: the

car is detected but the scale is slightly off.

Source of error Number of test images

Simple false positive 1

Simple false negative 1

Suppression due to overlap 6

Detection at wrong scale 6

Table 5. Frequency of error types for one run on the multiscale

UIUC car dataset.

neighborhood suppression algorithm eliminates one of

them. Careful redesign of the suppression method

could likely eliminate this type of error.

2. For certain instances of cars, the peak response, i.e.,

the highest-responding placement of the bounding

box, occurs at a scale somewhat larger or smaller than

that of the best bounding box. This is considered a

missed detection (and a false positive) by the scoring

algorithm [1].

5. Localization experiments (Graz-02)

Our final tests were conducted on the more difficult im-

ages of the Graz-02 [26] dataset; some example images

may be seen in figure 15. Like the UIUC car dataset,

Graz-02 was designed for the binary, single-category-vs.-

background task, and the objects of interest are not neces-

sarily central or dominant. It differs from the UIUC car

dataset in the following ways.

1. There are three different positive categories: bikes,

cars, and people. Nevertheless, the standard task is

to distinguish one of these categories from the back-

ground category at a time, i.e., bikes vs. background,

cars vs. background, and people vs. background.

2. The images are more difficult. There is a great deal of

pose variation. Objects may be partially occluded and

often appear in overlapping clusters.

3. While ground-truth location data is provided, it is gen-

erally not used for training, and there is no separate set

of smaller training images.

4. The standard task is only to determine whether a test

image contains an instance of the positive category or

not. Its location within the image does not need to be

reported.

Points (3) and (4) above make direct comparison with

other studies difficult. Other work on this dataset has used

pure bag-of-features models designed for the presence-or-

absence task. Because we use localized features, we require

training images in which the object is central and dominant,

hence we do make use of ground-truth data in the training

phase. And because we use a sliding window to identify

objects in larger scenes, we end up solving the harder task

of localization and then simply taking the peak response,

throwing the location information away in order to compare

to previous results.

Our positive training set was built from 50 randomly-

selected square subimages containing a single object each.7

Each such subimage was left-right reflected, resulting in a

total of 100 positive examples. The negative training set

consisted of 500 randomly-selected “background” subim-

ages, equal in size to the average bounding box of the pos-

itive examples. Some training subimages can be seen in

figure 15. The images from which the training subimages

came were set aside, i.e., they were unavailable for test-

ing. We learned a dictionary of 1,000 features (selected in

3 rounds from 8,000); all other parameters were again un-

changed.

Given the many differences in task definition and the

training sets, our results cannot be considered directly com-

parable to others. We used less training data (50 images

7This may have the side-effect of removing some of the easier images

(those containing easily-separable single objects) from the test set.

Figure 15. Some subimages used to train our Graz-02 “bikes” clas-

sifier.

compared to 300), but had the benefit of using ground-truth

localization for training. With these caveats, our whole-

image classification results were 80.5% for bikes, 70.1%

for cars, and 81.7% for people. This is quite similar to the

results of Opelt et al. [26], who obtained 77.8% for bikes,

70.5% for cars, and 81.2% for people. Recently, better re-

sults have been obtained by Moosmann et al. [23] for two

of the categories (84.4% for bikes, 79.9% for cars), in part

through the use of color information. Our reason for in-

cluding these experiments is to test the application of our

approach to more difficult problems with wide variation in

viewpoint and object location, but a full comparison to other

methods will require development of new data sets.

6. Discussion and future work

In this study we have shown that a biologically-based model

can compete with other state-of-the-art approaches to ob-

ject classification, strengthening the case for investigating

biologically-motivated approaches to this problem. Even

with our enhancements, the model is still relatively simple.

The system implemented here is not real-time; it takes

several seconds to process and classify an image on a 2GHz

Intel Pentium server. Hardware advances will reduce this

to immediate recognition speeds within a few years. Bio-

logically motivated algorithms also have the advantage of

being susceptible to massive parallelization. Localization

in larger images takes longer; in both cases the bulk of the

time is spent building feature vectors.

We have found increasing sparsity to be a fruitful ap-

proach to improving generalization performance. Our

methods for increasing sparsity have all been motivated by

approaches that appear to be incorporated in biological vi-

sion, although we have made no attempt to model biological

data in full detail. Given that both biological and computer

vision systems face the same computational constraints aris-

ing from the data, we would expect computer vision re-

search to benefit from the use of similar basis functions for

describing images. Our experiments show that both lateral

inhibition and the use of sparsified intermediate-level fea-

tures contribute to generalization performance.

We have also examined the issue of feature localization

in biologically based models. While very precise geometric

constraints may not be useful for broad object categories,

there is still a substantial loss of useful information in com-

pletely ignoring feature location as in bag-of-features mod-

els. We have shown a considerable increase in performance

by using intermediate features that are localized to small

regions of an image relative to an object coordinate frame.

When an object may appear at any position or scale in a clut-

tered image, it is necessary to search over potential refer-

ence frames to combine appropriately localized features. In

biological vision this attentional search appears to be driven

by a complex range of saliency measures [30]. For our com-

puter implementation, we can simply search over a densely

sampled set of possible reference frames and evaluate each

one. This has the advantage of not only improving classi-

fication performance but also providing quite accurate lo-

calization of each object. The strong performance shown

on the UIUC car localization task indicates the potential for

further work in this area.

Most of the performance improvements for our model

were due to the feature computation stage. Other recent

multiclass studies [18, 35] have done well using a more

complex SVM classifier stage. From a pure performance

point of view, the most immediately fruitful direction might

be to try to combine these ideas into a single system. How-

ever, as we do not wish to stray too far from what is clearly

a valuable source of inspiration, we lean towards future en-

hancements that are biologically realistic. We would like to

be able to transform images into a feature space in which a

simple classifier is good enough [5]. Even our existing clas-

sifier is not entirely plausible, as an all-pairs model does not

scale well as the number of classes increases.

Another biologically implausible aspect of the current

model is that it ignores the bandwidth limitations of single

cells. On the timescale of immediate recognition, an actual

neuron will have time to fire only a couple of spikes. Thus,

it is more accurate to think of a single model unit as rep-

resenting the synchronous activity of a population of cells

having similar tuning [16].

The initial, feedforward mode of classification is the ob-

vious first step towards emulating object classification in

humans. A more recent model by Serre et al. [31] – having

a slightly deeper feature hierarchy that better corresponds

to known connectivity between areas in the ventral stream

– has been able to match human performance levels for

the classic animal/non-animal rapid classification task of

Thorpe et al. [33]; however, large multiclass experiments

have not yet been carried out. One might expect a deeper

hierarchy having higher-order features or units explicitly

tuned to different 2D views of an object to perform better

on the more difficult datasets involving wide variation in

pose.

Our work so far has focused mainly on the sparse struc-

ture of features. However, the process of learning these fea-

tures from data in the current model is still quite crude –

features are simply sampled at random and then discarded

later if they do not prove useful. It is also unclear how well

this method would extend to a model having a deeper hier-

archy of features. More sophisticated methods will almost

certainly be required. Previous hierarchical models (the

neocognitron [12] and convolutional networks [19]) have

investigated a number of bottom-up and top-down methods.

Epshtein and Ullman [6] provide a principled, top-down

approach for building feature hierarchies based on recur-

sive decomposition of features into maximally informative

sub-features. However, this technique would need to be ex-

tended to the multiclass, shared-feature case, and to the case

in which the higher-level features are not pixel patches. It

is likely that future work will incorporate elements of both

bottom-up and top-down selection and learning of features.

Ultimately, the feedforward model should become the

core of a larger system incorporating feedback, attention,

and other top-down influences.

Acknowledgements

We thank the reviewers for several helpful comments. Funding for this

research was provided by the Natural Sciences and Engineering Research

Council of Canada (NSERC), the Canadian Institute for Advanced Re-

search (CIAR), and the University of British Columbia’s University Grad-

uate Fellowship program.

References

[1] S. Agarwal, A. Awan, and D. Roth. Learning to detect ob-

jects in images via a sparse, part-based representation. PAMI,

26(11):1475–1490, November 2004. 1, 2, 8, 9

[2] A. C. Berg, T. L. Berg, and J. Malik. Shape matching and

object recognition using low distortion correspondence. In

CVPR, June 2005. 1, 6

[3] G. Bouchard and B. Triggs. Hierarchical part-based visual

object categorization. In CVPR, June 2005. 1

[4] G. Csurka, C. Dance, J. Willamowski, L. Fan, and C. Bray.

Visual categorization with bags of keypoints. In ECCV In-

ternational Workshop on Statistical Learning in Computer

Vision, Prague, 2004. 1, 5

[5] J. DiCarlo and D. Cox. Untangling invariant object recogni-

tion. Trends in Cognitive Science, 11:333–341, 2007. 11

[6] B. Epshtein and S. Ullman. Feature hierarchies for object

classification. In ICCV, Beijing, 2005. 11

[7] L. Fei-Fei, R. Fergus, and P. Perona. Learning generative

visual models from few training examples: an incremental

bayesian approach tested on 101 object categories. In CVPR

Workshop on Generative-Model Based Vision, 2004. 2, 6

[8] R. Fergus, P. Perona, and A. Zisserman. Object class recog-

nition by unsupervised scale-invariant learning. In CVPR,

2003. 1

[9] M. Figueiredo. Adaptive sparseness for supervised learning.

PAMI, 25(9):1150–1159, September 2003. 1

[10] V. Franc and V. Hlavac. Statistical pattern recognition tool-

box for Matlab. 4

[11] M. Fritz, B. Leibe, B. Caputo, and B. Schiele. Integrating

representative and discriminative models for object category

detection. In ICCV, pages 1363–1370, Beijing, China, Octo-

ber 2005. 9

[12] K. Fukushima. Neocognitron: A self-organizing neu-

ral network model for a mechanism of pattern recognition

unaffected by shift in position. Biological Cybernetics,

36(4):193–202, April 1980. 2, 11

[13] K. Grauman and T. Darrell. Pyramid match kernels: Dis-

criminative classification with sets of image features. Tech-

nical Report MIT-CSAIL-TR-2006-020, March 2006. 6, 7

[14] A. Holub, M. Welling, and P. Perona. Exploiting unlabelled

data for hybrid object classification. In NIPS Workshop on

Inter-Class Transfer, Whistler, B.C., December 2005. 6

[15] D. Hubel and T. Wiesel. Receptive fields of single neurones

in the cat’s striate cortex. Journal of Physiology, 148:574–

591, 1959. 2, 5

[16] U. Knoblich, J. Bouvrie, and T. Poggio. Biophysical models

of neural computation: Max and tuning circuits. Technical

Report CBCL paper, April 2007. 11

[17] B. Krishnapuram, L. Carin, M. Figueiredo, and

A. Hartemink. Sparse multinomial logistic regression:

Fast algorithms and generalization bounds. PAMI,

27(6):957–968, 2005. 1

[18] S. Lazebnik, C. Schmid, and J. Ponce. Beyond bags of

features: Spatial pyramid matching for recognizing natural

scene categories. In CVPR, June 2006. 6, 7, 11

[19] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-

based learning applied to document recognition. Proceed-

ings of the IEEE, 86(11):2278–2324, November 1998. 2, 11

[20] B. Leibe, A. Leonardis, and B. Schiele. Combined object cat-

egorization and segmentation with an implicit shape model.

In ECCV Workshop on Statistical Learning in Computer Vi-

sion, pages 17–32, Prague, Czech Republic, May 2004. 1,

9

[21] N. Logothetis, J. Pauls, and T. Poggio. Shape representation

in the inferior temporal cortex of monkeys. Current Biology,

5:552–563, 1995. 2

[22] D. Mladenic, J. Brank, M. Grobelnik, and N. Milic-Frayling.

Feature selection using linear classifier weights: Interaction

with classification models. In The 27th Annual Interna-

tional ACM SIGIR Conference (SIGIR 2004), pages 234–

241, Sheffield, UK, July 2004. 6

[23] F. Moosmann, B. Triggs, and F. Jurie. Randomized cluster-

ing forests for building fast and discriminative visual vocab-

ularies. In Neural Information Processing Systems (NIPS),

November 2006. 10

[24] J. Mutch and D. G. Lowe. Multiclass object recognition with

sparse, localized features. In CVPR, pages 11–18, New York,

June 2006. 1

[25] B. Olshausen and D. Field. Emergence of simple-cell re-

ceptive field properties by learning a sparse code for natural

images. Nature, 381:607–609, 1996. 1

[26] A. Opelt, A. Pinz, M.Fussenegger, and P.Auer. Generic ob-

ject recognition with boosting. PAMI, 28(3), March 2006. 1,

2, 10

[27] T. Poggio and S. Edelman. A network that learns to recog-

nize three-dimensional objects. Nature, 343:263–266, Jan-

uary 1990. 2

[28] M. Potter. Meaning in visual search. Science, 187:965–966,

1975. 2

[29] M. Riesenhuber and T. Poggio. Hierarchical models of ob-

ject recognition in cortex. Nature Neuroscience, 2(11):1019–

1025, 1999. 1, 2

[30] E. T. Rolls and G. Deco. The Computational Neuroscience

of Vision. Oxford University Press, 2001. 5, 11

[31] T. Serre, M. Kouh, C. Cadieu, U. Knoblich, G. Kreiman, and

T. Poggio. A theory of object recognition: Computations and

circuits in the feedforward path of the ventral stream in pri-

mate visual cortex. Technical Report CBCL Paper #259/AI

Memo #2005-036, Massachusetts Institute of Technology,

Cambridge, MA, October 2005. 11

[32] T. Serre, L. Wolf, and T. Poggio. Object recognition with

features inspired by visual cortex. In CVPR, San Diego, June

2005. 1, 2, 3, 4, 6

[33] S. Thorpe, D. Fize, and C. Marlot. Speed of processing in

the human visual system. Nature, 381:520–522, 1996. 2, 11

[34] S. Ullman, M. Vidal-Naquet, and E. Sali. Visual features of

intermediate complexity and their use in classification. Na-

ture Neuroscience, 5(7):682–687, 2002. 8

[35] H. Zhang, A. Berg, M. Maire, and J. Malik. Svm-knn: Dis-

criminative nearest neighbor classification for visual cate-

gory recognition. In CVPR, June 2006. 6, 7, 11

Figure 16. The 40 best image patches for feature #1, from one run

of the final model on the Caltech 101 dataset. The four images at

the top show the best-matching locations for the feature within the

context of full images. To save space, for the next 36 matches we

display only the matched patch.

Figure 17. The 40 best image patches for feature #101 (using the

same display format as figure 16).

