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Abstract

We present a method to learn and recognize object class

models from unlabeled and unsegmented cluttered scenes

in a scale invariant manner. Objects are modeled as flexi-

ble constellations of parts. A probabilistic representation is

used for all aspects of the object: shape, appearance, occlu-

sion and relative scale. An entropy-based feature detector

is used to select regions and their scale within the image. In

learning the parameters of the scale-invariant object model

are estimated. This is done using expectation-maximization

in a maximum-likelihood setting. In recognition, this model

is used in a Bayesian manner to classify images. The flex-

ible nature of the model is demonstrated by excellent re-

sults over a range of datasets including geometrically con-

strained classes (e.g. faces, cars) and flexible objects (such

as animals).

1. Introduction

Representation, detection and learning are the main issues

that need to be tackled in designing a visual system for rec-

ognizing object categories. The first challenge is coming

up with models that can capture the ‘essence’ of a cate-

gory, i.e. what is common to the objects that belong to it,

and yet are flexible enough to accommodate object vari-

ability (e.g. presence/absence of distinctive parts such as

mustache and glasses, variability in overall shape, changing

appearance due to lighting conditions, viewpoint etc). The

challenge of detection is defining metrics and inventing al-

gorithms that are suitable for matching models to images

efficiently in the presence of occlusion and clutter. Learn-

ing is the ultimate challenge. If we wish to be able to design

visual systems that can recognize, say, 10,000 object cate-

gories, then effortless learning is a crucial step. This means

that the training sets should be small and that the operator-

assisted steps that are required (e.g. elimination of clutter

in the background of the object, scale normalization of the

training sample) should be reduced to a minimum or elimi-

nated.

The problem of describing and recognizing categories,

as opposed to specific objects (e.g. [6, 9, 11]), has re-

cently gained some attention in the machine vision litera-

ture [1, 2, 3, 4, 13, 14, 19] with an emphasis on the de-

tection of faces [12, 15, 16]. There is broad agreement

on the issue of representation: object categories are rep-

resented as collection of features, or parts, each part has a

distinctive appearance and spatial position. Different au-

thors vary widely on the details: the number of parts they

envision (from a few to thousands of parts), how these parts

are detected and represented, how their position is repre-

sented, whether the variability in part appearance and posi-

tion is represented explicitly or is implicit in the details of

the matching algorithm. The issue of learning is perhaps the

least well understood. Most authors rely on manual steps to

eliminate background clutter and normalize the pose of the

training examples. Recognition often proceeds by an ex-

haustive search over image position and scale.

We focus our attention on the probabilistic approach pro-

posed by Burl et al. [4] which models objects as random

constellations of parts. This approach presents several ad-

vantages: the model explicitly accounts for shape variations

and for the randomness in the presence/absence of features

due to occlusion and detector errors. It accounts explicitly

for image clutter. It yields principled and efficient detection

methods. Weber et al. [18, 19] proposed a maximum like-

lihood unsupervised learning algorithm for the constella-

tion model which successfully learns object categories from

cluttered data with minimal human intervention. We pro-

pose here a number of substantial improvement to the con-

stellation model and to its maximum likelihood learning al-

gorithm. First: while Burl et al. and Weber et al. model

explicitly shape variability, they do not model the variabil-

ity of appearance. We extend their model to take this aspect



into account. Second, appearance here is learnt simultane-

ously with shape, whereas in their work the appearance of a

part is fixed before shape learning. Third: they use correla-

tion to detect their parts. We substitute their front end with

an interest operator, which detects regions and their scale in

the manner of [8, 10]. Fourthly, Weber et al. did not ex-

periment extensively with scale-invariant learning, most of

their training sets are collected in such a way that the scale is

approximately normalized. We extend their learning algo-

rithm so that new object categories may be learnt efficiently,

without supervision, from training sets where the object ex-

amples have large variability in scale. A final contribution

is experimenting with a number of new image datasets to

validate the overall approach over several object categories.

Examples images from these datasets are shown in figure 1.

2. Approach

Our approach to modeling object classes follows on from

the work of Weber et al. [17, 18, 19]. An object model

consists of a number of parts. Each part has an appear-

ance, relative scale and can be be occluded or not. Shape

is represented by the mutual position of the parts. The en-

tire model is generative and probabilistic, so appearance,

scale, shape and occlusion are all modeled by probabil-

ity density functions, which here are Gaussians. The pro-

cess of learning an object category is one of first detecting

regions and their scales, and then estimating the parame-

ters of the above densities from these regions, such that the

model gives a maximum-likelihood description of the train-

ing data. Recognition is performed on a query image by

again first detecting regions and their scales, and then eval-

uating the regions in a Bayesian manner, using the model

parameters estimated in the learning.

The model, region detector, and representation of ap-

pearance are described in detail in the following subsec-

tions.

2.1. Model structure

The model is best explained by first considering recogni-

tion. We have learnt a generative object class model, with

P parts and parameters θ. We are then presented with a

new image and we must decide if it contains an instance of

our object class or not. In this query image we have identi-

fied N interesting features with locations X, scales S, and

appearances A. We now make a Bayesian decision, R:

R =
p(Object|X,S,A)

p(No object|X,S,A)

=
p(X,S,A|Object) p(Object)

p(X,S,A|No object) p(No object)

≈
p(X,S,A| θ) p(Object)

p(X,S,A|θbg) p(No object)

The last line is an approximation since we will only use a

single value for θ (the maximum-likelihood value) rather

than integrating over p(θ) as we strictly should. Likewise,

we assume that all non-object images can also be modeled

by a background with a single set of parameters θbg . The

ratio of the priors may be estimated from the training set or

set by hand (usually to 1). Our decision requires the calcu-

lation of the ratio of the two likelihood functions. In order

to do this, the likelihoods may be factored as follows:

p(X,S,A| θ) =
∑

h∈H

p(X,S,A,h| θ) =

∑

h∈H

p(A|X,S,h, θ)
︸ ︷︷ ︸

Appearance

p(X|S,h, θ)
︸ ︷︷ ︸

Shape

p(S|h, θ)
︸ ︷︷ ︸

Rel. Scale

p(h|θ)
︸ ︷︷ ︸

Other

Since our model only has P (typically 3-7) parts but there

are N (up to 30) features in the image, we introduce an in-

dexing variable h which we call a hypothesis. h is a vector

of length P , where each entry is between 0 and N which al-

locates a particular feature to a model part. The unallocated

features are assumed to be part of the background, with 0 in-

dicating the part is unavailable (e.g. because of occlusion).

The set H is all valid allocations of features to the parts;

consequently |H| is O(NP ).
In the following we sketch the form for likelihood ra-

tios of each of the above factored terms. Space prevents

a full derivation being included, but the full expressions

follow from the methods of [17]. It will be helpful to de-

fine the following notation: d = sign(h) (which is a bi-

nary vector giving the state of occlusion for each part),

n = N − sum(d) (the number of background features un-

der the current hypothesis), and f = sum(d) which is the

number of foreground features.

Appearance. Each feature’s appearance is represented

as a point in some appearance space, defined below. Each

part p has a Gaussian density within this space, with mean

and covariance parameters θapp
p = {cp, Vp} which is inde-

pendent of other parts’ densities. The background model

has parameters θ
app
bg = {cbg, Vbg}. Both Vp and Vbg are

assumed to be diagonal. Each feature selected by the hy-

pothesis is evaluated under the appropriate part density. All

features not selected by the hypothesis are evaluated under

the background density. The ratio reduces to:

p(A|X,S,h, θ)

p(A|X,S,h, θbg)
=

P∏

p=1

(
G(A(hp)|cp, Vp)

G(A(hp)|cbg, Vbg)

)dp

where G is the Gaussian distribution, and dp is the pth entry

of the vector d, i.e. dp = d(p). So the appearance of each

feature in the hypothesis is evaluated under foreground and

background densities and the ratio taken. If the part is oc-

cluded, the ratio is 1 (dp = 0).



Motorbikes Airplanes Faces Cars (Side) Cars (Rear) Spotted Cats Background

Figure 1: Some sample images from the datasets. Note the large variation in scale in, for example, the cars (rear) database. These datasets

are from http://www.robots.ox.ac.uk/∼vgg/data/, except for the Cars (Side) from (http://l2r.cs.uiuc.edu/∼cogcomp/index research.html)

and Spotted Cats from the Corel Image library. A Powerpoint presentation of the figures in this paper can be found at

http://www.robots.ox.ac.uk/∼vgg/presentations.html



Shape. The shape is represented by a joint Gaussian den-

sity of the locations of features within a hypothesis, once

they have been transformed into a scale-invariant space.

This is done using the scale information from the features

in the hypothesis, so avoiding an exhaustive search over

scale that other methods use. The density has parameters

θshape = {µ,Σ}. Note that, unlike appearance whose co-

variance matrices Vp, Vbg are diagonal, Σ is a full matrix.

All features not included in the hypothesis are considered

as arising from the background. The model for the back-

ground assumes features to be spread uniformly over the

image (which has area α), with locations independent of the

foreground locations. If a part is occluded it is integrated

out of the joint foreground density.

p(X|S,h, θ)

p(X|S,h, θbg)
= G(X(h)|µ,Σ)αf

Relative scale. The scale of each part p relative to a ref-

erence frame is modeled by a Gaussian density which has

parameters θscale = {tp, Up}. The parts are assumed to

be independent to one another. The background model as-

sumes a uniform distribution over scale (within a range r).

p(S|h, θ)

p(S|h, θbg)
=

P∏

p=1

G(S(hp)|tp, Up)
dp rf

Occlusion and Statistics of the feature finder.

p(h|θ)

p(h|θbg)
=

pPoiss(n|M)

pPoiss(N |M)

1
nCr(N, f)

p(d|θ)

The first term models the number of features detected using

a Poisson distribution, which has a mean M . The second is

a book-keeping term for the hypothesis variable and the last

is a probability table (of size 2P ) for all possible occlusion

patterns and is a parameter of the model.

The model of Weber et al. contains the shape and oc-

clusion terms to which we have added the appearance and

relative scale terms. Since the model encompasses many of

the properties of an object, all in a probabilistic way, this

model can represent both geometrically constrained objects

(where the shape density would have a small covariance)

and objects with distinctive appearance but lacking geomet-

ric form (the appearance densities would be tight, but the

shape density would now be looser). From the equations

above we can now calculate the overall likelihood ratio from

a given set of X,S,A. The intuition is that the majority of

the hypotheses will be low scoring as they will be picking

up features from background junk on the image but hope-

fully a few features will genuinely be part of the object and

hypotheses using these will score highly. However, we must

be able to locate features over many different instances of

the object and over a range of scales in order for this ap-

proach to work.

2.2. Feature detection

Features are found using the detector of Kadir and

Brady [7]. This method finds regions that are salient over

both location and scale. For each point on the image a his-

togram P (I) is made of the intensities in a circular region

of radius (scale) s. The entropy H(s) of this histogram is

then calculated and the local maxima of H(s) are candidate

scales for the region. The saliency of each of these candi-

dates is measured by H dP
ds

(with appropriate normalization

for scale [7, 8]). The N regions with highest saliency over

the image provide the features for learning and recognition.

Each feature is defined by its centre and radius (the scale).

A good example illustrating the saliency principle is that

of a bright circle on a dark background. If the scale is too

small then only the white circle is seen, and there is no ex-

trema in entropy. There is an entropy extrema when the

scale is slightly larger than the radius of the bright circle,

and thereafter the entropy decreases as the scale increases.

In practice this method gives stable identification of fea-

tures over a variety of sizes and copes well with intra-class

variability. The saliency measure is designed to be invari-

ant to scaling, although experimental tests show that this is

not entirely the case due to aliasing and other effects. Note,

only monochrome information is used to detect and repre-

sent features.

2.3. Feature representation

The feature detector identifies regions of interest on each

image. The coordinates of the centre give us X and the size

of the region gives S. Figure 2 illustrates this on two typical

images from the motorbike dataset.
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Figure 2: Output of the feature detector

Once the regions are identified, they are cropped from

the image and rescaled to the size of a small (typically

11×11) pixel patch. Thus, each patch exists in a 121 dimen-

sional space. Since the appearance densities of the model

must also exist in this space, we must somehow reduce the

dimensionality of each patch whilst retaining its distinctive-

ness, since a 121-dimensional Gaussian is unmanageable

from a numerical point of view and also the number of pa-

rameters involved (242 per model part) are too many to be

estimated.

This is done by using principal component analysis

(PCA). In the learning stage, we collect the patches from



all images and perform PCA on them. Each patch’s ap-

pearance is then a vector of the coordinates within the first

k (typically 10-15) principal components, so giving us A.

This gives a good reconstruction of the original patch whilst

using a moderate number of parameters per part (20-30).

ICA and Fisher’s linear discriminant were also tried, but in

experiments they were shown to be inferior.

We have now computed X, S, and A for use in learning

or recognition. For a typical image, this takes 10-15 seconds

(all timings given are for a 2 Ghz machine), mainly due

to the unoptimized feature detector. Optimization should

reduce this to a few seconds.

2.4. Learning

The task of learning is to estimate the parameters

θ = {µ,Σ, c, V,M, p(d|θ), t, U} of the model discussed

above. The goal is to find the parameters θ̂ML which best

explain the data X,S,A from all the training images, that is

maximize the likelihood: θ̂ML = arg max
θ

p(X,S,A| θ).

Learning is carried out using the expectation-

maximization (EM) algorithm [5] which iteratively

converges, from some random initial value of θ to a maxi-

mum (which might be a local one). It works in two stages;

the E-step in which, given the current value of θ, some

statistics are computed and the M-step in which the current

value of θ is updated using the statistics from the E-step.

The process is then repeated until convergence. The scale

information from each feature allows us to learn the model

shape in a scale-invariant space. Since the E-step involves

evaluating the likelihood for each hypothesis and there

being O(NP ) of them per image, efficient search methods

are needed. A∗ and space-search methods are used, giving

a considerable performance improvement. Despite these

methods, a P = 6-7 part model with N = 20-30 features

per image (a practical maximum), using 400 training

images, takes around 24-36 hours to run. Learning complex

models such as these has certain difficulties. Table 1

illustrates how the number of parameters in the model

grows with the number of parts, (assuming k = 15). To

Parts 2 3 4 5 6 7

# parameters 77 123 177 243 329 451

Table 1: Relationship between number of parameters and number

of parts in model

avoid over-fitting data, large datasets are used (up to 400

images in size). Surprisingly, given the complexity of the

search space, the algorithm is remarkable consistent in

it’s convergence, so much so that validation sets were not

necessary. Initial conditions were chosen randomly within

a sensible range and convergence usually occurred within

50-100 EM iterations. Using a typical 6 part model on a

typical dataset (Motorbikes), 10 runs from different initial

conditions gave the same classification performance for

9 of them, with the other showing a difference of under

1%. Since the model is a generative one, the background

images are not used in learning except for one instance:

the appearance model has a distribution in appearance

space modeling background features. Estimating this from

foreground data proved inaccurate so the parameters were

estimated from a set of background images and not updated

within the EM iteration.

2.5. Recognition

Recognition proceeds by first detecting features, and then

evaluating these features using the learnt model, as de-

scribed in section 2.1. By calculating the likelihood ratio,

R, and comparing it to a threshold; the presence or absence

of the object within the image may be determined. In recog-

nition, as in learning, efficient search techniques are used

since large N and P mean around 2-3 seconds are taken

per image. It is also possible to search reliably for more

than one instance in an image, as needed for the Cars (Side)

dataset.

3. Results

Experiments were carried out as follows: each dataset

was split randomly into two separate sets of equal size.

The model was then trained on the first and tested on the

second. In recognition, the decision was (as described

above) a simple object present/absent one, except for the

cars (side) dataset where multiple instances of the object

were to be found. The performance figures quoted are

the receiver-operating characteristic (ROC) equal error rates

(i.e. p(True positive)=1-p(False positive)) testing against the

background dataset. For example a figure of 91% means

that 91% of the foreground images were correctly classified

but 9% of the background images were incorrectly classi-

fied (i.e. thought to be foreground). A limited amount of

preprocessing was performed on some of the datasets. For

the motorbikes and airplanes the images were flipped to en-

sure the object was facing the same way. The spotted cat

dataset was only 100 images originally, so another 100 were

added by reflecting the original images, making 200 in to-

tal. Amongst the datasets, only the motorbikes, airplanes

and cars (rear) contained any meaningful scale variation.

There were two phases of experiments. In the first those

datasets with scale variability were normalized so that the

objects were of uniform size. The algorithm was then eval-

uated on the datasets and compared to other approaches. In

the second phase the algorithm was run on the datasets con-

taining scale variation and the performance compared to the

scale-normalized case.



In all the experiments, the following parameters were

used: k = 15, P = 6 and on average N = 20. The only

parameter that was adjusted at all in all the following ex-

periments was the scale over which features were found.

The standard setting was 4 − 60 pixels but for the scale-

invariant experiments, this was changed to account for the

wider scale variation in features.

Figures 5-8 show models and test images for four of the

datasets. Notice how each model captures the essence, be it

in appearance or shape or both, of the object. The face and

motorbike datasets have tight shape models, but some of the

parts have a highly variable appearance. For these parts any

feature in that location will do regardless of what it looks

like. Conversely, the spotted cat dataset has a loose shape

model, but a highly distinctive appearance for each patch.

In this instance, the model is just looking for patches of

spotty fur, regardless of their location. The differing nature

of these examples illustrate the flexible nature of the model.

The majority of errors are a result of the object receiv-

ing insufficient coverage from the feature detector. This

happens for a number of reasons. One possibility is that,

when a threshold is imposed on N (for the sake of speed),

many features on the object are removed. Alternatively, the

feature detector seems to perform badly when the object is

much darker than the background (see examples in figure

5). Finally, the clustering of salient points into features,

within the feature detector, is somewhat temperamental and

can result in parts of the object being missed.

Figure 3 shows a recall-precision curve1 (RPC) and a ta-

ble comparing the algorithm to previous approaches to ob-

ject class recognition [1, 17, 19]. In all cases the perfor-

mance of the algorithm is superior to the earlier methods,

despite not being tuned for a particular dataset.

Figure 4(a) illustrates the algorithm performs well even

when the signal-to-noise ratio is degraded by introducing

background images into the training set and Fig. 4(b) shows

how variation in the number of parts affects performance.

Dataset Ours Others Ref.

Motorbikes 92.5 84 [17]

Faces 96.4 94 [19]

Airplanes 90.2 68 [17]

Cars(Side) 88.5 79 [1]

Agarwal−Roth algorithm

Our algorithm

Figure 3: Comparison to other methods [1, 17, 19]. The diagram

on the right shows the RPC for [1] and our algorithm on the cars

(side) dataset. On the left the table gives ROC equal error rates

(except for the car (side) dataset where it is a recall-precision equal

error) on a number of datasets. The errors for our algorithm are at

least half those of the other methods, except for the face dataset.

1Recall is defined as the number of true positives over total positives in

the data set, and precision is the number of true positives over the sum of

false positives and true positives.
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Figure 4: (a) shows the effect of mixing background images into

the training data (in this case, the face dataset). Even with a 50-50

mix of images with/without objects, the resulting model error is a

tolerable 13%. In (b), we see how the performance drops off as

the number of parts in the model is reduced.
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Figure 5: A typical face model with 6 parts. The top left fig-

ure shows the shape model. The ellipses represent the variance of

each part (the covariance terms cannot easily be shown) and the

probability of each part being present is shown just to the right

of the mean. The top right figure shows 10 patches closest to the

mean of the appearance density for each part and the background

density, along with the determinant of the variance matrix, so as to

give an idea as to the relative tightness of each distribution. Below

these two are some sample test images, with a mix of correct and

incorrect classifications. The pink dots are features found on each

image and the coloured circles indicate the features of the best hy-

pothesis in the image. The size of the circles indicates the score of

the hypothesis (the bigger the better).
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Figure 6: A typical motorbike model with 6 parts. Note the clear

identification of the front and rear wheels, along with other parts

such as the fuel tank.
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Figure 7: A typical spotted cat model with 6 parts. Note the loose

shape model but distinctive “spotted fur” appearance.
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Figure 8: A typical airplane model with 6 parts.

Dataset Total

size of

dataset

Object

width

(pixels)

Motorbike

model

Face

model

Airplane

model

Cat

model

Motorbikes 800 200 92.5 50 51 56

Faces 435 300 33 96.4 32 32

Airplanes 800 300 64 63 90.2 53

Spotted Cats 200 80 48 44 51 90 .0

Table 2: A confusion table for a number of datasets. The di-

agonal shows the ROC equal error rates on test data across four

categories, where the algorithm’s parameters were kept exactly

the same, despite a range of image sizes and object types. The

performance above can be improved dramatically (motorbikes in-

crease to 95.0%, airplanes to 94.0% and faces to 96.8%) if feature

scale is adjusted on a per-dataset basis. The off-diagonal elements

demonstrate how good, for example, a motorbike model is at dis-

tinguishing between spotted cats and background images: 48% -

at the level of chance. So despite the models being inherently gen-

erative, they perform well in a distinctive setting.

Table 2 shows the performance of the algorithm across

the four datasets, with the learnt models illustrated in fig-

ures 5-8. Exactly the same algorithm settings are used for

all models. Note that the performance is above 90% for all

four datasets. In addition, the table shows the confusion

between models which is usually at the level of chance.

Table 3 compares the performance of the scale-invariant

models on unscaled images to that of the scale-variant mod-

els on the pre-scaled data. It can be seen that the drop

in performance is marginal despite a wide range of ob-

ject scales. In the case of the cars (rear) dataset, there is

a significant improvement in performance with the scale-



invariant model. This is due to the feature detector per-

forming badly on small images (< 150 pixels) and in the

pre-scaled case, all were scaled down to 100 pixels. Fig-

ure 9 shows the scale-invariant model for this dataset. This

dataset was tested against background road scenes (rather

than the background images, examples of which are in Fig.

1) to make a more realistic experiment.

Total size Object size Pre-scaled Unscaled

Dataset of dataset range (pixels) performance performance

Motorbikes 800 200-480 95.0 93.3

Airplanes 800 200-500 94.0 93.0

Cars (Rear) 800 100-550 84.8 90.3

Table 3: Results for scale-invariant learning/recognition.
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Figure 9: A scale-invariant car model with 6 parts.

4. Conclusions and Further work

The recognition results presented here convincingly demon-

strate the power of the constellation model and the associ-

ated learning algorithm: the same piece of code performs

well (less than 10% error rate) on six diverse object cat-

egories presenting a challenging mixture of visual charac-

teristics. Learning is achieved without any supervision on

datasets that contain a wide range of scales as well as clut-

ter.

Currently, the framework is heavily dependent on the

feature detector picking up useful features on the object. We

are addressing this by extending the model to incorporate

several classes of feature, e.g. edgels. Other than this there

are two areas where improvements will be very beneficial.

The first is in a further generalization of the model struc-

ture to have a multi-modal appearance density with a single

shape distribution. This will allow more complex appear-

ances to be represented, for example faces with and without

sunglasses. Second, we have built in scale-invariance, but

full affine-invariance should also be possible. This would

enable learning and recognition from images with much

larger viewpoint variation.
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