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Object Depth Profile and Reflectivity Restoration

From Sparse Single-Photon Data Acquired in

Underwater Environments
Abderrahim Halimi, Aurora Maccarone, Aongus McCarthy, Steve McLaughlin, and Gerald S. Buller

Abstract—This paper presents two new algorithms for the joint
restoration of depth and reflectivity (DR) images constructed from
time-correlated single-photon counting measurements. Two ex-
treme cases are considered: 1) a reduced acquisition time that
leads to very low photon counts; and 2) imaging in a highly atten-
uating environment (such as a turbid medium), which makes the
reflectivity estimation more difficult at increasing range. Adopt-
ing a Bayesian approach, the Poisson distributed observations are
combined with prior distributions about the parameters of inter-
est, to build the joint posterior distribution. More precisely, two
Markov random field (MRF) priors enforcing spatial correlations
are assigned to the DR images. Under some justified assumptions,
the restoration problem (regularized likelihood) reduces to a con-
vex formulation with respect to each of the parameters of inter-
est. This problem is first solved using an adaptive Markov chain
Monte Carlo (MCMC) algorithm that approximates the minimum
mean square parameter estimators. This algorithm is fully auto-
matic since it adjusts the parameters of the MRFs by maximum
marginal likelihood estimation. However, the MCMC-based algo-
rithm exhibits a relatively long computational time. The second
algorithm deals with this issue and is based on a coordinate descent
algorithm. Results on single-photon depth data from laboratory-
based underwater measurements demonstrate the benefit of the
proposed strategy that improves the quality of the estimated DR
images.

Index Terms—ADMM, bayesian estimation, image restoration,
lidar waveform, MCMC, poisson statistics, underwater Lidar.

I. INTRODUCTION

R
ECONSTRUCTION of 3-dimensional scenes is a chal-

lenging problem encountered in many applications. For a

given pixel, the time-of-flight light detection and ranging (Lidar)

system achieves this goal by emitting laser pulses and recording

the round-trip return time and intensity of the reflected signal [1].

Single-photon Lidar typically uses a high repetition rate pulsed
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laser source in conjunction with a single-photon detector. The

advantages of the single-photon approach are its shot-noise lim-

ited sensitivity, and its picosecond temporal response which can

achieve millimeter-scale surface-to-surface resolution [2]. In

single-photon Lidar, the recorded photon event is stored in a tim-

ing histogram which is formed by detecting photons from many

laser pulses. The time delay and the amplitude of the histogram

are related to the distance and reflectivity of the observed object,

respectively, which allows the construction of the 3D scene.

In this paper, we consider a scanning system whose acquisi-

tion time is defined by the user and is the same for each pixel,

which leads to a deterministic and user-defined overall acqui-

sition duration. Consequently, the number of detected photons

can be larger than one for some pixels, whereas other pixels

may be empty (i.e., no detected photons). We also assume solid

target surfaces fabricated from opaque materials, so that only

one reflection is observed in an individual pixel [3]. The study

focuses on the following two extreme cases: (i) a reduced data

acquisition time and (ii) the use of an extremely attenuating

medium [4]. Both cases lead to a reduction in the number of de-

tected photons per pixel, which affects the estimation of depth

and target reflectivity. Indeed, taking underwater measurements

leads to a severe attenuation of the intensity with respect to

(w.r.t.) the target range, which makes the reflectivity estimation

difficult. With such challenging scenarios, the measurement can

be improved by, for example, increasing the laser power or the

data acquisition time [5], however this is not always practicable

in a field situation. To use the available sparse photon data most

efficiently, the alternative approach is to improve the processing

of the acquired signals using signal processing techniques [3],

[6]–[9]. Most of these approaches deal with images containing

a low number of photons per pixel on average (which is related

to our first objective (i)). For instance, [3], [7], [9] proposed

algorithms to restore very low light level Poisson images, how-

ever, these approaches are not designed to deal with a highly

scattering and attenuating medium and need to be generalized

in such a case. The authors [10] proposed a first-photon imag-

ing system, but to the best of our knowledge, it has not been

applied in extreme environments, such as the highly scattering

and attenuating medium used in this paper. In this work, we aim

at improving the estimated DR images for sparse single-photon

data in the presence of a highly attenuating medium, which

covers both objectives (i) and (ii) stated above.

This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/
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The first contribution of this paper is the use of a hierarchical

Bayesian model associated with the DR images. Using the Pois-

son distribution of the observed photon counts, and introducing

some approximations, lead to a log-concave likelihood distri-

bution w.r.t. each of the parameters of interest. The resulting

likelihood distribution is interesting for two reasons: it allows

the use of convex programming algorithms for parameter es-

timation and it is expressed w.r.t. preliminary estimates of the

DR images which avoids the use of cumbersome photon count

histograms during the refinement process. Using Markov ran-

dom fields (MRF), the parameters of interest are assigned prior

distributions enforcing a spatial correlation between the pixels.

More precisely, the depth image is assigned an MRF distribu-

tion equivalent to a total variation (TV) prior [11], [12], while

the reflectivity image is assigned a gamma-MRF prior [13].

The likelihood and the prior distribution are then used to build

the joint posterior distribution that is used for the parameter

estimation.

The second contribution of this paper is the derivation of two

estimation algorithms associated with the proposed hierarchi-

cal Bayesian model. The first algorithm generates samples dis-

tributed according to the posterior using Markov chain Monte

Carlo (MCMC) methods (such as the Gibbs sampler, and the

Metropolis-Hastings algorithm) [14]. These samples are then

used to evaluate the minimum-mean-square-error (MMSE) es-

timator of the DR images. This approach also allows the esti-

mation of the regularization parameters, (the hyperparameters),

associated with the MRF prior using the maximum marginal

likelihood approach proposed in [15]. Therefore, the MCMC

method is fully automatic in the sense that it does not require the

user to tune the model hyperparameters. However, the resulting

MCMC-based algorithm has a high computational complexity

which can be a significant limitation for real time applications.

The second algorithm deals with this limitation and approxi-

mates the maximum a posteriori (MAP) estimator by using a

coordinate descent algorithm [16], [17]. The latter is used to

sequentially update the different parameters to minimize the

negative log-posterior, which is convex w.r.t. each parameter. In

contrast to the reflectivity image that is updated analytically, the

depth image is updated using the alternating direction method

of multipliers (ADMM). This algorithm has shown good per-

formance in different fields, both for the estimation quality and

the reduced computational cost [9], [18], [19]. The proposed al-

gorithms are complementary and represent useful tools to deal

with different user requirements such as a reduced computa-

tional cost or an automatic hyperparameter estimation. Results

on single-photon depth data acquired from laboratory experi-

ments show the benefit of the proposed strategies that improve

the quality of the estimated DR images.

The paper is organized as follows. Section II introduces

the observation model associated with the underwater photon

counts. The proposed hierarchical Bayesian algorithm for DR

restoration is presented in Section III. Section IV introduces the

two proposed estimation algorithms based on stochastic sim-

ulation and optimization. Simulation results on synthetic data

are reported in Section V. Section VI presents and analyzes re-

sults conducted using data acquired by an actual time-of-flight

scanning sensor based on TCSPC. Finally, conclusions and fu-

ture work are reported in Section VII.

II. OBSERVATION MODEL

The Lidar observation yi,j,t , where (i, j) ∈ {1, . . . , Nr} ×
{1, . . . , Nc}, represents the number of photon counts within the

tth bin of the pixel (i, j). According to [3], [20], each photon

count yi,j,t is assumed to be drawn from the Poisson distribution

P(.) as follows

yi,j,t ∼ P (si,j,t) (1)

where si,j,t is the average photon counts given by [4]

si,j,t = ri, je
−αti , j g0 (t − ti, j ) + bi, j (2)

and ti, j ≥ 0 is the position of an object surface at a given range

from the sensor (related to the depth), ri, j ≥ 0 is the reflectivity

of the target, bi, j ≥ 0 is a constant denoting the background and

dark photon level, α represents the attenuation factor related to

the transmission environment and assumed known in the rest of

the paper1 and g0 denotes the system impulse response assumed

to be known from the calibration step. In air, the attenuation

factor is α = 0 and the model (2) reduces to that studied in [3],

[9]. This paper considers the case of transmission in a highly

attenuating environment in which α ≥ 0. In this case, the mea-

sured reflected intensity of the objects decreases as a function of

their distance to the sensor which is valid for different scenarios

such as highly scattering underwater measurements. Indeed, the

single-photon depth images can be used underwater to localize

objects such as boat wreckage, pipelines, etc. The first objective

of this paper is to estimate the target depth and reflectivity im-

ages of a target underwater or in any other extremely attenuating

environment (while assuming known α). The paper second ob-

jective deals with the extreme case of a very low photon counts

per pixels. Under this scenario, it is possible to have missing

pixels which have no received photons, i.e.,
∑T

t=1 yi,j,t = 0.

These missing pixels bring no information regarding the depth

ti, j and reflectivity ri, j and should be considered separately

from informative observed pixels as in [21].

III. HIERARCHICAL BAYESIAN MODEL

This section introduces a hierarchical Bayesian model for

estimating the target distance and reflectivity images of under-

water measurements. The Bayesian approach accounts for both

the statistical model associated with the observed data (likeli-

hood) and the prior knowledge about the parameters of interest

(prior distributions). This approach is interesting to alleviate the

indeterminacy resulting from ill-posed problems and has been

successfully applied to Lidar measurements in [3]. More pre-

cisely, if f(Θ) denotes the prior distribution assigned to the

parameter Θ, the Bayesian approach computes the posterior

distribution of Θ using the Bayes rule

f(Θ|Y ) ∝ f(Y |Θ)f(Θ) (3)

1The coefficient α is measured from the attenuating environment using the
procedure described in [4].
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where ∝ means “proportional to” and f(Y |Θ) is the likeli-

hood of the observation matrix Y gathering all the observed

pixels yi,j,t ,∀i, j, t. The MMSE and MAP estimators of Θ can

be evaluated by the mean vector and maximum of this poste-

rior. At this point, it is interesting to highlight the link between

the Bayesian and optimization perspectives. Indeed, the MAP

estimator can also be evaluated by minimizing the cost func-

tion obtained as the negative log-posterior function. From an

optimization perspective, this cost function is considered as a

regularized problem where the data fidelity term (likelihood)

is constrained using some regularization terms (prior distribu-

tions). The following sections introduce the likelihood and the

prior distributions (regularization terms) considered in this pa-

per.

A. Likelihood

Assuming independence between the observed pixels yi,j,t

and considering the Poisson statistics leads to the following

joint likelihood

P (Y |t, r, b) =
∏

(i,j )∈Ω

T∏

t=1

s
y i , j , t

i,j,t

yi,j,t !
exp−si , j , t (4)

where t, r, b are N × 1 vectors gathering the elements ti, j ,
ri, j , bi, j ,∀i,∀j (in lexicographic order), with N = NrNc , T
is the total number of bins, Ω gathers the indices of non-

empty pixels and si,j,t(t, r, b) has been denoted by si,j,t for

brevity. In a similar fashion to the classical estimation ap-

proach (see [3], [9] for more details), this paper assumes the

absence of the background level, i.e., bi, j = 0. Indeed, the un-

derwater measurements are often obtained in dark conditions

(in the laboratory in our case) which justifies this assump-

tion. Note, however, that the assumption is violated in pres-

ence of multiple scatterers, thus, its effect is studied when

considering synthetic data. In addition to this simplification,

we further assume a Gaussian approximation for the instru-

ment impulse response2 g0(t − ti, j ) = c1 exp− ( t−t i , j ) 2

2 σ 2 as in

[9], [22], and that the temporal sum of the shifted impulse

response c2 =
∑T

t=1 g0(t − ti, j ) is a constant for all realis-

tic target distances ti, j (which is justified when assuming that

the observation time window is larger than the depth of the

observed object). Under these assumptions, the likelihood re-

duces to L =
∏

(i,j )∈Ω Li, j with (after removing unnecessary

constants)

Li, j = r
c2 rML0

i , j

i, j exp

⎡

⎢⎣−αc2 rML0
i , j ti , j −

(t i , j −t ML0
i , j )

2

2 σ 2

c 2 r ML0
i , j

−c2 r i , j exp(−α t i , j )

⎤

⎥⎦

(5)

where tML0
i, j =

(
∑ T

t = 1 ty i , j , t )

(
∑ T

t = 1 y i , j , t )
and rML0

i, j = 1
c2

(
∑T

t=1 yi,j,t) are the

maximum of this simplified likelihood w.r.t. ti, j and ri, j ob-

tained in the air (with α = 0). The likelihood (5) obtained is

interesting for two reasons. First, it does not include the Lidar

2The parameters c1 and σ2 can be estimated by fitting the actual impulse
response with a Gaussian using a least squares algorithm.

Fig. 1. The total variation neighborhood structure.

observation terms yi,j,t explicitly, which means that our formu-

lation considers only the two observed images rML0
i, j and tML0

i, j

instead of the Nr × Nc × T matrix yi,j,t . The computational

cost is then drastically reduced when compared to the mod-

els studied in [3], [23] which considered the full Nr × Nc × T
data cube. Second, it is a log-concave distribution w.r.t. each

of the parameters ti, j and ri, j separately, that is suitable for

the application of convex programming algorithms. Note finally

that our approach can be interpreted as a joint depth-reflectivity

image restoration problem of the estimates tML0
i, j and rML0

i, j that

are of poor quality especially in the limit of very low photon

counts or when acquiring the data in a significantly attenuating

environment. The next section introduces the prior information

introduced to improve the estimated images from (5).

B. Priors for the Distance Image

The target distances exhibit correlation between adjacent pix-

els. This effect is accounted for by considering the following

MRF prior distribution

f(t|η) =
1

G(η)
exp[−ηTV(t)] (6)

where G(η) is a normalizing constant, η is a coupling param-

eter that controls the amount of enforced spatial smoothness,

TV(t) =
∑

i, j

∑
(i′,j ′)∈υ (i,j ) |ti, j − ti ′,j ′ | denotes the total-

variation regularization and υ(i, j) denotes the neighborhood

of the pixel (i, j). Note that the TV term can be easily replaced

with a quadratic penalization term, however, we selected the TV

since it is suitable for edge preservation [11], [12]. In this paper,

we consider a four neighborhood structure for υ(i, j) as shown

in Fig. 1.

C. Priors for the Reflectivity Image

The choice of a prior distribution is generally driven by two

factors, the available knowledge about the parameter of interest

and the tractability of the resulting posterior distribution. Re-

garding the first point, and similarly for the target distances, we

expect the target reflectivity to vary smoothly from one pixel

to another. The second point is often fulfilled by considering a

conjugate distribution for the parameter of interest, which is a



HALIMI et al.: OBJECT DEPTH PROFILE AND REFLECTIVITY RESTORATION FROM SPARSE SINGLE-PHOTON DATA ACQUIRED 475

Fig. 2. Gamma-MRF neighborhood structure.

gamma distribution for r. In our case, these two goals are sat-

isfied by introducing an auxiliary variable w (of size Nr × Nc)

and assigning a gamma-MRF prior for (r,w) as follows [13],

[24], [25]

f (w, r|ζ) =
1

Z(ζ)

∏

(i,j )∈νw

w
−(4ζ+1)
i, j

×
∏

(i′,j ′)∈νr

r
(4ζ−1)
i′,j ′

×
∏

((i,j ),(i′,j ′))∈E
exp

(−ζri′,j ′

wi, j

)
, (7)

where Z(ζ) is a normalizing constant, the partition νw (resp.

νr) denotes the collection of variables w (resp. r), the edge set

E consists of pairs (i, j) representing the connection between

the variables and ζ is a coupling parameter that controls the

amount of spatial smoothness enforced by the GMRF. This prior

ensures that each ri, j is connected to four neighbor elements

of w and vice-versa (see Fig. 2). The reflectivity coefficients

ri, j are conditionally independent and the 1st order neighbors

(i.e., the spatial correlation) is only introduced via the auxiliary

variables w. An interesting property of this joint prior is that the

conditional prior distributions of r and w reduce to conjugate

inverse gamma (IG) and gamma (G) distributions as follows:

wi, j |r, ζ ∼ IG (4ζ, 4ζρ1, i, j (r)) ,

ri, j |w, ζ ∼ G (4ζ, 1/(4ζρ2,i,j (w))) , (8)

where

ρ1, i, j (r) = (ri, j + ri−1,j + ri,j−1 + ri−1,j−1)/4,

ρ2,i,j (w) = (w−1
i, j + w−1

i+1,j + w−1
i,j+1 + w−1

i+1,j+1)/4. (9)

D. Posterior Distribution

The proposed Bayesian model is illustrated by the directed

acyclic graph (DAG) displayed in Fig. 3, which highlights the

relation between the observations Y , the parameters t, r,w
and the hyperparameters η, ζ. Assuming prior independence

Fig. 3. DAG for the parameter and hyperparameter priors. For the optimization
algorithm, the user fixed hyperparameters appear in boxes.

between the parameter vector Θ = (t, r,w), the joint posterior

distribution associated with the proposed Bayesian model is

given by

f (Θ|Y , η, ζ) ∝ f(Y |Θ)f (Θ|η, ζ) . (10)

This posterior will be used to evaluate the Bayesian estimators

of Θ. For this purpose, we propose two algorithms based on

an MCMC and an optimization approach. The first approach

uses an MCMC approach to evaluate the MMSE estimator of

Θ by generating samples according to the joint posterior dis-

tribution. Moreover, it allows the estimation of the hyperpa-

rameters η, ζ by using a maximum marginal likelihood esti-

mation during the inference procedure (as detailed in the next

section). However, this MCMC algorithm presents a signifi-

cant computational complexity which can limit the applicability

for real time applications. The second optimization algorithm

deals with this issue and provides fast MAP estimates for Θ.

This is achieved by maximizing the posterior (10) w.r.t. Θ, or

equivalently, by minimizing the negative log-posterior given by

F = −log[f(Θ|Y , η, ζ)]. Note however, that the hyperparame-

ters are fixed under this approach. The two estimation algorithms

are described in the next section.

IV. ESTIMATION ALGORITHMS

A. MCMC Algorithm

The principle of the MCMC approach is to generate samples

whose stationary distribution is the desired posterior distribu-

tion (10). The distribution (10) being difficult to sample, the

Gibbs algorithm can be used to iteratively generate samples ac-

cording to its conditional distributions [14]. Moreover, when a

conditional distribution cannot be sampled directly, sampling

techniques such as the Metropolis-Hasting (MH) algorithm can

be applied leading to a Metropolis-within-Gibbs sampler. In

this paper, we generate samples associated with the parame-

ters (θ1 ,θ2 ,θ3) = (t, r,w) and use them to approximate the

MMSE estimators given by

θ̂i
MMSE

= E

[
θi |Y , η̂, ζ̂

]
, for i = 1, 2, 3 (11)

where the expectation E(.) is taken w.r.t. the marginal posterior

density f(θi |Y , η̂, ζ̂) (by marginalizing θj , j �= i, this density

takes into account their uncertainty). In addition to these param-

eters, the hyperparameters η, ζ are also estimated by considering

the method proposed in [15], which is based on the maximum
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marginal likelihood estimator, given by
(
η̂, ζ̂

)
= argmax

η∈R+ ,ζ∈R+

f (Y |η, ζ) . (12)

This method provides a point estimate for the hyperparameters

that is used to evaluate the parameter MMSE as indicated in

(11). These approaches have two main advantages: (i) it allows

for an automatic adjustment of the value of (η, ζ) for each

image which leads to an estimation improvement, (ii) it has

a reduced computational cost when compared to competing

approaches [26]. It should be noted that the resulting algorithm

is similar to [3] while the main differences relate to the different

estimated parameters, the different distribution expressions (due

to the underwater observation model), and to the discrete target

positions in [3] which are continuous in this paper. The next

subsections provide more details regarding the main steps of

the sampling algorithm.

1) Sampling the Target Positions: The conditional distribu-

tion of t is given by

f (t|r,Y ) ∝ exp−C(t) , (13)

with

C(t) =
∑

(i,j )∈Ω

⎡

⎣
(
ti, j − tML0

i, j + ασ2
)2

2σ 2

c2 rML0
i , j

+ c2ri, j exp(−αti , j )

⎤

⎦

+ iR +
(t) + ηTV (t) (14)

where the observations Y are introduced via the images rML0
i, j

and tML0
i, j and iR +

(t) is the nonnegative orthant indicator func-

tion. Since it is not easy to sample according to (13), we propose

to update the target positions using a Metropolis-Hasting (MH)

move. More precisely, a new position is proposed following a

Gaussian random walk procedure (the variance of the proposal

distribution has been adjusted to obtain an acceptance rate close

to 0.5, as recommended in [27]). Note finally that the inde-

pendent positions (positions that are not directly related by the

MRF-TV structure) are sampled in parallel using a check-board

scheme, which accelerates the sampling procedure.

2) Sampling the Reflectivity Coefficients: Using (5) and (7),

it can be easily shown that r, and w are distributed according

to the following gamma and inverse gamma distributions

ri, j |w, ζ ∼ G
(

4ζ + c2ki, jr
ML0
i, j ,

1

βi, j

)
, (15)

wi, j |r, ζ ∼ IG (4ζ, 4ζρ1, i, j (r)) , (16)

where βi, j = 4ζρ2,i,j (w) + c2ki, j exp(−αti , j ) , ki, j = 0 if the

pixel is missing and ki, j = 1 otherwise (non-empty observed

pixel). As a consequence, sampling according to (15) and (16)

is straightforward.

3) Updating the MRF Parameters: The MRF parameters

maximizing the marginal likelihood f (Y |η, ζ) are updated us-

ing the approach proposed in [15]. As reported in [3], [15], this

approach provides a good approximation of the MRF parameters

while requiring a reduced computational cost when compared

to alternative approaches [26]. At each iteration of the MCMC

Algorithm 1: MCMC Algorithm.

1: Input Nbi, NMC and the impulse response parameters

c1 , σ
2

2: Initialization

3: Initialize parameters t(0) , r(0) ,w(0) , η(0) , and ζ(0)

4: Update parameters/hyperparameters

5: for n = 1 : NMC do

6: Sample t(n) according to (13) using MH

7: Sample r(n) according to (15)

8: Sample w(n) according to (16)

9: if n < Nbi then

10: Sample t′ ∼ K1(t|t(n) , η(n−1))
11: Sample (r′,w′) ∼ K2(r,w|r(n) ,w(n) , ζ(n−1))
12: Update η using (17)

13: Update ζ using (18)

14: end if

15: end for

16: Output
{
t(n) , r(n)

}NMC

n=1

algorithm, η and ζ are updated as follows

η(n+1) = P[0,ηmax]

{
η(n) + ςn

[
TV

(
t(n)

)
− TV (t′)

]}
(17)

ζ(n+1) = P[0,ζmax]

{
ζ(n) + ςn

[
φ

(
r(n) ,w(n)

)
− φ (r′,w′)

]}

(18)

where ςn = n−3/4 ,P[a,b](x) denotes the projection operator of x
in the interval [a, b], and φ(r,w) = −4

∑
(i,j )∈νw

log(wi, j ) +

4
∑

(i′,j ′)∈νr

log(ri′,j ′) −
∑

((i,j ),(i′,j ′))∈E (
r i ′ , j ′
w i , j

). These expres-

sions originate from a projected gradient descent step in

which the intractable gradients ∂
∂η log f(Y |η(n) , ζ(n)) and

∂
∂ζ log f(Y |η(n) , ζ(n)) have been approximated by the bi-

ased estimators [TV (t(n)) − TV (t′)] and [φ(r(n) ,w(n)) −
φ(r′,w′)]. These estimators use the current samples t(n) , r(n) ,

w(n) and other auxiliary samples t′, r′,w′ generated with ker-

nels K1 and K2 whose target distributions are (6) and (7), re-

spectively (see Algo. 1). Note also that the values obtained

are projected using the operator P to guarantee the positivity

constraints of η and ζ and the stability of the stochastic opti-

mization algorithm (ηmax = ζmax = 20 in the following). Note

finally that the hyperparameters are only updated in the burn-in

period (n < Nbi) and are fixed to their final values for the useful

samples Nbi ≤ n ≤ NMC. Finally we refer the reader to [3], [15]

for more details regarding this procedure.

B. Optimization Algorithm

This section describes an alternative to the MCMC algorithm

which is based on a fast optimization algorithm. The latter max-

imizes the joint posterior (10) w.r.t. the parameters of interest to

approximate the MAP estimator of Θ. The resulting optimiza-

tion problem is tackled using a coordinate descent algorithm

(CDA) [16], [17], [28] that sequentially updates the different

parameters as illustrated in Algorithm 2. Thus, the algorithm it-
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Algorithm 2: Coordinate Descent Algorithm (CDA).

1: Input Nmax, c1 , σ
2 , η, ζ

2: Initialization

3: Initialize parameters t(0) , r(0) ,w(0) and n ← 1
4: conv← 0,

5: Parameter update

6: while conv= 0 do

7: Update t(n) using Algo. 3

8: Update r(n) according to (21)

9: Update w(n) according to (22)

10: Set conv← 1 if the convergence criteria are satisfied

11: n ← n + 1
12: end while

eratively updates each parameter by maximizing its conditional

distribution as described in the following subsections.

1) Updating the Target Positions: Maximizing the condi-

tional distribution of the target positions (13) is equivalent to

minimizing its negative logarithm C(t), given by (14). The latter

is a proper, lower semi-continuous, coercive and strictly convex

(since rML0
i, j > 0, ri, j > 0) function w.r.t. t, so that there exists

a unique minimizer of C(t) (see the Appendix). This problem

can be solved using many convex programing algorithms [18],

[19], [29], [30]. In this paper, we consider the ADMM variant

proposed in [12] that has shown good performance in several

fields [9], [31] while requiring a reduced computational cost.

This algorithm is theoretically ensured to reach the unique min-

imum of C(t). More details regarding this algorithm and its

convergence properties are provided in the Appendix.

2) Updating the Reflectivity Coefficients: Similarly to the

target positions, maximizing the conditional distribution of r

(resp. w) provided in (15) (resp. (16)) is equivalent to minimiz-

ing C1 (resp. C2) given by

C1(r) =
∑

i, j

(1 − 4ζ − c2ki, jr
ML0
i, j ) log(ri, j ) +

ri, j

βi, j
(19)

C2(w) =
∑

i, j

(4ζ + 1) log(wi, j ) +
4ζρ1, i, j (r)

wi, j
. (20)

The minimum of these functions is uniquely attained and given

by

ri, j =
4ζ + c2ki, jr

ML0
i, j − 1

βi, j
,∀i, j (21)

wi, j =
4ζρ1, i, j (r)

4ζ + 1
,∀i, j (22)

subject to 4ζ + c2r
ML0
i, j > 1 which is always satisfied for ζ >

0.25. These solutions are used to update the parameters r and

w as shown in Algo. 2.

3) Convergence and Stopping Criteria: The [16, proposition

2.7.1] asserts that the limit points of the sequence generated by

the coordinate descent algorithm (Θn for the nth iteration) are

stationary points of F = −log[f (Θ|Y , η, ζ)] provided that the

minimum of that function w.r.t. Θ along each coordinate is

unique and that the function F is monotonically non-increasing

along each coordinate in the interval from θn
i to θn+1

i . These

conditions are satisfied for the parameters considered. Indeed,

the estimation of the target positions is a convex minimization

problem whose solution is uniquely attained by the ADMM

algorithm. Along the reflectivity coordinate, the function C1

is convex and has a unique minimum (for ζ > 0.25). Along

the auxiliary variable coordinate, C2 has a unique minimum

and is monotonically non-increasing on each side of the mini-

mum. These satisfy the conditions of the [16, proposition 2.7.1].

Moreover, note that the cost function F is not convex, thus, the

solution obtained might depend on the initial values that should

be chosen carefully. Therefore, the reflectivity and target posi-

tions are initialized using the result of the classical approach

(known as X-corr algorithm [3]). For each pixel, this approach

estimates the reflectivity by rML0
i, j and the depth by finding the

maximum of the cross-correlation of the histogram yi, j with

the impulse response g0 (see [3] for more details regarding the

X-corr algorithm). With these initializations, the proposed al-

gorithm reached minima of “good quality” in the considered

simulations (see Sections V and VI).

Two stopping criteria have been considered for Algorithm 2.

The first criterion compares the new value of the cost function

to the previous one and stops the algorithm if the relative error

between these two values is smaller than a given threshold, i.e.,

|F
(
Θ

t+1
)
−F

(
Θ

t
)
| ≤ δF

(
Θ

t
)
, (23)

where |.| denotes the absolute value. The second criterion is

based on a maximum number of iterations Nmax. These values

have been fixed empirically to (δ, Nmax) = (10−2 , 500) in the

rest of the paper.

V. SIMULATION ON SYNTHETIC DATA

This section evaluates the performance of the proposed

algorithms on synthetic data with a known ground truth. All

simulations have been implemented using MATLAB R2015a

on a computer with Intel(R) Core(TM) i7- 4790 CPU@3.60

GHz and 32 GB RAM. The section is divided into two parts

whose objectives are: 1) introducing the criteria used for the

evaluation of the estimation results, and 2) analysis of the

algorithms performance for different background levels.

A. Evaluation Criteria

The restoration quality was evaluated qualitatively by visual

inspection and quantitatively using the signal-to-reconstruction

error ratio, SRE = 10 log10(
||x||2

||x− x̂||2 ), where x is the reference

depth or reflectivity image, x̂ is the restored image and ||x||2
denotes the ℓ2 norm given by xT x. The returned values of

this criterion are in decibel, the higher the better. The reference

images are known for synthetic images. For real data, the esti-

mated images with the MCMC approach in clear water, and with

the highest acquisition time are considered as reference maps.

As a result of the assumption of the absence of background

photons, the proposed algorithms may be biased in a highly

scattering environment. This effect is evaluated by considering

the normalized-bias criterion given by N-Bias = |E[x− x̂]|
|E[x]| .

We also provide some measures that are used in the experi-

mental sections. We define one attenuation length (AL) as the

distance after which the transmitted light power is reduced to



478 IEEE TRANSACTIONS ON COMPUTATIONAL IMAGING, VOL. 3, NO. 3, SEPTEMBER 2017

Fig. 4. Synthetic depth and reflectivity images.

1/e of its initial value. If a target is located at range d from the

sensor, its stand-off distance expressed in AL can be computed

as AL = αd. This measure is commonly used to highlight the

attenuation affecting a given target [4], and will be considered

when processing real data. Similarly to [32], we consider two

other measures related to the background level. The first is the

signal-to-background ratio given by SBR = rc1

b . The second is

the signal-to-noise ratio given by SNR = rc1√
rc1 +b

.

B. Effect of the Background

In a highly scattering environment or with reduced acquisi-

tion times, the background level might increase w.r.t. the useful

signal. This section evaluates this effect when considering syn-

thetic (computer-simulated) data. A synthetic data cube has been

generated according to model (1) with the following parameters

α = 0, c1 = 1000, σ2 = 100, bi, j = 1,∀i, j, Nr = 100 pixels,

Nc = 100 pixels, and T = 2000 time bins where a time bin

represents 2 picoseconds. The depth distance d corresponding

to T bins can be computed as follows d = T c
2n e

, where c is the

speed of light and ne is the refractive index of the propaga-

tion environment (ne = 1 for the air and ne = 1.33 for water).

The synthetic data contains ten depths in the range [12, 48] cm

and ten reflectivity levels in the interval ri, j ∈ [0, 1], as shown

in Fig. 4. The DR images are estimated using the proposed

MCMC and CDA algorithms. The CDA algorithm requires the

regularization parameters to be set manually. In this study, we

provide the best performance (in terms of SRE) of this algorithm

when testing the following values η ∈ [0.01, 0.1, 0.5, 1, 2, 5] and

ζ ∈ [0.3, 5, 10]. The performance analysis is conduced w.r.t. the

SBR criterion that evaluates the ratio between the useful signal

levels ri, j c1 (whose variation depend on the reflectivity levels

shown in Fig. 4) and the background levels bi, j = 1,∀i, j. Fig. 5

shows the obtained SRE for depth and reflectivity w.r.t. SBR.

Overall, the proposed algorithms provide similar performance.

For both depth and reflectivity, the figure shows a decreasing

performance when the SBR ratio decreases. However, the depth

SRE remains high even for SBR = 1. The reflectivity perfor-

mance decreases log-linearly w.r.t. the SBR ratio and attains

low SRE values for SBR = 1. This is mainly due to a reflectiv-

ity estimation bias in the presence of a high background level.

Fig. 6 highlights this behavior and shows the estimation bias

for depth and reflectivity. While the depth bias is always lower

than 10%, the reflectivity shows high biases for low SBR = 1
which explains the low SRE values. This bias can be corrected

when processing real data using a look-up-table, however, this

is beyond the scope of this paper. These results highlight the

sensitivity of the estimated reflectivity to the background level

Fig. 5. SRE of depth and reflectivity with respect to the background levels for
the MCMC (in blue) and CDA (in red) algorithms.

Fig. 6. Normalized bias of depth and reflectivity with respect to the back-
ground levels for the MCMC (in blue) and CDA (in red) algorithms.

while they confirm the good estimation of the depth image even

for low SBR.

VI. SIMULATION USING REAL DATA

This section evaluates the performance of the proposed

restoration algorithms by conducting two experiments. In both

cases, the targets were put underwater while varying the concen-

tration of Maalox3 to change the attenuation and scattering level

(i.e., attenuation factor α) of the environment. The images were

acquired in June 2016 in the laboratory at Heriot-Watt Univer-

sity, using a time-of-flight scanning sensor, based on TCSPC.

The transceiver system and data acquisition hardware used for

this work are broadly similar to that described in [33]. The over-

3Maalox is a commercially available antacid medicine that strongly affects
scattering without inducing significant optical absorption.
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TABLE I
MEASUREMENT PARAMETERS

Laser system Supercontinuum

laser system

Illum. Wavelength 690 nm

Laser Repetition Rate 19.5 MHz

Histogram bin width 2 ps

Target 1 2 reference targets

with reflectivity 99% and 10% (see Fig. 7)

Scanned area 5 × 5 cm

Number of pixels 150 × 150

Acquisition time Per pixel: 10 ms

Total: ≈ 4 minutes

Histogram length 500bins (after gating)

Average optical power ≈ 670 nW

Target 2 Pipe (≈8 × 5 × 3.5 cm)

(see Fig. 10)

Scanned area 5 × 5 cm

Number of pixels 120 × 120

Acquisition time Per pixel: 100 ms

Total: ≈ 24 minutes

Histogram length 300bins (after gating)

Average optical power see Table II

Fig. 7. (a) Scheme of the first experiment with d1 = 1.57 m, d2 = 9.1 cm
and d3 = 5.1 cm. (b) The two Spectralon targets.

all system had a jitter of ≈ 60 ps full width at half-maximum

(FWHM) while we describe the other main parameters in

Table I. The section is divided into three main parts. The first

part highlights the reconstruction of the reflectivity obtained in

the highly attenuating and scattering environment. The second

part evaluates the restoration performance of the proposed al-

gorithms while varying α. The third part studies the restoration

limits of the proposed algorithms while varying both α and the

acquisition time per pixel tacq.

A. Restoration of the Reflectivity Level

It is clear from (2) that if two objects are located in an atten-

uating environment, defined by α, at a different distance from

the sensor, they will be attenuated differently. This leads to the

reflectivity distortion effect that is highlighted in this section.

The experiment considers two reference targets (spectralon pan-

els) with known reflectance (10% and 99%), that are put inside

a tank of water (dim. 40 × 25 × 25 cm). The 99% reflectance

spectralon panel is located at a longer distance from the sensor

than the one at 10%, as shown in Fig. 7. Five data cubes (with

150 × 150 pixels and 500 time bins) were acquired for differ-

Fig. 8. Reflectivity images (150 × 150 pixels) obtained for α ∈ [0.6,
11.3, 14.8]. (top) classical XCorr approach, (Middle) proposed CDA algorithm,
(Bottom) proposed MCMC algorithm.

Fig. 9. Reflectivity lines (150 pixels) obtained for α ∈ [0.6, 5.2, 11.3,
14.8, 17.3] with the the classical XCorr approach (in dashed red lines), proposed
CDA algorithm (in continuous blue lines) and the proposed MCMC algorithm
(in continuous black lines).

ent attenuation levels α ∈ [0.6, 5.2, 11.3, 14.8, 17.3] (obtained

by varying the amount of Maalox in water). Fig. 8 shows the

reflectivity images estimated by the classical and the proposed

algorithms. For clear water α = 0.6, the images show two levels

of reflectivity related to the two spectralon panels, and separated

by the edge of the spectralon which appears as blue vertical

columns in the reflectivity maps. However, as α increases, the

reflectivity levels of the classical algorithm decrease differently

in the two regions, until we obtain a uniform reflectivity map

(same level in the two regions) for α = 14.8. Indeed, the return

from the 99% reflectance spectralon panel is attenuated more

than the 10% reflectance one, since it is located at a longer dis-

tance. This distortion effect is corrected by the proposed CDA

and MCMC algorithms that recover the true reflectivity level

under the different conditions of attenuation, as shown in Fig. 8

(middle) and (bottom). Fig. 9 shows the average of the rows of

the reflectivity maps when varying α, for the three algorithms.
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Fig. 10. Scheme of the second experiment showing a photograph of the plastic pipe target.

TABLE II
ATTENUATION LEVELS FOR THE UNDERWATER PIPE MEASUREMENT

Fraction of Maalox (×10−4 ) 0 0.29 0.60 1 1.22 1.28

AL 0.9 2.5 4.1 6.7 7.5 8.1

SBR 2322 2576 2344 103 13 6

SNR 505 532 592 95 32 22

Average optical 0.5 11 235 850 850 850

power (µ W)

The concentration of Maalox is obtained by dividing the volume of Maalox by the

volume of the water (67 liters).

When increasing α, the classical algorithm (red lines) presents

decreasing levels that end-up to be the same for α = 14.8 and

slightly inversed for α = 17.3. The CDA and MCMC algorithms

provide almost the same reflectivity results under different lev-

els of α. The observed small differences are mainly due to the

presence of a high background noise for large α, which affects

the restoration performance of the proposed algorithms.

B. Restoration of Underwater Depth and Reflectivity Images

This section evaluates the performance of the proposed

restoration algorithms when considering six real data cubes (of

size 120 × 120 pixels and 300 time bins) of a plastic pipe, put

at a stand-off distance of 1.68m in water. Fig. 10 presents the

experimental scheme and shows a picture of the plastic pipe

target. The scans were performed with an acquisition time of

100ms per pixel and different attenuation levels as shown in Ta-

ble II. The latter also shows the SBR and SNR levels estimated

experimentally using a spectralon with known reflectivity. We

provide these levels to link the analysis of this part to that on

synthetic data.

Table III shows the SRE obtained with the studied algorithms.

Since the classical approach does not consider the attenuation

TABLE III
SRE (IN DB) OF THE RESTORED DEPTH AND REFLECTIVITY

IMAGES W.R.T. THE ATTENUATION LENGTHS (AL)

Attenuation lengths

0.9 2.5 4.1 6.7 7.5 8.1

Depth Class. 71.7 49.9 49.3 54.8 36.4 34.2

CDA 82.2 50.0 49.4 58.4 50.3 48.1

MCMC − 50.0 49.3 56.1 46.4 43.2

Reflectivity Class. 1.5 0.0 0.0 0.0 0.0 0.0

C. Class. 47.0 11.2 11.0 10.1 −0.3 −10.9

CDA 59.5 11.1 11.0 11.0 3.4 −7.5

MCMC − 11.1 11.0 10.9 2.7 −8.4

TABLE IV
PROCESSING TIME (IN SECONDS)

Attenuation lengths

0.9 2.5 4.1 6.7 7.5 8.1

CDA 21 21 21 21 18 17

MCMC 529 513 514 524 496 494

effect, and for fair comparison, we have also included a sophis-

ticated version that has a corrected reflectivity and is denoted by

“C. Class.” (reflectivity is corrected using the known coefficient

α and the estimated depth image). The algorithms proposed

in this paper outperform the classical approach except for the

reflectivity at the highest AL. In addition, the proposed algo-

rithms show similar performance with slightly better results for

CDA whose hyperparameters have been adjusted to provide the

highest SRE. Note that the MCMC algorithm also provide good

results while automatically adjusting the MRF hyperparameters.

However, this is achieved at the cost of significantly longer pro-

cessing time, as highlighted in Table IV. Figs. 11 and 12 show

examples of the obtained depth and reflectivity images with the
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Fig. 11. Depth images (120 × 120 pixels) obtained for different attenuation factors with (top) the classical XCorr approach, (middle) the proposed CDA
algorithm (bottom) and the proposed MCMC algorithm. The colormap is fixed for all images to [1.76,1.8] meters.

Fig. 12. Reflectivity images (120 × 120 pixels) obtained for different at-
tenuation factors with (first row) the classical XCorr approach, (second row)
the corrected classical XCorr approach (corrected from the attenuation effect),
(third row) the proposed CDA algorithm (fourth row) and the proposed MCMC
algorithm. The colormap is fixed for all images to [0, 1.2].

algorithms for different ALs. The depths are restored well by the

two algorithms while it can be seen that CDA over-smooths the

pipe. The MCMC algorithm preserves more of the pipe contours

while retaining some noise. These effects are mainly related to

the estimated MRF hyperparameters that are different for the two

algorithms. Fig. 13 highlights the effect of the hyperparameters

on the depth images (obtained for AL = 7.5) when considering

the CDA algorithm. This figure clearly shows that high hyperpa-

rameter values lead to smooth images, while low values provide

noisy images. Considering the reflectivity images, the classical

approach is largely affected by the environmental attenuation

Fig. 13. Restored depth images using the CDA algorithm with different
hyperparameter values (obtained for AL = 7.5).

factor while the proposed algorithms and the corrected classical

(C. Class.) approach obtain acceptable results for AL ≤ 7.5. For

higher attenuation lengths, the restored reflectivity images are

not satisfactory for two reasons: (i) the presence of a high back-

ground level and (ii) the measure of α is not accurate enough

because of the low signal level for these challenging scenarios,

which affects the algorithms performance.

C. Performance w.r.t. the Acquisition Times and the

Attenuation Factor

This section explores the performance of the proposed algo-

rithms when dealing with a reduced number of photons due to

a reduced acquisition time or a scattering and attenuating envi-

ronment. This evaluation is important to state the possible level

of attenuation that can be dealt with the proposed algorithms.
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TABLE V
PERCENTAGE OF USEFUL PIXELS W.R.T. tACQ AND AL

Attenuation lengths

0.9 2.5 4.1 6.7 7.5 8.1

0.01 32.1 30.8 35.6 1.0 0.3 0.4

0.1 91.9 91.2 92.1 9.2 3.3 2.5

tacq (ms) 0.5 99.7 99.7 99.8 34.2 14.5 11.8

1 99.9 100.0 100.0 51.5 25.0 20.7

2 99.9 100.0 100.0 67.1 37.0 32.0

10 100.0 100.0 100.0 88.6 53.5 43.0

20 100.0 100.0 100.0 95.4 61.7 48.1

100 100.0 100.0 100.0 100.0 84.0 72.6

Fig. 14. Depth SRE obtained w.r.t. the acquisition time per-pixel (tacq) for
different attenuation levels. (top) CDA, (bottom) MCMC.

In this experiment, we will consider the data used in the pre-

vious section with tacq = 100 ms (see Fig. 10). Note however

that the data format of timed events allows the construction of

photon timing histograms associated with shorter acquisition

times, after measurement, as the system records the time of ar-

rival of each detected photon. Here, we evaluate our algorithms

for acquisition times ranging from 0.01ms to 100ms per pixel.

Table V reports the percentage of non-empty pixels w.r.t. tacq

and AL. As expected, this percentage is higher for high tacq or

low AL. Figs. 14 and 15 show the SRE as a function of tacq for

different attenuation lengths. First note that the MRF parameters

of the CDA algorithm have been adjusted to provide the best

SRE results, which explain why CDA outperforms MCMC in

some cases. As expected, the algorithms performance generally

decreases while reducing the acquisition times or increasing

the attenuation levels. As AL increases, the algorithms require

more acquisition time (i.e., more informative pixels) in order

to obtain an acceptable performance. The latter are generally

obtained for a percentage higher than 30% of non-empty pixels

and AL ≤ 7.5. For example, when AL = 7.5, the CDA algo-

rithm requires that tacq > 10 ms to reach a good performance

both for depth and reflectivity. Therefore, given an attenuating

Fig. 15. Reflectivity SRE obtained w.r.t. the acquisition time per-pixel (tacq)
for different attenuation levels. (top) CDA, (bottom) MCMC.

environment defined by α, these results allow the setting of the

required acquisition times to obtain a given level of accuracy.

VII. CONCLUSION

This paper introduced a hierarchical Bayesian model and two

estimation algorithms for the restoration of depth and reflec-

tivity obtained in the limit of very low photon counts and in

a significant scattering and attenuating environment. The algo-

rithms were designed to provide the single-photon community

with useful, relatively fast, and practical tools for the image

restoration. Using some assumptions, a new formulation was

introduced leading to a log-concave likelihood that is only ex-

pressed using preliminary estimates of the DR images. The

restoration of these two images was achieved by considering

two MRF based prior distributions ensuring spatial correlation

between the pixels. The resulting joint posterior distribution was

used to approximate the Bayesian estimators. First, a Markov

chain Monte Carlo procedure based on a Metropolis-within-

Gibbs algorithm was used to sample the posterior of interest and

to approximate the MMSE estimators of the unknown parame-

ters using the generated samples. Second, a coordinate descent

approach using an alternating direction method of multipliers

algorithm was used to approximate the maximum a posteriori

estimators. Both algorithms showed comparable performance

while providing different characteristics, i.e., the MCMC algo-

rithm was fully automatic while the CDA algorithm required a

reduced computational time. Results on both synthetic and real

data showed the ability of the proposed algorithms to correct

the reflectivity distortion effect, and to restore the depth and re-

flectivity images obtained in highly attenuating environments.

Future work includes relaxing some of the assumptions of this

paper and estimating the attenuation factor α, which might lead

to better performance at the price of a higher computational cost.

Generalizing the algorithms to account for target with multiple

depth returns [20], [23] is also an interesting topic worthy of

investigation.
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Algorithm 3: ADMM for Depth Estimation.

1: Initialization

2: Initialize u
(j )
0 ,d

(j )
0 ,∀j, µ. Set k ← 0, conv← 0

3: while conv= 0 do

4: for j=1:J do

5: ξ
(j )
k ← u

(j )
k + d

(j )
k ,

6: end for

7: tk+1 ← M−1 ∑J
j=1

(
H (j )

)⊤
ξ

(j )
k ,

8: for j=1:J do

9: v
(j )
k ← H (j )tk+1 − d

(j )
k ,

10: u
(j )
k+1 ← argmin

m

µ
2 ||m − v

(j )
k ||2 + gj (m),

11: end for

12: for j=1:J do

13: d
(j )
k+1 ← d

(j )
k −

(
H (j )tk+1 − u

(j )
k+1

)
,

14: end for

15: k = k + 1
16: end while

APPENDIX

ADMM ALGORITHM

Consider the optimization problem

argmin
t

C (t) = argmin
t

J∑

j=1

gj

(
H (j )t

)
(24)

where t ∈ R
N ×1 , gj : R

pj → R are closed, proper, convex

functions, and H (j ) ∈ R
pj ×N are arbitrary matrices. After de-

noting u(j ) = H (j )z ∈ R
pj and introducing the auxiliary vari-

able d(j ) ∈ R
pj , the authors in [12], [18] introduced the ADMM

variant summarized in Algorithm 3 to solve (24). This algorithm

converges when the matrix M = [
∑J

j=1 (H (j ))⊤H (j ) ] has full

rank, and the optimization problems in line 10 are solved exactly

or if their sequences of errors are absolutely summable [18]. In

our case, we have

g1

(
u

(1)
i, j

)
=

(
u

(1)
i, j − tML0

i, j + ασ2
)2

2σ 2

c2 rML0
i , j

+ c2ri, j exp

(
−αu

( 1 )
i , j

)

,

g2

(
u(2)

)
= η||u(2) ||1 , and g3

(
u(3)

)
= iR+

(
u(3)

)
,

(25)

where H (1) = K is a Q × N binary matrix that contains a

single non-zero value (equals to 1) on each line to model

the loss of some image pixels and Q is the number of non-

empty pixels, H (2) denotes the TV linear operator as de-

scribed in [12], and H (3) = IN . These matrices lead to M =
IN + K⊤K + H (2)⊤H (2) which is a full rank matrix (K⊤K

is a diagonal matrix whose values equal 0 in the position of

missing pixels and 1 otherwise). The updates of u(2) ,u(3) in

line 10 of Algorithm 3 are straightforward and lead to ex-

act solutions. For u(1) , the optimization problem has been

solved using few iterations of the Newton method [16]. Re-

garding the solution of (24), note that g1 + g2 + TV is proper,

coercive, lower semi-continuous, and strictly convex for rML0
i, j >

0, and ri, j > 0 (which is satisfied). Since K is injective, we

obtain that C(t) = g1(Kt) + g2(t) + ηTV(t) is proper, coer-

cive, lower semi-continuous, and strictly convex, thus, there is

a unique minimizer for C(t) (see for example [16], [18], [34]).

The authors invite the reader to consult [12], [18], [19] for more

details regarding the ADMM algorithm and its convergence

characteristics.
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