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Abstract: SMD (Singapore Maritime Dataset) is a public dataset with annotated videos, and it is
almost unique in the training of deep neural networks (DNN) for the recognition of maritime objects.
However, there are noisy labels and imprecisely located bounding boxes in the ground truth of the
SMD. In this paper, for the benchmark of DNN algorithms, we correct the annotations of the SMD
dataset and present an improved version, which we coined SMD-Plus. We also propose augmentation
techniques designed especially for the SMD-Plus. More specifically, an online transformation of
training images via Copy & Paste is applied to solve the class-imbalance problem in the training
dataset. Furthermore, the mix-up technique is adopted in addition to the basic augmentation
techniques for YOLO-V5. Experimental results show that the detection and classification performance
of the modified YOLO-V5 with the SMD-Plus has improved in comparison to the original YOLO-V5.
The ground truth of the SMD-Plus and our experimental results are available for download.

Keywords: object detection; maritime dataset; deep learning; data relabel

1. Introduction

Public image datasets such as COCO [1] and Pascal visual object classes (VOC) [2] have
made a great contribution to the development of deep neural networks (DNN) for computer
vision problems [3–8]. These datasets include many different categories of objects. On
the other hand, a domain-specific dataset usually contains only a relatively small number
of sub-categories under a parent category. For domain-specific applications, obtaining
a sufficient number of annotated images is considered a difficult task. Moreover, most
domain-specific datasets suffer from the class-imbalance problem and noisy labels. Thus,
to overcome the overfitting problem due to these inherent problems in the domain-specific
dataset, a DNN model pre-trained by the public image dataset mentioned above is usually
adopted for its fine-tuning.

The application areas that make use of domain-specific datasets have been expanding
and now include road condition recognition [9,10], face detection [11,12], and food recogni-
tion [13,14], among others. Object recognition [15,16] in maritime environments is another
important domain-specific problem for various security and safety purposes. For example,
an autonomous ship equipped with an Automatic Identification System (AIS) requires safe
navigation, which is achieved by the detection of surrounding objects [17]. This is a difficult
problem simply because the objects at sea change dynamically due to environmental factors
such as illumination, fog, rain, wind, and light reflection. In addition, depending on the
viewpoint, the same ship can be shown with quite different shapes. Since the ocean usually
has a wide-open view, the ships on the sea can be seen with a variety of sizes and occlusions.
That is, large inter-class variances in terms of the size and shape of the maritime objects
make the recognition problem very challenging. To tackle these difficulties, we rely on
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the recent advancements in DNN. However, the immediate problem of the DNN-based
approach is the lack of annotated training data in maritime environments.

Maritime video datasets with annotated bounding boxes and object labels are hardly
available. There exist few published datasets, collected especially for object detection
in maritime environments [18–20]. Among them, only the Singapore Maritime Dataset
(SMD), introduced by Prasad et al. [20], provides sufficiently large video data with labeled
bounding boxes for 10 maritime object classes. The SMD consists of onboard and onshore
video shots captured by Visual-Optical (VIS) and Near Infrared (NIR) sensors, which can
be used for tracking as well as detecting ships on the sea. Although the SMD can be used
for the training and testing of DNNs, it is hard to find completely reproducible results
published with the SMD for comparative studies. This is due to the fact that the SMD
has the following problems. First, there are bounding boxes in the ground truth of the
SMD with inaccurate object boundaries. Some of their bounding boxes are too loose to
include the background as well as the whole object. Additionally, some of them are too
tight to have only a part of the object. Since the maritime images are usually taken from a
wide-open view, a faraway object can appear as a tiny one. In this case, a small difference at
the border of the bounding box can make a big difference in testing the accuracy of object
detection. Second, there are incorrectly labeled classes in the ground truth of the SMD.
These noisy labels may not be a big problem for distinguishing the foreground object from
the background, but they certainly affect the training and testing of the DNN for the object
classification problem. Third, there exists a serious class imbalance in the SMD. The class
imbalance can cause the biased training of the DNN in favor of the majority classes and
deteriorate the generalization ability of the model. Fourth, there is no proper train/test
split in the original SMD.

Note that in [15], they split the SMD into training, validation, and testing subsets.
Using the split datasets, they also provided the benchmark results for the object detection
via the Mask R-CNN model. However, their benchmark results were about object detection,
with no further classification for each detected object. In fact, most of the previous research
works that used the dataset only dealt with object detection [15,21,22]. However, for
applications in maritime security such as in the use of Unmanned Surface Vehicles (USV),
we also need to identify the type of the detected object [23]. Since the original SMD includes
the class labels of the objects as well as their bounding box information, we may use the
SMD for both object detection and classification problems.

Although the SMD provides the class label for each object with a bounding box, as
already mentioned, there are still noisy labels. Furthermore, the split dataset provided
by [15] suffers from the class-imbalance problem (e.g., no data assigned for some of the
object classes such as Kayak and Swimming Person in the training subset). In this paper, by
using the SMD as a benchmark dataset for both detection and classification tasks, we fix its
imprecisely determined bounding boxes and noisy labels. To alleviate the class-imbalance
problem, we discard rare classes such as ‘swimming person’ and ‘flying bird and plane’. In
addition, we merge the ‘boat’ and ‘speed boat’ labels and thus propose a modified SMD
(coined SMD-Plus) with seven maritime object classes.

Hence, in having the SMD-Plus dataset, we are able to provide benchmark results for
the detection and classification (detection-then-classification) problem. That is, based on the
YOLO-V5 model [24], we modify its augmentation techniques through the consideration
of the maritime environments. More specifically, an Online Copy & Paste is applied to
alleviate the imbalance problem in the training process. Likewise, the original augmentation
techniques of the YOLO-V5 such as the geometric transformation, mosaic, and mix-up of
the YOLO-V5 are adjusted especially for the SMD-Plus.

The contributions of this paper can be summarized as follows:

(i) We have improved the existing SMD dataset by removing noisy labels and fixing the
bounding boxes. It is expected that the improved dataset of the SMD-Plus will be
used as a benchmark dataset for the detection and classification of objects in maritime
environments.
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(ii) In addition to the YOLO-V5 augmentation techniques, we proposed the Online Copy
& Paste and Mix-up methods for the SMD-Plus. Our Online Copy & Paste scheme has
significantly improved the classification performance for the minority classes, thus
alleviating the class-imbalance problem in the SMD-Plus.

(iii) The ground truth table for the SMD-Plus and the results of the detection and classification
are open to the public and may be downloaded from the following website (accessed on
2 March 2022): https://github.com/kjunhwa/Singapore-Maritime-Dataset-Plus.

2. Related Work
2.1. Maritime Dataset

In domain-specific DNN applications, it is of vital importance to obtain a proper
dataset for training. However, for some domain-specific problems, it is quite difficult to
obtain publically available datasets. Depending on the target domain, it is often expensive
to collect images for specific classes and annotate them. Moreover, security and proprietary
rights often prevent the owners from opening their datasets. One such domain-specific
dataset is the maritime dataset. Maritime datasets can be classified into three groups [25]:
(i) datasets for object detection [19], (ii) datasets for object classification [26], (iii) datasets for
both object detection and classification [20]. The dataset for object detection provides the
location information of the objects in the image with their bounding boxes, while no class
label is given for each object. On the other hand, in the dataset for both object detection
and classification, each image includes multiple objects with their bounding boxes and
class labels. Finally, there is only a single maritime object in an image from the dataset for
object classification.

Although the SMD [20] provides the ground truth of video objects and their class
labels for both object detection and classification, there are no benchmark results reported
from the SMD. This is due to the fact that the original SMD is not quite ready for training
DNN models. Moosbauer et al. [15] analyzed the SMD and proposed the split sub-datasets
of ‘train, validation, and test’. After applying Mask R-CNN on their split sub-datasets, they
then reported the foreground object detection results. However, for both object detection
and classification tasks, their split sub-datasets of train, validation, and test may not be
appropriate for training the DNNs. Note that there certainly exist noisy labels in the
SMD, which cause no problems in detection but negatively affect the DNN training for
the classification. Additionally, due to the class-imbalance problem of the SMD, some of
the split sub-datasets in [15] only have a few or even no data in a certain class of the test
dataset. The SMD has been combined with other existing maritime datasets to resolve the
limitations. For example, to expand the SMD dataset, Shin et al. [22] exploited the public
datasets for classification such as MARVEL [18] by pasting copies of the objects in MARVEL
into the SMD dataset. Furthermore, in Nalamati et al. [23], the SMD was combined with
the SeaShips [19] dataset. However, these combined datasets were only used for detection.
Moreover, due to the lack of dataset-combining details, it is hard to reproduce and compare
the results. The Maritime Detection Classification and Tracking benchmark (MarDCT) [27]
provided maritime datasets for detection, classification, and tracking separately. Therefore,
it is inappropriate to use them for the classification of detected objects with bounding boxes.

2.2. Object Detection Models

Although improved versions of R-CNN [3], such as Faster R-CNN [4] and cascade
R-CNN [28], were proposed to speed up the inference, the two-stage architectures of the
R-CNN generically limit the processing speed. This has motivated researchers to develop
one-stage DNNs such as YOLO [29], SSD[8], and RetinaNet [7] for object detection. Unlike
the R-CNN, YOLO performs classification and bounding box regression at the same time,
thus reducing the processing time. To further improve the accuracy and speed performance,
the first YOLO has been refined to YOLO-V3 [6], YOLO-V4 [30], and YOLO-V5 [24]. The
SSD [8] is another model of the one-stage object detector. For the anchor box of the YOLO,
the SSD uses a predefined default box and has a scale-invariant feature by using a number
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of feature maps obtained from the middle layer of the backbone. RetinaNet [7] also adopts
the one-stage framework with a modified focal loss, which assigns small weights to easily
detectable objects but large weights to objects that are difficult to handle.

The detectors based on anchor boxes have the disadvantage of being sensitive to
hyper-parameters. To solve this problem, anchor-free methods such as FCOS [31] have
been proposed. However, since FCOS [31] performs pixel-wise bounding box prediction,
it takes more time to execute the detection-then-classification task. Since the real-time
requirement is essential for autonomous surveillance, we focus on using the fast one-stage
method of YOLO-V5 [24] as the baseline object detection model.

3. Improved SMD: SMD-Plus

The SMD provides high-quality videos with ground truth for 10 types of objects in
marine environments. Since the ground truth of the SMD was created by non-expert
volunteers, it includes some label errors and imprecise bounding boxes. Those ambiguous
and incorrect class labels in the ground truth make it difficult to use the SMD as a benchmark
dataset for maritime object classification. Therefore, most of the researches making use of
the SMD only deal with object detection, with no classification of the detected objects. To
make use of the SMD for the detection-then-classification purpose, our first task was to
revise and improve its imprecise annotations.

To train a DNN for object detection, we needed the location and size information of the
bounding boxes. Note that unlike the datasets with general objects, the background regions
of sea and sky in the maritime datasets, similar to the SMD, usually take up much larger
areas in the image than the target objects of ships. Therefore, the precise bounding box
annotations for the small maritime objects are of importance, and even a small mislocation
of the bounding box for the small object can make a huge difference in the training and
testing of the DNNs. Figure 1 shows examples of inaccurate bounding boxes in the original
SMD. More specifically, the yellow bounding boxes within the zoomed red, green, and
purple boxes in the top image of Figure 1 are too loose and mislocated. These bounding
boxes are refined in the bottom part of the figure.

Figure 1. The original bounding boxes of the original SMD in the top image are refined in those at
the bottom.
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The ground truth annotation of the SMD for each maritime object provides one of ten
class labels as well as its bounding box information of location and size. However, there
are quite a few noisy labels in the SMD. In addition, there are indistinguishable classes that
need to be merged. For example, as shown in Figure 2, the two ships from the apparently
identical class are assigned the different labels of ‘Speed boat’ and ‘Boat’. Therefore, in our
improved version of the SMD-Plus, we are going to merge the two classes of ‘Speed boat’
and ‘Boat’ into a single class of ‘Boat’. Another motivation to combine these two classes is
that the number of image data for the two classes is not sufficient for training and testing.

Figure 2. Integration of ‘Speed boat’ into ‘Boat’.

The similar-looking ships in the top part of Figure 3b have two different labels of
‘Speed boat’ and ‘Ferry’, and one of them must be incorrect. In the SMD, most of the ships
labeled as ’Ferry’ are the ones that can carry many passengers, as shown on Figure 3a. By
this definition of ‘Ferry’, we can correct the class label of ‘Ferry’ into ‘Boat’, as seen in the
bottom part of Figure 3b.

(a) (b)

Figure 3. Example of noisy label correction in the SMD: (a) A typical image for ‘Ferry’, (b) Noisy
labels in the top and their corrected ones at the bottom.

Next, we point out the problem of the ‘Other’ classification in the SMD. We noticed
that the SMD included a clearly identifiable ‘Person’ in the ‘Other’ class, as seen in Figure 4a,
as well as blurred unidentifiable objects, as seen in Figure 4b. This makes the definition
of the label ‘Other’ rather fuzzy. Therefore, we assigned the ‘Other’ classification only to
unidentifiable objects, excluding rare objects such as the ‘Person’ from the class.
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(a) (b)

Figure 4. Examples of the ‘Other’ class in the SMD: (a) Deleted object from the ‘Other’ class,
(b) Remained objects in the ‘Other’ class.

Since there exist no actual labeled objects for the ‘Flying bird and plane’ and ‘Swim-
ming person’ classes in the SMD, we discarded these two classes. Therefore, putting all
the above modifications together, we can summarize the criteria for our SMD revisions
as follows:

(i) ‘Swimming person’ class is empty and is deleted;
(ii) Non-ship ‘Flying bird and plane’ class is deleted;
(iii) Visually similar classes of ‘Speed boat’ and ‘Boat’ are merged;
(iv) Bounding boxes of the original SMD are tightened;
(v) Some of the missing bounding boxes in ‘Kayak’ are added;
(vi) According to our redefinitions for the ‘Ferry’ and ‘Other’ classes, some of the misclas-

sified objects in them are corrected.

Our final version of the SMD, coined as SMD-Plus, is quantitatively compared with
the original SMD in Table 1.

Table 1. The number of objects in each class label for the original SMD and the SMD-Plus.

SMD SMD-Plus

Class Objects(#) Class Objects(#)

Boat 1499
Boat 14,021

Speed Boat 7961

Vessel/Ship 117,436 Vessel/Ship 125,872

Ferry 8588 Ferry 3431

Kayak 4308 Kayak 3798

Buoy 3065 Buoy 3657

Sail Boat 1926 Sail Boat 1926

Others 12,564 Others 24,993

Flying bird 650 Removed -and plane

Swimming 0 Removed -Person

We needed to split the SMD-Plus into training and testing subsets for the DNNs. Note
that the separation of the SMD into train, validation, and test subsets proposed by [15]
is good for detection, but not for detection-then-classification. Furthermore, some of the
classes in the test subset of the original SMD were empty. Hence, we carefully re-separated
the SMD video clips such that they were distributed evenly for all classes in both the train
and test subsets as much as possible (see Table 2).
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Table 2. Proposed train and test split for VIS video in the SMD (c1: Ferry, c2: Buoy, c3: Vessel_ship,
c4: Boat, c5: Kayak, c6: Sail_boat, c7: Other).

Set Subset Video Name Condition
Number of Objects

c1 c2 c3 c4 c5 c6 c7 Total

Train (37)

OnShore (28)

MVI_1451 Hazy 329 0 2524 337 0 0 0 3190

MVI_1452 Hazy 0 0 1020 0 0 340 339 1609

MVI_1470 Daylight 0 266 1862 302 0 0 20 2450

MVI_1471 Daylight 0 299 1723 433 0 0 58 2513

MVI_1478 Daylight 0 0 1431 477 0 477 516 2901

MVI_1479 Daylight 0 0 824 237 0 0 57 1118

MVI_1481 Daylight 0 409 1227 1002 0 0 409 3047

MVI_1482 Daylight 0 0 1362 1059 0 0 24 2445

MVI_1483 Daylight 0 0 897 0 0 0 0 897

MVI_1484 Daylight 0 0 687 687 0 0 1374 2748

MVI_1485 Daylight 0 104 832 104 0 0 0 1040

MVI_1486 Daylight 0 630 5032 630 0 0 0 6292

MVI_1578 Dark/twilight 0 0 3030 0 0 0 505 3535

MVI_1582 Dark/twilight 0 0 7560 540 0 0 540 8640

MVI_1583 Dark/twilight 0 0 2510 502 0 0 97 3109

MVI_1584 Dark/twilight 0 0 6456 881 0 0 3228 10,565

MVI_1609 Daylight 505 0 5555 443 3115 0 505 10,123

MVI_1610 Daylight 0 0 1086 974 0 543 0 2603

MVI_1619 Daylight 0 0 2365 0 0 0 473 2838

MVI_1612 Daylight 0 0 2069 154 0 0 261 2484

MVI_1617 Daylight 0 0 4309 0 0 0 2163 6472

MVI_1620 Daylight 0 0 2008 0 0 0 1151 3159

MVI_1622 Daylight 214 0 618 0 0 0 236 1068

MVI_1623 Daylight 522 0 1528 0 0 0 1044 3094

MVI_1624 Daylight 431 0 1482 0 0 0 0 1913

MVI_1625 Daylight 0 0 5066 0 0 0 4694 9760

MVI_1626 Daylight 0 0 2854 0 0 0 2605 5459

MVI_1627 Daylight 0 0 2975 595 0 0 813 4383

OnBoard (9)

MVI_0788 Daylight 0 0 796 0 0 0 0 796

MVI_0789 Daylight 0 0 88 119 0 0 11 218

MVI_0790 Daylight 0 14 70 5 0 0 8 97

MVI_0792 Daylight 0 0 604 0 0 0 100 704

MVI_0794 Daylight 292 0 0 0 0 0 0 292

MVI_0795 Daylight 510 0 0 0 0 0 0 510

MVI_0796 Daylight 0 0 504 0 0 0 0 504

MVI_0797 Daylight 0 0 1129 0 0 0 113 1242

MVI_0801 Daylight 0 0 596 275 0 0 43 914
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Table 2. Cont.

Set Subset Video Name Condition
Number of Objects

c1 c2 c3 c4 c5 c6 c7 Total

Test (14)

OnShore (12)

MVI_1469 Daylight 0 600 3600 941 0 0 600 5741

MVI_1474 Daylight 0 1335 3560 890 0 0 3560 9345

MVI_1587 Dark/twilight 0 0 6000 600 0 0 586 7186

MVI_1592 Dark/twilight 0 0 2850 0 683 0 0 3533

MVI_1613 Daylight 0 0 5750 0 0 0 904 6654

MVI_1614 Daylight 0 0 5464 582 0 0 934 6980

MVI_1615 Dark/twilight 0 0 3277 0 0 566 566 4409

MVI_1644 Daylight 0 0 1008 0 0 0 756 1764

MVI_1645 Daylight 0 0 3210 0 0 0 0 3210

MVI_1646 Daylight 0 0 4610 0 0 0 373 4533

MVI_1448 Hazy 165 0 3624 1590 0 0 19 5398

MVI_1640 Daylight 302 0 1756 0 0 0 38 2096

OnBoard (2) MVI_0799 Daylight 161 0 379 0 0 0 40 580

MVI_0804 Daylight 0 0 484 0 0 0 980 1464

4. Data Augmentation for YOLO-V5

In this section, we address our detection-then-classification method based on YOLO-V5
with the SMD-Plus dataset. We focus mainly on image augmentation techniques designed
especially for the maritime dataset of the SMD-Plus.

Considering the relatively small size and class imbalance problems in the SMD-Plus,
data augmentation plays an important role in alleviating the overfitting problem when
training the DNNs. As shown in Figure 5, in addition to the basic YOLO-V5 augmentation
techniques such as mosaic and geometric transformation, we employ the Online Copy &
Paste and Mix-up techniques. That is, to a set of four training images, {I1, I2, I3, I4}, we first
apply color jittering by randomly altering the brightness, hue, and saturation components of
the images. Then, the Copy & Paste is performed by inserting the copied objects from other
training images into the input images. Next, adding another set of four training images,
{J1, J2, J3, J4}, a random mosaic is applied to both sets of {I1, I2, I3, I4} and {J1, J2, J3, J4}.
Then, the two mosaic images are geometrically transformed by translation, horizontal flip,
rotation, and scaling. Finally, after the geometric transformations, the two images are fused
by the Mix-up process. Among the augmentations mentioned previously, the Copy & Paste
and the Mix-up are the newly adopted techniques for the basic YOLO-V5 augmentations.
Now, we will elaborate on these two techniques in the following subsections.
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Figure 5. Flow of image augmentations for our YOLO-V5.

4.1. Copy & Paste Augmentation

Copy & Paste augmentation is an effective means of increasing the number of objects
for the minority classes, thus alleviating the class-imbalance problem. Here, to enhance the
recognition performance for small objects, we can choose smaller objects to be copied as
much as possible. To this end, we first divide the objects in the training images into three
groups: small (s), medium (m), and large (l). The criterion for the division is given by the
size of the rectangular area of the bounding box (see Table 3). Moreover, from Table 1, we
can choose more objects from the minority classes for the Copy & Paste to mitigate the
class-imbalance problem. Consequently, we first choose the class k ∈ {1, 2, · · · , K} out of
the K object class with the following probability, Pclass(k):

Pclass(k) =
wc(k)

∑K
i=1 wc(i)

k = 1, 2, · · · , K (1)

where wc(k) = Nmin/Nk, Nmin = min{N1, · · · , NK}, and Nk is the number of objects in
class k. By choosing the object to be copied by (1), the minority classes have higher chances
of being selected. Once the object from class k is chosen by (1), we need to select the final
object to be copied from one of the three groups of small (s), medium (m), and large (l),
determined according to Table 3. The probability of choosing one of the three groups
Psize(k) for class k is given by the following equation:

Psize(j) =
ws(j)

∑i∈{s,m,l} ws(i)
(2)

where ws(j) = min{Nk(s), Nk(m), Nk(l)}/Nk(j), and Nk(j) is the number of objects for
the size of j ∈ {s, m, l} in the object class k. Note that Psize(j) in (2) also gives a higher
probability for the minority group among small (s), medium (m), and large (l). Since the
small-sized (s) groups for all class labels usually have the smallest number of objects in the
SMD-Plus, the objects in the small-sized group s has more chances of being selected than
the other groups of m and l.

Table 3. The size criterion for grouping small, medium, and large objects.

Min Rectangle Area Max Rectangle Area

Small object 0× 0 32× 32
Medium object 32× 32 96× 96

Large object 96× 96 ∞×∞
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In the previous methods, Copy & Paste was executed before training as an offline
pre-processing technique. As a consequence, the images pre-processed by the Copy & Paste
were used over and over again for every epoch of the training process. To provide more
diversified images in training the DNN, for this paper, we apply the Copy & Paste in an
on-the-fly manner in order to have an Online Copy & Paste scheme. Now, this Online Copy
& Paste creates differently pasted objects for every training epoch, which allows the DNN
to be trained with maritime objects of many different sizes and locations.

Next, we need to locate the position in the training image where the copied object is to
be pasted, avoiding any overlap between the copied object and the existing ones. This can
be performed by calculating the Intersection of Union (IoU) between the candidate position
for the paste and the location of the original bounding box. That is, with the equation below,
we can check if the IoU for the paste is equivalent to zero. In the object detection area, the
IoU measures the overlapping area between the to-be-pasted bounding box Bp and the
existing bounding box Bgt in the ground truth, divided by the area of union between them:

IoU =
area(Bp ∩ Bgt)

area(Bp ∪ Bgt)
. (3)

4.2. Mix-up Augmentation

The Mix-up technique [32] is a means of generating a new image by the weighted
linear interpolation of two images and their labels. It is known to be effective for mislabeled
data because the labels of the two images are mixed, just as their images. More specifically,
for the given input images and their label pairs (xi, yi) and (xj, yj) from the training data,
the Mix-up can be implemented as follows:

x̄ = λxi + (1− λ)xj (4)

ȳ = λyi + (1− λ)yj (5)

where (x̄, ȳ) are the Mix-up outputs and λ ∈ [0, 1] is the mixing ratio.

4.3. Basic Augmentations from YOLO-V5

We also use the basic geometric transformations of YOLO-V5 such as flipping, rotation,
translation, and scale. Another basic augmentation adopted from YOLO-V5 is the mosaic
augmentation. It was first introduced in [30]. The mosaic augmentation mixes four training
images into a single training image in order to have four different contexts. According
to [30], the mosaic augmentation allows the model to learn how to identify objects on a
smaller-than-usual scale, and it is useful for training as it greatly reduces the need for large
mini-batch sizes.

5. Experiment Results

As explained in the previous section, we revised the SMD in order to obtain the
SMD-Plus. As a tool for modifying the ground truth of the SMD, we used the MATLAB
ImageLabeler tool. The MATLAB ImageLabeler provides an application interface to be able
to easily create video clips and attach annotations to each object.

Our experiments were conducted on an Intel I7-9900 Processor with a main memory of
32GB and an NVIDIA GeForce RTX 2080Ti. Based on the YOLO-V5, we trained the model
with the SMD-Plus. The hyper-parameters for the YOLO-V5 training are as follows: the
stochastic gradient descent (SGD) optimizer with a momentum of 0.9, a learning rate of 0.01,
and a batch size of 8. We also used the following values for the augmentation parameters:

• For color jittering: hue ranges from 0 to 0.015; saturation, from 0 to 0.7; and brightness,
from 0 to 0.4;

• The probability of generating a mosaic is 0.5;
• Translate shifts range from 0 to 0.1;
• The probability of a horizontal flip is 0.5;
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• Random rotation within angles from −10 to +10 degrees;
• Random scaling in the range of 0.5×∼1.5×.

Using the same augmentation parameters listed above, for the sake of comparison,
we conducted additional experiments with YOLO-V4 [30]. Table 4 compares the detection
performance of the SMD and the SMD-Plus. As shown in Table 4, the detection performance
of the SMD-Plus compared to the SMD increased by more than 10% for both YOLO-V4 and
all versions of YOLO-V5. Here, as in the previous benchmarks [15,21,22], only foreground
and background detections were performed. Note that the problem with detecting only the
foreground and background is that it can be used to evaluate the accuracy of the bounding
box detection, but not the recognition accuracy for the class label. Therefore, we can use
the results of Table 4 to verify the bounding box accuracy of the SMD-Plus.

Table 4. Comparison of foreground and background detection of the SMD and the SMD-Plus.
mAP(0.5) represents the mean average precision (mAP) for IoU = 0.5, while mAP(0.5:0.95) is the
averaged mAP for increasing IoU threshold values, from 0.5 to 0.95 by 0.05.

Dataset Network mAP(0.5) mAP(0.5:0.95)

SMD

YOLO-V4 0.704 0.297

YOLO-V5-S 0.772 0.386

YOLO-V5-M 0.750 0.403

YOLO-V5-L 0.766 0.407

SMD-Plus

YOLO-V4 0.847 0.428

YOLO-V5-S 0.898 0.522

YOLO-V5-M 0.867 0.528

YOLO-V5-L 0.878 0.527

Table 5 shows the results of object detection-then-classification task for the train/test
split of the SMD, as suggested by [15]. In this train/test split, however, there exist classes
with no test data. Therefore, the corresponding classes of columns c1, c5, c7, and c10 are
blank. Those non-empty classes for the test set in [15] include ‘Speed boat’, ‘Vessel/ship’,
‘Ferry’, ‘Buoy’, ‘Others’, and ‘Flying bird and Plane’. Fixing the IoU threshold at 0.5, the
mAPs for the six non-empty classes are 0.186 for YOLO-V4, 0.22 for YOLO-V5-S, 0.182 for
YOLO-V5-M, and 0.304 for YOLO-V5-L.

Next, Table 6 shows the results of the detection-then-classification task for the SMD-
Plus. In the table, we can evaluate the performance for the Copy & Paste scheme. More
specifically, the detection-then-classification results for ‘No Copy&Paste’, ‘Online Copy&Paste’,
and ‘Offline&Paste’ are compared in Table 6. As one can see in the table, our proposed
‘Online Copy&Paste’ outperformed the ‘None’ and ‘Offline Copy&Paste’ methods for
YOLO-V4 and all versions of YOLO-V5. Furthermore, the proposed ‘Online&Paste’ has
been proven to be quite effective for the minority classes, such as ‘Kayak’ of c6.

Table 5. Detection-then-classification results for the SMD dataset: c1: Boat, c2: Speed Boat, c3:
Vessel/ship, c4: Ferry, c5: Kayak, c6: Buoy, c7: Sail Boat, c8: Others, c9: Flying bird and plane, c10:
Swimming Person.

Dataset Network
Object Class mAP mAP

c1 c2 c3 c4 c5 c6 c7 c8 c9 c10 (0.5) (0.5:0.95)

SMD

YOLO-V4 - 0.0205 0.657 0.271 - 0.148 - 0.00223 0.000 - 0.186 0.0807

YOLO-V5-S - 0.0285 0.657 0.249 - 0.379 - 0.00671 0.000 - 0.22 0.0903

YOLO-V5-M - 0.0627 0.706 0.249 - 0.0538 - 0.0213 0.000 - 0.182 0.0817

YOLO-V5-L - 0.0879 0.678 0.357 - 0.594 - 0.11 0.000 - 0.304 0.128
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Table 6. Detection-then-classification results for the SMD-Plus dataset: c1: Ferry, c2: Buoy, c3:
Vessel_ship, c4: Boat, c5: Kayak, c6: Sail_boat, c7: Others. Columns P and R represent the precision
and the recall performance, respectively, for IoU = 0.5.

Dataset Copy & Paste Network
Object Class P R mAP

c1 c2 c3 c4 c5 c6 c7 0.5 0.5 0.5 0.5:0.95

SMD-Plus

None

YOLO-V4 0.160 0.622 0.868 0.632 0.00995 0.995 0.274 0.476 0.566 0.509 0.258

YOLO-V5-S 0.372 0.691 0.827 0.569 0.00573 0.995 0.089 0.716 0.517 0.507 0.254

YOLO-V5-M 0.588 0.882 0.816 0.615 0.00063 0.97 0.111 0.741 0.513 0.569 0.298

YOLO-V5-L 0.673 0.789 0.846 0.571 0.0123 0.995 0.131 0.803 0.505 0.574 0.286

Online

YOLO-V4 0.172 0.539 0.868 0.721 0.114 0.995 0.243 0.486 0.621 0.522 0.308

YOLO-V5-S 0.471 0.864 0.869 0.549 0.162 0.995 0.123 0.650 0.536 0.576 0.291

YOLO-V5-M 0.588 0.706 0.842 0.607 0.259 0.991 0.123 0.709 0.486 0.588 0.338

YOLO-V5-L 0.714 0.806 0.828 0.582 0.232 0.995 0.147 0.811 0.534 0.615 0.33

Offline

YOLO-V4 0.217 0.445 0.881 0.647 0.108 0.995 0.172 0.481 0.610 0.495 0.284

YOLO-V5-S 0.475 0.386 0.887 0.603 0.0985 0.994 0.152 0.582 0.482 0.514 0.291

YOLO-V5-M 0.49 0.809 0.852 0.603 0.0592 0.995 0.169 0.724 0.788 0.568 0.309

YOLO-V5-L 0.618 0.789 0.847 0.667 0.0319 0.995 0.231 0.688 0.541 0.597 0.316

6. Conclusions

In this paper, we provided an improved SMD-Plus dataset for future research works
on maritime environments. We also adjusted the augmentation techniques of the original
YOLO-V5 for the SMD-Plus. In particular, the proposed ‘Online Copy & Paste’ method
was proven to be effective in alleviating the class-imbalance problem. Our SMD-Plus
dataset and the modified YOLO-V5 are open to the public for future research. We hope
that our detection-then-classification model of YOLO-V5 based on the SMD-Plus serves as
a benchmark for future research and development initiatives for automated surveillance in
maritime environments.
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