
Eur. Phys. J. C (2020) 80:886
https://doi.org/10.1140/epjc/s10052-020-08461-2

Regular Article - Experimental Physics

Object condensation: one-stage grid-free multi-object
reconstruction in physics detectors, graph, and image data

Jan Kieselera

CERN, Experimental Physics Department, Geneva, Switzerland

Received: 15 April 2020 / Accepted: 10 September 2020 / Published online: 24 September 2020
© The Author(s) 2020

Abstract High-energy physics detectors, images, and point
clouds share many similarities in terms of object detection.
However, while detecting an unknown number of objects
in an image is well established in computer vision, even
machine learning assisted object reconstruction algorithms
in particle physics almost exclusively predict properties on
an object-by-object basis. Traditional approaches from com-
puter vision either impose implicit constraints on the object
size or density and are not well suited for sparse detector data
or rely on objects being dense and solid. The object condensa-
tion method proposed here is independent of assumptions on
object size, sorting or object density, and further generalises
to non-image-like data structures, such as graphs and point
clouds, which are more suitable to represent detector signals.
The pixels or vertices themselves serve as representations of
the entire object, and a combination of learnable local clus-
tering in a latent space and confidence assignment allows
one to collect condensates of the predicted object properties
with a simple algorithm. As proof of concept, the object con-
densation method is applied to a simple object classification
problem in images and used to reconstruct multiple particles
from detector signals. The latter results are also compared to
a classic particle flow approach.

1 Introduction

Accurately detecting a large number of objects belonging
to a variety of classes within the same image has trig-
gered very successful developments of deep neural network
architectures and training methods [1–7]. Among these are
two-stage detectors, where a first stage generates a set of
candidate proposals, comparable to seeds, and in a second
stage the object properties are determined. Even though two-
stage approaches yield high accuracy, they are very resource
demanding and comparably slow. One-stage architectures,
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however, have proven to be just as powerful but with sig-
nificantly lower resource requirements [5,8–11]. Many one-
and two-stage detectors use a grid of anchor boxes to attach
object proposals directly to the anchors corresponding to the
object in question. Ambiguities are usually resolved in a sec-
ond step by evaluating the intersection over union score of the
bounding boxes [12]. Recent anchor free approaches identify
key points instead of using anchor boxes, which are tightly
coupled to the centre of the object [9,10].

Reconstructing and identifying objects (e.g. particles)
from detector hits in e.g. a high-energy physics experiment
are, in principle, similar tasks, in the sense that both rely on
a finely grained set of individual inputs (e.g. pixels or detec-
tor hits) and infer higher-level object properties from them.
However, a detector is made of several detector subsystems,
each with their own signal interpretation and granularity. This
and the fact that particles often overlap, even such that certain
hits are only fractionally assigned to a certain object, pose
additional challenges. The reconstruction of individual par-
ticles often starts by identifying seeds, adding remaining hits
using a certain class or quality hypothesis, and then assign-
ing such clusters or hits to one or another object, such as
in particle flow (PF) algorithms, which have been proven to
provide good performance for future colliders in simulation
and hardware prototypes [13–19] as well as at running Large
Hadron Collider [20] experiments [21,22].

Only after this step, neural network based algorithms
are applied to each individual object to either improve the
momentum resolution (regression) or the identification per-
formance; recent examples are described in Refs. [23–31].
However, there is a large overlap in all these steps as far
as the requirements on the algorithms are concerned, since
all of them rely heavily on identifying the same patterns:
the seed finding algorithm needs to employ pattern recogni-
tion with high efficiency, and the segmentation (clustering)
algorithm uses the same patterns to assign the right detector
signals to the right objects on an object by object basis, driven
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by the seeds; the subsequent identification and momentum
improvement algorithms also employ pattern recognition, but
with higher-purity thresholds. Every individual step usually
comes with a set of thresholds. After each threshold that is
applied, the information available to the next step usually
decreases. In an ideal case, however, the information should
be retained and available until the object with all its proper-
ties is fully identified, since it might provide valuable input
to the last reconstruction steps.

Neural network based algorithms offer the possibility
of retaining the information, and furthermore, there is a
trend towards employing such algorithms for more tasks in
high energy physics further towards the beginning of the
reconstruction sequence. In this context, graph neural net-
works [32] are receiving increasing attention because they
allow direct processing of detector inputs or particles, which
are both sparse and irregular in structure [33–35]. However,
when attempting to also incorporate the seeding step together
with subsequent steps, the above mentioned methods from
computer vision are not directly applicable.

For anchor-based approaches, it has already been shown
for image data that the detection performance is very sensitive
to the anchor box sizes, aspect ratios, and density [3,5]. For
detector signals, these factors are even more pronounced: the
high dimensional physical input space, very different object
sizes, overlaps, and the highly variable information density
are not well suited for anchor-based neural network architec-
tures. Some shortcomings can be addressed by pixel based
object detection, such as e.g. proposed in Refs. [9,10]; how-
ever, these approaches heavily rely on using the object centre
as a key point. This key point is required to be well separated
from other key points, which is not applicable to detector sig-
nals, where two objects that have an identical central point
can be well resolvable.

Therefore, edge classifiers have been used so far in par-
ticle physics to separate an unknown number of objects
from each other in the data [36–38]. Here, an object is
represented by a set of vertices in a graph that are con-
nected with edges, each carrying a high connectivity score.
While this method in principle resolves the issues men-
tioned above, it comes with stringent requirements: The
neural network architecture needs to be chosen such that
it can predict properties of static edges, which limits the
possible choices to graph neural networks; all possibly true
edges need to be inserted in the graph at the preprocess-
ing stage, such that they can be classified by the network;
the same connections need to be evaluated once more to
build the object under question by applying a threshold
on the connection score. This binary nature of an edge
classification makes this approach less applicable to situa-
tions with large overlaps and fractional assignments, and it
requires rather resource demanding pre- and post processing
steps.

Edge building, classification, and evaluation can be
avoided by adapting a method originally proposed for image
or point cloud segmentation [39,40]. In principle this method
already satisfies many requirements, but focuses solely on
segmentation and still relies on object centres. Objects are
identified by clustering those pixels or 3-dimensional points
belonging to a certain object by learning offsets to minimise
the distance between the point and the object centre. Also the
expected spatial extent of the object in the clustering space
after applying this offset is learnt and inferred from the point
or pixel with the highest seed score to eliminate ambiguities
during inference. This seed score is also learnt and tightly
coupled to the predicted distance to the object centre. Even
though these methods rely on centre points and the natural
space representation of the data (2 dimensional images or 3
dimensional point clouds), the general idea can be adapted
to more complex inputs, such as physics detector signals, or
other data with a large amount of overlap or only fractional
assignment of points or pixels to objects.

This paper describes this extension of the ideas summa-
rized in Refs. [39,40] to objects without a clear definition of
a centre by interpreting the segmentation in terms of physics
potentials in a lower dimensional space than the input space.
Moreover, the object condensation method proposed here
allows simultaneous inference of object properties, such as
its class or a particle momentum, by condensing the full infor-
mation to be determined into one representative condensation
point per object. The segmentation strength can be tuned and
does not need to be exact. Therefore, the object condensation
method can also be applied to overlapping objects without
clear spatial boundaries.

Object condensation can be implemented through a ded-
icated loss function and truth definition as detailed in the
following. Since these definitions are mostly independent of
the network architecture, this paper focuses on describing
the training method in detail and provides an application to
object identification and segmentation in an image as proof
of concept together with an example application to a particle
flow problem.

2 Encoding in neural network training

The object condensation method relies on the fact that a rea-
sonable upper bound on the number of objects in an image,
point cloud, or graph is the number of pixels, points or ver-
tices (or edges), respectively. This means that in this limit an
individual pixel, point, or vertex can accumulate and repre-
sent all features of an entire object. Even with a smaller num-
ber of objects, this idea is a central ingredient to the object
condensation method and used to define the ground truth. At
the same time, the number of objects can be as small as one.
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To define the ground truth, every pixel, point, edge, or ver-
tex (in the following referred to as vertex only) is assigned to
exactly one object to be identified. This assignment should
be as simple as possible, e.g. a simple pixel assignment for
image data, or an assignment by highest fraction for frac-
tional affinity between objects and vertices. Keeping this
assignment algorithm simple is crucial for fast training con-
vergence, and more important than assigning a similar num-
ber of vertices to each object. In practice, e.g. an object in
an image that is mostly behind another object might have
just a few vertices assigned to it. The such assigned vertices
now carry all object properties to be predicted, such as object
class, position, bounding box dimensions or shape, etc., in
the following referred to as ti for vertex i . The deep neural
network should be trained to predict these features, denoted
by pi . Subsets of these features might require different loss
functions. For simplicity their combination is generalised as
Li (ti , pi ) in the following.

Those NB vertices that are not assigned to an object out
of N total vertices are marked as background or noise, with
ni = 1 for i being a noise vertex and 0 otherwise. The total
number of objects is annotated with K , and the total number
of vertices associated to an object with NF .

To assign a vertex to the corresponding object and aggre-
gate its properties in a condensation point, the network is
trained to predict a scalar quantity per vertex 0 < βi < 1,
which is a measure of i being a condensation point, mapped
through a sigmoid activation.1 The value of βi is also used to
define a charge qi per vertex i through a function with zero
gradient at 0 and monotonically increasing gradient towards
a pole at 1. Here, the function is chosen to be

qi = arctanh2 βi + qmin. (1)

The strictly concave behaviour also assures a well defined
minimum for βi , which will be discussed later. The scalar
qmin > 0 should be chosen between 0 and O(1) and is a
hyperparameter representing a minimum charge. The charge
qi of each vertex belonging to an object k defines a potential
Vik(x) ∝ qi , where x are coordinates in a fully learnable
clustering space. The force affecting vertex j belonging to
an object k can, for example, then be described by

q j · ∇Vk(x j ) = q j∇
N∑

i=1

MikVik(x j , qi ), (2)

with Mik being 1 if vertex i belongs to object k and 0 oth-
erwise. In principle, this introduces matrices with N × N
dimensions in the loss, which can easily be very resource

1 In cases where the neural network reduces the number of output ver-
tices, e.g. through max pooling or edge contraction, the removed vertices
need to be assigned β = ε, ε > 0.

demanding. Therefore, the potential of object k is approxi-
mated by the potential of the vertex α belonging to object k
that has the highest charge:

Vk(x) ≈ Vαk(x, qαk), with qαk = max
i

qi Mik . (3)

Finally an attractive (V̆k(x)) and a repulsive (V̂k(x)) potential
are defined as:

V̆k(x) = ‖x − xα‖2qαk , and (4)

V̂k(x) = max(0, 1 − ‖x − xα‖)qαk . (5)

Here ‖ · ‖ is the L2 norm. The attractive potential acts on a
vertex i belonging to object k, while the repulsive potential
applies if the vertex does not belong to object k. The attractive
term ensures a monotonically growing gradient with respect
to ‖x − xα‖. The repulsive term is a hinge loss that scales
with the charge, avoiding a potential saddle point at x = xα ,
and creating a gradient up to ‖x − xα‖ = 1. By combining
both terms, the total potential loss LV takes the form:

LV = 1

N

N∑

j=1

q j

K∑

k=1

(
Mjk V̆k(x j ) + (1 − Mjk)V̂k(x j )

)
.

(6)

In this form, the potentials ensure that vertices belong-
ing to the same object are pulled towards the condensation
point with highest charge, and vertices not belonging to the
object are pushed away up to a distance of 1 until the system
is in the state of lowest energy. The property V̆k(x) → inf
for x → inf allows the clustering space to completely detach
from the input space, since wrongly assigned vertices receive
a penalty that increases with the separability of the remain-
ing vertices belonging to the different objects. Furthermore,
the interpretation as potentials circumvents class imbalance
effects e.g. from a large contribution of background vertices
with respect to foreground vertices. Since both potentials are
rotationally symmetric in x , the lowest dimensionality for x
that ensures a monotonically falling path to the minimum is
2.

As illustrated in Fig. 1, apart from a few saddle points, the
vertex is pulled consistently towards the object condensation
point. Besides its advantages with respect to computational
resources, building the potentials from the highest charge
condensation point has another advantage: if instead, e.g. the
mean of the vertices would be used as an effective clustering
point, this point would be the same for all objects initially.
For large N , a local minimum is then given by a ring or hyper-
sphere (depending on the dimensionality of x) in which all
vertices have the same distance to the centre. This symme-
try is immediately broken by focusing on only the highest
charge vertices.

123



886 Page 4 of 12 Eur. Phys. J. C (2020) 80 :886

Fig. 1 Illustration of the effective potential that is affecting a vertex
belonging to the condensation point of the object in the centre, in the
presence of three other condensation points around it

An obvious minimum of LV is given for qi = qmin +ε ∀ i ,
or equivalently βi = ε ∀ i . To counteract this behaviour and
to enforce one condensation point per object, and none for
background or noise vertices, the following additional loss
term Lβ is introduced, with:

Lβ = 1

K

∑

k

(1 − βαk) + sB
1

NB

N∑

i

niβi , (7)

where sB is a hyperparameter describing the background sup-
pression strength, which needs to be tuned corresponding
to the dataset.2 It should be low, e.g. in case where not all
objects are correctly labelled as such. The linear scaling of
these penalty terms together with Eq. 1 helps to balance the
individual loss terms. In some cases, it can be useful to omit
the normalisation term 1/K while increasing the batch size
to increase the detection efficiency.

Finally, the loss terms L(t, p) are also weighted by
arctanh2 βi such that they scale similarly withβ as the charge:

L p = 1
∑N

i=1 ξi
·

N∑

i=1

Li (ti , pi ) ξi , with (8)

ξi = (1 − ni ) arctanh2 βi . (9)

As a consequence of this scaling, a condensation point will
form the centre of the object in x through LV and simulta-
neously carry the most precise estimate of the object’s prop-
erties through L p. Depending on the task, also other scaling

2 In rare cases where vertices that are not noise cannot be associated
to a specific object on truth level, they can be treated as noise, but the
potential loss should be set to zero, such that they can attach to any
object.

schemes might be useful, e.g. only taking into account the
highest charge vertices. If high efficiency instead of high
purity is required, the term can be evaluated individually for
each object k and then averaged:

L ′
p = 1

K

K∑

k=1

1
∑N

i=1 Mikξi
·

N∑

i=1

Mik Li (ti , pi )ξi . (10)

For both variants, it is crucial to avoid adding a constant ε

in the denominator, and instead protect against divisions by
zero by other means, such as enforcing strictly βi > 0.

In practice, individual loss terms might need to be
weighted differently, which leads to the total loss of:

L = L p + sc(Lβ + LV ). (11)

The terms Lβ and LV outweigh each other through β with
the exception of the weight sB . This leads to the following
hyperparameters:

– The minimum charge qmin, which can be used to increase
the gradient performing segmentation, and therefore
allows a smooth transition between a focus on predicting
object properties (low qmin) or a focus on segmentation
(high qmin).

– The background suppression strength sB ≈ O(1).
– The relative weight of the condensation loss with respect

to the property loss terms sc, which is partially correlated
with qmin.

3 Inference

During inference, the calculation of the loss function is not
necessary. Instead, potential condensation points are iden-
tified by considering only vertices with β above tβ ≈ 0.1
as condensation point candidates, leaving a similar number
of condensation points as objects. The latter are sorted in
descending order in β. Starting from the highest β vertex, all
vertices within a distance of td ≈ [0.1, 1] in x are assigned to
that condensation point, and the object properties are taken
from that condensation point. Each subsequent vertex is con-
sidered for the final list of condensation points if it has a dis-
tance of at least td in x to each vertex that has already been
added to this list. The threshold td is closely coupled to the
repulsive potential defined in Eq. 5, which has a sharp gradi-
ent turn on at a distance of 1 with respect to the condensation
point. The condensation thresholds tβ and td do not require
a high level of fine tuning, since potentially double-counted
objects by setting tβ to a too low value are removed by an
adequate choice of td .
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4 Example application to image data

As a proof of concept, the method is applied to image data,
aiming to classify objects in a 64 × 64 pixel image. Each
image is generated using the skimage package [41] and
contains up to nine objects (circles, triangles, and rectangles).
All objects are required to have a maximum overlap of 90%,
and to have a width and height between 21 and 32 pixels.
For the classification, a standard categorical cross-entropy
loss is used and weighted per pixel according to Eq. 10. The
clustering space is chosen to be two dimensional, and all
other loss parameters also follow the description in Sect. 2.

Since this is a proof of concept example, the architecture
of the deep neural network is simple: It consists of two main
blocks of standard convolutional layers [42] and max pool-
ing to increase the receptive field. The three convolutional
layers in the beginning of each block have a kernel size of
3 × 3, and 32, 48, and 64 filters, respectively. Max pool-
ing is applied on the output of the convolutional layers four
times on blocks of 2 × 2 pixels. The output of each max
pooling step is concatenated to the output of the last con-
volutional layer, thereby increasing the receptive field. This
configuration block is repeated a second time and its output
is concatenated to the output of the first block together with
the original inputs before it is fed to two dense layers with
128 nodes, and two dense layers with 64 nodes. All layers
use ELU activation functions [43].

In total, 750,000 training images are generated and the
network is built and trained using TensorFlow [44] and
Keras [45] within the DeepJetCore framework [46] with a
batch size of 200 using the Adam [47] optimiser with Nes-
terov momentum [48,49]. The training is performed for 50
epochs with a cyclical learning rate [50] between 10−5 and
10−4, following a triangular pattern with a period of 20
batches.

The thresholds for the selection of condensation points
after inference are chosen as td = 0.7 and tβ = 0.1. An
example image is shown in Fig. 2 with predicted classes,
alongside a visualisation of the clustering space spanned by x .
The clustering space dimensions and the absolute positions of
the condensation points are arbitrary, since the condensation
loss only constrains their relative euclidean distances.

The individual objects in this proof of principle applica-
tion are well identified, with similar results for images with
different numbers of objects. The condensation points are
clearly visible and well separated in the clustering space,
which underlines the fact that the values of td and tβ do not
require particular fine tuning. As a result, the object segmen-
tation also works very well. Particularly noteworthy is that
the centre of the object is not identified as the best condensa-
tion point for any of the cases, but rather points at the edges,
generally with larger distance to other similar objects, are
chosen.

Fig. 2 Top: input image with prediction overlay. The representative
pixels are highlighted, and their colour coding indicates the predicted
classification: green (triangle), red (rectangle), blue (circle). Bottom:
clustering space. The object colours are the same as in the top image,
while the background pixels are coloured in gray. The alpha value indi-
cates β, with a minimum alpha of 0.05, such that background pixels are
visible

5 Application to particle flow

Machine learning-based approaches have proven to be pow-
erful even in the context of complex hadronic showers, e.g.
when assigning hit energy fractions to a known number
of showers [33], when discriminating between neutral and
charged energy deposits [51], or when separating noise from
the real shower deposits [38]. Moreover, these approaches
show excellent software compensation capabilities [52–54]
for single particles. In this section, it is shown that the object
condensation method can also be used to train similar deep
neural networks to reconstruct an unknown number of parti-
cles directly, using inputs from different detector subsystems.
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Fig. 3 Detector layout. The calorimeter comprises 16 × 16 lead
tungstate cells and its front face is placed at z = 0, while the tracker is
approximated by a grid of 64×64 silicon sensors, placed at z = −5 cm.
The colour palette indicates logarithmic energy deposits of an electron,
scaled for the tracker sensors, where black corresponds to zero, red to
intermediate, and white to the maximum energy

The object condensation approach is compared to a baseline
PF algorithm inspired by Ref. [21] with respect to the correct
reconstruction of individual particles and cumulative quan-
tities, such as the jet momentum.

As software compensation has been proven to be achiev-
able with deep neural networks, the focus here is the correct
identification of individual particles. Therefore, the compar-
ison between the methods is based solely on photons and
electrons, hence electromagnetic showers and corresponding
tracks. This simplification also mirrors the ideal assumptions
of the baseline PF algorithm.

5.1 Detector and data set

The data set used in this paper is based on a calorimeter and
a simplified tracker, built in GEANT4 [55] and shown in
Fig. 3. Since this study is based on electromagnetic objects,
the calorimeter only comprises an electromagnetic layer with
properties similar to the CMS barrel calorimeter [21,56]: it
is made of a grid of 16 × 16 lead tungstate crystals, each
covering an area of 22×22 mm2 in x and y and with a length
of 23.2 cm in z, corresponding to 26 radiation lengths. The
front face of the calorimeter is placed at z = 0. The tracker is
approximated by one layer of 300µm silicon sensors placed
50 mm in front of the calorimeter with a total size of 35.2 ×
35.2 cm2. With 64 × 64 sensors, the tracker granularity is 4
times finer than the calorimeter granularity in each direction.

Electrons and photons are generated at z = −10 cm with
momenta between 1 and 200 GeV in the z direction. Their
position in x and y is randomly chosen following a uniform
distribution and constraining x and y to be between -14 and 14

cm, such that the showers of the particles are fully contained
in the calorimeter.

The track momentum ptrack is determined by smearing
the true particle momentum p(t) with an assumed Gaussian
track resolution σT of:

σT

ptrack
= 0.04

(
p(t)

100 GeV

)2

+ 0.01, (12)

and the track position is inferred from the position of the
highest energy hit belonging to each particle in the tracker
layer. For the calorimeter the simulated deposited energy is
recorded resulting in a resolution σC that amounts to [21,56]:

σC

E
= 2.8%√

E/GeV
⊕ 12%

E/GeV
⊕ 0.3%. (13)

Since multiple particles are considered in each event, two
or more particles might be generated with a distance that is
not resolvable given the detector granularity. Here, a resolv-
able particle is defined as a particle that has the highest energy
fraction in at least one of the calorimeter cells or the tracker
sensors. If a particle is not resolvable, it is removed, which
leads to the same effect as merging both particles to one. The
only difference between both approaches is that the maxi-
mum energy per particle stays within the considered range
between 1 and 200 GeV when removing the overlapping par-
ticle and therefore provides a better controlled environment
for this study.

5.2 Baseline particle flow approach

The baseline PF algorithm that is used here follows closely
Ref. [21] and the energy thresholds are identical. However,
given the ideal tracking in this study, there are no fake or
wrongly reconstructed tracks nor any bremsstrahlung effects
in the absence of a magnetic field. Therefore, electron and
photon showers in the calorimeters can be treated on the same
footing. This simplified PF algorithm consists of four steps:
seeding of calorimeter clusters, finding calorimeter clusters,
linking of tracks and clusters, and finally creating PF candi-
dates. Each of these steps is detailed in the following together
with small adjustments made with respect to Ref. [21] that
improve the performance on the studied data set.

Seeds for calorimeter clusters are built from each cell that
contains a deposit above 230 MeV. The cell is promoted to
a seed if all adjacent 8 cells have lower energy than the seed
cell. In addition, any cell with a track within the cell area is
considered a seed.

Each seed can lead to a calorimeter cluster. The clusters
are determined in the same iterative analytic likelihood max-
imisation detailed in Ref. [21]. Only energy deposits above
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80 MeV are considered for the clustering. The cluster posi-
tion and energy are determined simultaneously for all clusters
assuming a Gaussian energy distribution in x and y for each
cluster with a width of 15 mm. The iterative procedure is
repeated until the maximum difference in position from one
iteration to the next iteration is below 0.2 mm. This clustered
energy does not correspond directly to the true energy, in par-
ticular at lower energies. This bias is corrected by deriving
correction factors in steps of one GeV using 100,000 single
photon events, calibrating the clustering response to unity.

The linking step is different with respect to Ref. [21]. Since
each track in this data set corresponds to a truth particle,
and each track leaves a calorimeter deposit, the linking is
performed starting from the tracks. Each track is linked to
the calorimeter cluster that is closest in the (x,y) plane if the
distance is not larger than the calorimeter cell size. This way,
more than one track can be linked to one calorimeter cluster.
This ambiguity is resolved when building the PF candidates.

The PF candidates are reconstructed from calorimeter
clusters linked to tracks. If no track is linked to the clus-
ter, a photon is built. If a track is linked to the cluster and the
track momentum and the calibrated cluster energy are com-
patible within one sigma (σT ⊕ σC ), the track momentum
and cluster energy are combined using a weighted mean, and
the particle position is determined from a weighted mean
of track and cluster position. In the case where the cluster
energy exceeds the track momentum significantly, a candi-
date is built using the track information only, and the track
momentum is subtracted from the cluster energy. The remain-
ing energy produces a photon if there are no more tracks
linked to the cluster and its energy exceeds 500 MeV. In case
of additional linked tracks, this procedure is repeated until
either no cluster energy is left or a final photon is created.

5.3 Neural network model and training

For the object condensation approach, each cell or tracker
sensor is assigned to exactly one truth particle or labelled as
noise. The sensor is assigned to the truth particle that leaves
the largest amount of energy in that sensor. If the energy
deposit in a cell or tracker sensor is smaller than 5% of the
total true energy deposit of that particle in the subdetector,
the sensor hit is labelled as noise. The 200 highest-energy
hits are interpreted as vertices in a graph. In consequence,
a graph neural network is chosen to predict the momentum
and position of each particle alongside the object condensa-
tion parameters. After one batch normalisation layer, directly
applied to the inputs, which are the energy and position infor-
mation of each vertex, the neural network architecture con-
sists of six subsequent blocks. In each block, the mean of
all features is concatenated to the block input, followed by
two dense layers, one batch normalisation layer and another
dense layer. The dense layers have 64 nodes each and use

ELU activation functions. The output of the dense layers is
fed through one GravNet [33] layer. This layer is configured
to project the input features to four latent space dimensions
and 64 features to be propagated from ten neighbour vertices
in the latent space. After aggregation, 128 output filters are
applied. This output is then passed on to the next block and
simultaneously compressed by one dense layer with 32 nodes
and ELU activation before it is added to a list of all block
outputs. After 6 blocks, this final list, now with 192 features
per vertex, is processed by one dense layer with 64 nodes
and ELU activation before the final neural network outputs
are predicted.

For training this model, the object condensation loss is
used as described in Sect. 2. The minimum charge for cluster-
ing is set to qmin = 0.1. Instead of predicting the momentum
directly, a correction cE,i with respect to the reconstructed
energy Ei assigned to the vertex is learnt by minimising

LE,i =
(
cE Ei − Ei (t)

Ei (t)

)2

. (14)

Here, Ei (t) corresponds to the true energy assigned to ver-
tex i . For the particle position, an offset with respect to the
vertex position is predicted in units of mm and trained using
a standard mean-squared error loss Lx,i per vertex i .

To determine the final loss L , the individual terms are
weighted as:

L = Lβ + LV + 20 · LE + 0.01 · Lx , (15)

where LE and Lx are the βi weighted sums of the loss terms
LE,i and Lx,i following Eq. 9.

The data set for training contains 1–9 particles per event,
out of which 50% are electrons and 50% are photons. In total,
1.5 million events are used for training and 250,000 for vali-
dation. The model is trained with TensorFlow, Keras, and the
DeepJetCore framework for 20 epochs with a learning rate
of 3×10−4 and for 90 epochs with a learning rate of 3 ·10−5

using the Adam optimiser. The performance is evaluated on
a statistically independent test sample described in the next
section. The condensation thresholds are set to tβ = 0.1 and
td = 0.8.

5.4 Results

The performance of the baseline PF algorithm and the object
condensation method are evaluated with respect to single
particle quantities and cumulative quantities. For the single
particle performance, the reconstructed particles need to be
matched to their generated counterpart. For object condensa-
tion, this matching is performed by evaluating the truth infor-
mation associated to the chosen condensation point. While in
principle also different points could have been chosen by the
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network to represent the object properties, the performance
suggests that in most cases this matching is successful. For
the baseline PF algorithm, electrons can be matched unam-
biguously using the truth particle associated to the electron
track. The matched electrons and the corresponding truth
particles are removed when matching the photons in a sec-
ond step. A more sophisticated matching of truth photons to
reconstructed photons is required since the direct connection
between energy deposits in cells and the clusters is lost due
to the simultaneous likelihood maximisation used to con-
struct the electromagnetic clusters in the baseline PF algo-
rithm, which yields only energies and positions. Therefore, a
reconstructed photon is matched to one of the remaining truth
photons within a distance of 3 calorimeter cells if it satisfies
|p(t) − p(r)|/p(t) < 0.9, with p(t) being the true momen-
tum and p(r) the reconstructed momentum. In case more
than one reconstructed candidate satisfying these require-
ments is found, the one with the closest distance parameter
d is chosen, with d being defined as:

d = �x2 + �y2 +
[

22

0.05

(
p(r)

p(t)
− 1

)]2

. (16)

Here, �x and �y are the differences between truth and recon-
structed position in x and y, respectively. The additional fac-
tor 22/0.05 scales the momentum compatibility term such
that a 5% momentum difference corresponds to a distance
of one calorimeter cell. Even though the matching is not
strongly affected by small changes in the relative weight of
the terms, other values were studied and were found to lead
to worse results for the baseline PF algorithm.

Individual particle properties are evaluated on a test data
set containing 100,000 particles, distributed into events such,
that for each particle, the number of additional particles in
the same event is uniformly distributed between 0 and 14.
Otherwise the particles are generated in the same way as for
the training data set.

The efficiency is defined as the fraction of particles that are
reconstructed and truth matched with respect to the number
of truth particles that are generated. The fake rate is defined
conversely as the fraction of particles that are reconstructed,
but without having a truth particle assigned to them. Both
quantities are shown as a function of the particle momentum
in Fig. 4.

Particularly for higher particle densities per event, the
object condensation method shows higher efficiency than the
baseline PF algorithm. Also the fake rate is several orders of
magnitude lower for the condensation approach, which pro-
duces only a small fraction of fakes at very low momenta.
For the baseline PF algorithm, having some fakes is inten-
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Fig. 4 Top: efficiency to reconstruct an individual particle as a func-
tion of its true momentum p(t). Bottom: fraction of reconstructed par-
ticles that cannot be assigned to a truth particle as a function of the
reconstructed particle momentum p(r). Both quantities are shown for
different numbers of particles per event

tional, since they ensure local energy conservation in case of
wrongly linked tracks and calorimeter clusters.3

For each reconstructed and truth matched particle, the
energy response is also studied. As shown in Fig. 5, the
momentum resolution for individual particles is strongly
improved when using object condensation paired with a
GravNet based neural network. While the response is compa-
rable for a small number of particles per event, it decreases
rapidly for the baseline PF algorithm with higher particle
densities.

One of the known strengths of the baseline PF algorithm
is its built-in energy conservation, which typically leads to
very good performance for cumulative quantities such as
when reconstructing the momentum of a whole jet. At the
same time, the fact that individual PF candidates are built
allows removing those charged particles that are not associ-
ated to the primary event vertex, thereby reducing the impact

3 This will be discussed in the context of the jet momentum resolution
below.
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Fig. 5 Momentum response with object condensation (top) and the
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event. The first and last bin include the particles outside of the x-axis
range

of additional interactions per bunch crossing (pileup). The
performance of the object condensation approach and the
baseline PF algorithm in such environments is studied using
a sample of jet proxies. These jet proxies (referred to as jets in
the following) contain only electrons and photons, but have
jet-like properties as far as the number of particles and the
momentum of the jet constituents are concerned. The jets
are generated by randomly picking electrons and photons
from an exponentially falling momentum spectrum following
exp(−ln (300) · p(t)/GeV), with the additional constraint of
1 GeV < p(t) < 200 GeV. For each jet, an integer value
is chosen between 1 and 15, which determines the expec-
tation value of a Poisson distribution determining the num-
ber of particles in the jet. This results in jets with momenta
ranging from about 1 GeV up to about 300 GeV. For fixed
jet momenta, the constituents follow an exponentially falling
momentum spectrum and their number is Poisson distributed.

Within this jet sample, particle multiplicities can be as
high as 22 per event while the training sample extends to
up to nine particles in each event. In a realistic environment

2 4 6 8 10 12 14 16 18 20 22
particles per event

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

ef
fic

ie
nc

y

Condensation

Baseline PF

Fig. 6 Reconstruction efficiency as a function of the particle multi-
plicity in the event

it is very likely that some events do not correspond to the
configuration that has been used for training. Therefore the
ability of a neural network to extrapolate to such regimes is
crucial and strongly influenced by the training method. As
shown in Fig. 6, the reconstruction efficiency with GravNet
and object condensation extends smoothly well beyond nine
particles per event, which is similarly true for other predicted
quantities.

The apparent increase in efficiency for the baseline PF
algorithm for higher particle multiplicities is likely caused
by the fact that the truth matching criteria are not stringent
enough to avoid mismatching in the presence of many close-
by particles. However, inclusive quantities such as the total
jet momentum are not affected by this truth matching. For the
purpose of simulating the effect of pileup on the jet momen-
tum, a fraction of charged particles is removed for each jet
(referred to as PU fraction in the following). Up to large
PU fractions are realistic in the upcoming runs at the Large
Hadron Collider. The same particles are removed when deter-
mining the true jet momentum as for the reconstructed jet
momentum. Since the truth matching of electrons through
their track is unambiguous, this procedure does not intro-
duce a bias to the comparison. The true jet momentum p j (t)
is compared to the reconstructed jet momentum p j (r) for
well reconstructed jets only. Here, well reconstructed refers
to jets fulfilling |p j (r)− p j (t)|/p j (t) < 0.5. The remaining
jets are labelled as mis-reconstructed. As shown in Fig. 7,
the fraction of mis-reconstructed jets increases with larger
PU fractions in particular at low p j (t), but remains small
for the object condensation approach throughout the spec-
trum and even at a PU fraction of 0.8. Within the sample
of well reconstructed jets, the response mean is compara-
ble for object condensation and the baseline PF algorithm
at low PU fractions and high momenta, however the differ-
ences increase in favour of the object condensation approach
for larger PU fractions and lower jet momenta.

While this bias can be corrected a posteriori, the most
important metric is the width of the jet momentum resolu-
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associated to pileup (PU frac.). All distributions are shown as a function
of the true jet momentum

tion distribution, which is here determined as the square-
root of the variance for all well reconstructed jets. For zero
PU fraction, the built-in energy conservation in the base-
line PF algorithm provides the best performance for reason-
ably high jet momenta and outperforms the object condensa-
tion approach. However, once the PU fraction is increased,
the identification and correct reconstruction of each individ-
ual particle becomes increasingly important, and therefore
the object condensation approach in combination with the
GravNet-based neural network outperforms the baseline PF
algorithm significantly.

The performance difference for single particles and at
high PU fractions is particularly noteworthy since the detec-
tor configuration and the selection of only electromagnetic
objects in principle reflect the more idealistic assumptions
made in the baseline PF algorithm. Therefore, more real-
istic and complex environments, such as in a real particle
physics experiment, are likely to increase the discrepancies
between the methods in favour of machine-learning based
approaches.

6 Summary

The object condensation method described in this paper
allows us to detect the properties of an unknown number of
objects in an image, point cloud, or particle physics detector
without explicit assumptions on the object size or the sort-
ing of the objects. The method does not require any anchor
boxes, a prediction of cardinality, or any specific permutation.
Moreover, it generalises naturally to point cloud or graph
data by using the input structure itself to determine poten-
tial condensation points. The inference algorithm does not
add any significant overhead with respect to the deep neural
network itself and is therefore also suited for time-critical
applications. The application to particle reconstruction in a
simplified detector setup shows that even in a well controlled
environment that is close to the algorithmic model used in
classic particle flow approaches, object condensation allows
training neural networks that have the potential to outper-
form classic approaches, and thereby enables multi-particle
end-to-end reconstruction using machine learning. Further-
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more, the method in combination with the right graph neural
networks shows excellent extrapolation properties to regimes
beyond the training conditions.
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