
 Open access  Proceedings Article  DOI:10.5244/C.2.9

Object cues for model-based image interpretation — Source link 

Ann Thornham, Christopher J. Taylor, D. H. Cooper

Published on: 01 Jan 1988 - Alvey Vision Conference

Topics: Real image, Local symmetry and Symmetry (geometry)

Share this paper:    

View more about this paper here: https://typeset.io/papers/object-cues-for-model-based-image-interpretation-
1bl4t81n8z

https://typeset.io/
https://www.doi.org/10.5244/C.2.9
https://typeset.io/papers/object-cues-for-model-based-image-interpretation-1bl4t81n8z
https://typeset.io/authors/ann-thornham-1cewidmyxz
https://typeset.io/authors/christopher-j-taylor-lqpx6taqp7
https://typeset.io/authors/d-h-cooper-4xf5bcqyvw
https://typeset.io/conferences/alvey-vision-conference-25vj98pe
https://typeset.io/topics/real-image-1vuw83a0
https://typeset.io/topics/local-symmetry-1kpfzvfq
https://typeset.io/topics/symmetry-geometry-dzajudoo
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/object-cues-for-model-based-image-interpretation-1bl4t81n8z
https://twitter.com/intent/tweet?text=Object%20cues%20for%20model-based%20image%20interpretation&url=https://typeset.io/papers/object-cues-for-model-based-image-interpretation-1bl4t81n8z
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/object-cues-for-model-based-image-interpretation-1bl4t81n8z
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/object-cues-for-model-based-image-interpretation-1bl4t81n8z
https://typeset.io/papers/object-cues-for-model-based-image-interpretation-1bl4t81n8z


OBJECT CUES FOR MODEL BASED IMAGE INTERPRETATION

Ann Thornham, Christopher J. Taylor and David H. Cooper.

Wolfson Image Analysis Unit

Department of Medical Biophysics
University of Manchester

Oxford Road
Manchester Ml 3 9PT

This paper is concerned with generating object cues

from grey-level images for use in model-based image

interpretation. We describe the idea of local grey-level

symmetry and illustrate how points in the grey-level

image with this property form local axes of symmetry.

These axes together with appropriate scale information

form the object cues. The degree of local symmetry in

the grey-level image is made explicit by introducing a

Centre of Gravity filter. The local axes of symmetry are

shown to appear in the centre of gravity image as

troughs and a method for labelling the troughs is

described. We give results for real images and make an

objective comparison with other published methods.

This work forms part of a project called 'Techniques

for User Programmable Image Processing' (TUPIP)

which is directed towards a computer vision system

which can accept a description of a visual task from a

user, who is not an image processing expert, and

generate a solution, ie. be capable of performing the

task. Within the proposed system the scene involved in

the visual task is described in terms of an hierarchical

model. In order to attempt to instantiate parts of this

model the system must extract initial evidence from the

image. The requirement is for simple symbolic entities,

or cues, generated by applying low-level processing to

the raw image data. These cues will be used to locate

objects in the scene for model matching.

Much work has been devoted to developing optimal

methods for detecting edges and uniform region

primitives. For complex scenes it is, however, difficult

to generate object hypotheses from such cues. Edge

cues are too low-level in that they describe only local

properties whilst in complex scenes objects do not

necessarily correspond to uniform regions. With edge

cues there also exists a combinatorial problem of

associating multiple cues with multiple objects.

We believe that axes of symmetry would form useful

object cues especially if the concept of scale could be
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of ALVEYproject MMI-093: 'Techniques for User

Programmable Image Processing' (TUPIP).

introduced so that a course-to-fine description was

available. We have developed a robust, scale sensitive

method of generating axes of local symmetry directly

from grey-level images, based on the idea of grey-level

symmetry over a neighbourhood.

Axes of local symmetry have been used by other

authors to describe shape. Many of the techniques

reported, such as the medial axis transformation
 1

(MAT) and the method of smoothed local

symmetries
 2 (SLS), involve detecting object

boundaries first in order to find the axes of symmetry.

They are inappropriate to the problem we consider

here where we wish to use axial symmetries as cues to

seed the process of boundary location. Other shape

descriptors, such as the min-max MAT
 3 (MMMAT),

can be calculated directly from the grey-level image

but have disadvantages which are discussed later.

OVERVIEW

To illustrate the concept of local grey-level symmetry

we introduce a grey-level image which consists of a

light, bar-shaped object on a darker background as

shown in Figure 1. If we consider a disk-shaped

neighbourhood for each point in the image, then for a

point at the centre of the bar (Figure l(a)) the

grey-levels in the neighbourhood are evenly distributed

in all directions about the point and the point has local

grey-level symmetry. However, for a point away from

the centre of the bar (Figure l(b)) the grey-levels are

not evenly distributed in all directions within the

neighbourhood and the point does not have local

grey-level symmetry.

We have introduced the idea that the position of the

Centre of Gravity (COG) of the grey-levels within a

neighbourhood can be used to compute the degree of

local grey-level symmetry. We have developed a COG

filter which operates over a grey-level image finding

the coordinates of the centre of gravity for a

neighbourhood centred at each point in the image. The

distance of the centre of gravity from the centre of the

neighbourhood is recorded in a filtered or COG image.

If the grey-levels in the region are symmetric then the

centre of gravity is at the centre of the region and the

distance value is zero. If however the grey-levels are
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not symmetric the centre of gravity is away from the

centre of the region and the distance value is

non-zero. The magnitude of the distance value is a

measure of the asymmetry of the grey-levels and hence

the COG filter makes explicit the degree of local

symmetry.

Figure l(a). A disk shaped neighbourhood with
local grey level symmetry.

Figure l(b). A disk shaped neighbourhood with
locally asymmetric grey-levels.

Given a COG image it remains to extract the axes of

local symmetry. If we consider the example illustrated

in Figure 1, many points in the grey-level image satisfy

the local grey-level symmetry criterion. In fact the

number of points which have local symmetry depends

upon the size of the neighbourhood around each point.

This introduces the idea of scale: whether a point has

local symmetry or not depends upon the size of the

neighbourhood, or scale, at which the centre of gravity

filter is operated. If the diameter of the neighbourhood

is much less than the width of the bar then there are

many points within the bar which have local symmetry.

The number of points reduces as the diameter of the

neighbourhood increases. In particular, when the

diameter equals the width of the bar there is a line of

points at the centre of the bar which have local

symmetry. The line persists when the neighbourhood

size exceeds the width of the bar. For the bar shaped

object this line represents the local axis of symmetry or

object cue that we seek and the points which make up

this line appear in the COG image at the base of a

valley or trough.

In general terms, when the COG filter operates over a

grey-level image at a particular scale, if that scale

equals or exceeds the scale of a 'feature' in the source

image then a corresponding trough appears in the

filtered image. At any one scale, these troughs

represent local axes of symmetry. We have developed a

principled and efficient method of trough detection

which, when applied to the COG image allows axes of

local grey-level symmetry to be extracted.

THE COG FILTER

Using the conventional definition, the coordinates of

the centre of gravity (I,J) of a neighbourhood centred

at (x,y) are given by

2 i -f(x+i,y+j)

i.j

J(x,y) =

i.j

where f(x,y) is the image value at (x,y)

and i,j are pixel relative offsets. The

summation is over the neighbourhood.

In practice we make two modifications to this

definition. First we argue that the normalising

denominator can be ignored, simplifying the

calculation. This has the effect that off-symmetry

response is proportional to local, rather than global,

feature contrast: an arguably desirable consequence.

Second, rather than using a simple disk-shaped

neighbourhood we use a gaussian window which leads

to better behaviour in the frequency domain. Our final

definitions for the components of the COG are

therefore

I(x,y) = 2 i .f(x+i,y+j)exP{-(i2+j2)/(j2}
j

J(x,y) = 2 j .f(x+i,y+j)exP{-(i2+j2)/o*}

One advantage of this form for (I,J) is that the filter

can be decomposed into four one-dimensional

convolutions and the computational complexity

reduced from O(n2) to O(n) for a neighbourhood of

half width n.
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Finally the COG image is given by

R(x,y) =

and represents tl.i mass weighted distance of the

centre of gravity from the centre of the neighbourhood

at each point in the image.

Figure 2 is an example of a COG image generated for a

dark pair of pliers on a light background. If the source

image is inverted (to produce a light pair of pliers on a

dark background) the same COG image is obtained.

Figure 2. COG image of a pair of pliers.

THE TROUGH DETECTOR

We have established that the points of interest appear

in the COG image as troughs. A number of ad hoc

algorithms for detecting troughs have been reported

previously.
4 5 We have attempted to find a more

principled method. It is also important to note that the

troughs in the COG image have certain characteristics

which the trough detector must be able to exploit, for

example, the filter half width at which a trough point

first appears provides important scale information

about the corresponding 'feature' in the source image

thus the trough detector must exclude 'flat bottomed'

troughs. The trough detector should also be relatively

insensitive to noise so that only genuine troughs are

labelled.

Every point in the COG image must be examined to see

whether or not it is a trough point. Without some a

priori information about the orientation of potential

troughs, every possible orientation must be considered

at each point. Clearly the volume of computation is

substantially reduced if a direction cue can be

generated at each point so that the trough detector

need be operated in one direction only. By finding a

direction in this way the problem of trough detection

can be reduced to one dimension.

As the trough points appear in the filtered image as

dark line-like structures we have used the directional

output from a line/edge detector
 8 to direct the trough

detector at each point. The line/edge detector has a

5*5 neighbourhood and gives an output quantised to

eight directions. The trough detector reads the

direction for each point in the filtered image and uses it

to calculate the angle through which to rotate its 5*5

neighbourhood in order to align the axes of the

neighbourhood with the direction of the potential

trough. New rotated coordinates are calculated for

each of the 25 points in the neighbourhood and

bilinear interpolation is used to calculate the new

grey-level at each point.

Given the rotated neighbourhood (Figure 3) the

grey-level values in each row are summed to give 5

points on a one dimensional function.
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Figure 3. The rotated neighbourhood at a point.

We fit a least square parabola which has the equation

f(t) = a + bt + ct
2

to the 5 points (2, a+b+c+d+e), (1, f+g+h+i+j), (0,

k+1+m+n+o), (-1, p+q+r+s+t) and (-2, u+v+w+x+y).

Having evaluated the coefficients a,b and c we need

criteria to establish whether row 0 lies on a trough. We

use the constraint that the curve must have a minimum

(ie. c is positive) and the minimum must lie in the

interval [- 0.55, 0.55], to suppress non-minimal

responses.

The rotation of the trough detector's 5*5

neighbourhood to find the new rotated coordinates, the

interpolation to find the new grey-levels at the rotated

coordinates and the calculation of the coefficients a,b

and c in the least square parabola are all linear

processes and can be combined together into one 7*7

convolution mask for each coefficient in each direction

( 8 directions * 3 coefficients = 24 masks ). Combining

the masks in this way makes generating the coefficients

very efficient. Since only one direction is used at each

point at most 3 whole-image convolutions are involved.

Moreover, deciding whether the curve has a minimum
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Figure 4. Trough points in the COG
image of the pliers.

Figure 6. COG image of the chromosomes.

involves evaluating only coefficient c at each point in

the image. If the curve is found to have a minimum

then calculating its location requires coefficient b as

well.

The trough points in the COG image shown in Figure 2

have been identified and labelled and are shown

(overlayed on the original image) in Figure 4. To

obtain this result, the COG filter was run at a scale

appropriate to the width of the four 'arms' of the

pliers. The troughs which lie external to the object are

clearly visible in this example as well as those internal

to the object.

Figure 5. Chromosomes.

L %

Figure 7. Trough points for the chromosomes.

RESULTS

Real Images

Figures 5-9 show results obtained using real images.

Figure 5 shows a microscope image of G-banded

chromosomes. Figure 6 shows the corresponding COG

image. The troughs extracted from the COG image and

overlayed on the original chromosome image are shown

in Figure 7. The COG filter was run at a scale

appropriate to the width of the chromosomes. For a

fairly straight isolated chromosome the trough points

form a single axis of symmetry. If a chromosome is

sufficiently bent, then an external axis of symmetry is
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Figure 8. Coronary Angiogram.

generated. If two chromosomes are separated by a

distance equal to or less than the scale at which the

COG filter was operated then an axis of symmetry

appears between them. The trough points persist as the

neighbourhood size of the COG filter increases but

their position may be altered by the inclusion of other

objects or features within the neighbourhood.

Figure 8 shows the blood vessels of the heart as

visualised in a coronary angiogram. This represents a

more significant challenge because of the very low

signal-to-noise ratio. Figure 9 shows the extracted cues

superimposed on the original image.

Reliability

We have tested the performance of our method and

compared it with two others. Experiments were

performed using a test image consisting of a dark bar

on a light background with added gaussian noise. The

position of the true symmetry axis was known by

definition.

The tests compared the COG method with the

MMMAT and with locating ridges and troughs directly

in a smoothed source image. The method used to

calculate I in the COG filter is mathematically

equivalent to taking the first derivative with respect to x

of the source image convolved with a two dimensional

Gaussian (and similarly for J). The points in the COG

image with local grey-level symmetry therefore

correspond to local maxima and minima in the

smoothed source image and an alternative approach

would be to search directly for ridges and troughs in a

smoothed image. The COG filter was run at an

appropriate scale for the test object. For the direct

trough/ridge finding method, gaussian smoothing with

Figure 9. Coronary Angiogram with

local axes of symmetry.

the same standard deviation as that used in the COG

filter was applied.

All three methods involve a trough/ridge detector and

for consistency the operator described in this paper was

used in each case. The value of local curvature (the

quadratic coefficient c) obtained by the trough/ridge

detector for each image point was recorded so that the

degree of separation of the signal and background

distributions could be assessed.

Results were obtained using a number of different test

images. We quote those for a 200*200 pixel image

containing a vertical bar with a contrast of 20

grey-levels from the background, width 21 pixels and

added noise of standard deviation 3. The accumulated

results from 5 such images are shown in Table 1. For

each method the distribution of grey-level curvature

value obtained by the trough detector is tabulated for

both the true axis points and background.

The results given are typical and show that, at this

signal to noise ratio, the COG method is effectively

'perfect' with a clear separation between the local

curvature distributions for axis and background. The

direct method leads to very considerable overlap of the

two distributions. The MMMAT method is better than

the direct method but still leads to significant overlap.

It is important to note that even where there is a very

small probability that a background point will have a

curvature value which overlaps the distribution of

values for axis points (and thus may lead to false

positive errors) the errors introduced may be

significant, since it is normally the case that there are

very many more background points than true axis

points.
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Table 1. Distribution of local grey-level curvature responses (at an arbitrary scale)

obtained on test images for three methods of locating local axes of symmetry.

Curvature

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17

Total

COG

Axis

0
0
0
0
0
0
0
0
0
0
3

32
33

123
635
124

38
2

990

Method

Background

193008
1452
437
103

21
9
0
0
0
0
0
0
0
0
0
0
0
0

195030

Direct

Axis

578
116

68

100
47
41

0
0
0
0
0
0
0
0
0
0
0
0

950

Method

Background

175669
2302

682

521
259

98

19
0
0
0
0
0
0
0
0
0
0
0

179550

MMMAT Method

Axis

0
0

0

0
0
4

6
17

30
66

122
150
164

131
113
109

0
0

912

Background

136637
32483
25306

9806
2296

423

59
14

0
0
0
0
0
0
0
0
0
0

207024

Speed

The COG filter has been implemented in microcode on

both a Magiscan 2 (Joyce Loebl Ltd) and an IPB 3000

(Wolfson Image Analysis Unit) attached to a Sun

3/160 (Sun Microsystems Inc) workstation and so runs

fairly efficiently. The actual speed with which the

filtered image is produced depends upon the filter

halfwidth. With a half width of 10 pixels the COG filter

takes 20 seconds to operate over an image 256*256

pixels and 6 bits deep.

The results for the trough detector have been obtained

using an implementation in PASCAL which takes 3.5

minutes to operate over an image 256*256 pixels. We

have recently implemented a microcoded version

which takes approximately 10 seconds to operate over

the same image. Both the COG filter and the trough

detection algorithm could easily be performed in

real-time on very simple special-purpose hardware.

DISCUSSION

The COG method generates local axes of symmetry

which form good object cues for model instantiation.

The method is fast and is robust in the presence of

noise. The local axes of symmetry have been used as

object cues for model instantiation as described

elsewhere in these proceedings 7. It is a straightforward

matter to extend the COG method to label the axes of

symmetry as ridges or troughs.

The trough detector described here works well and it is

computationally less complex than methods involving

fitting a two dimensional surface at each point in the

image such as that described by Haralick 5 which also

involves the use of arbitrary parameters.

One advantage of the COG method which we have not

yet exploited is its scale dependence. Further work is

necessary to look at combining cues generated at

different scales. We also want to look at linking axis

fragments. We intend to apply an improvement of the

good continuation concept described by Dixon
 8 for

asbestos fibre counting.
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