
Object Detection and Feature Base Learning

with Sparse Convolutional Neural Networks

Alexander R.T. Gepperth

Institute for Neural Dynamics Universitätsstraße 150,
44780 Bochum, Germany

alexander.gepperth@neuroinformatik.rub.de

http://www.neuroinformatik.rub.de/thbio

Abstract. A new convolutional neural network model termed sparse
convolutional neural network (SCNN) is presented and its usefulness for
real-time object detection in gray-valued, monocular video sequences is
demonstrated. SCNNs are trained on ”raw” gray values and are intended
to perform feature selection as a part of regular neural network training.
For this purpose, the learning rule is extended by an unsupervised com-
ponent which performs a local nonlinear principal components analysis:
in this way, meaningful and diverse properties can be computed from
local image patches. The SCNN model can be used to train classifiers
for different object classes which share a common first layer, i.e., a com-
mon preprocessing. This is of advantage since the information needs only
to be calculated once for all classifiers. It is further demonstrated how
SCNNs can be implemented by successive convolutions of the input im-
age: scanning an image for objects at all possible locations is shown to
be possible in real-time using this technique.

1 Introduction

In many real-world classification tasks there is a need for classifiers that can
learn from examples, such as neural networks (NNs) or support vector machines.
Typically, the performance of such classifiers depends strongly on a suitable
preprocessing of the input, but it is far from clear what characterizes an optimal
preprocessing or if there even exists an optimal solution. Sometimes it is required
that the dimensionality of the input should be reduced as far as possible, whereas
another objective is to make preprocessing invariant to certain transformations
of the input (typically translation, rotation and scaling are investigated in this
context). The process of choosing an appropriate preprocessing is referred to
as feature selection. In addition to constraints on error rates, processing time is
usually bounded from above, too, especially in computer vision. Therefore, not
only the accuracy of classifiers is important but also their execution speed.

Convolutional neural networks (CNNs) [7] were proposed to address all of
these issues. They are specialized instances of multilayer perceptrons (MLPs)
and thus essentially feed-forward NNs. Due to their connectivity, CNNs can be
implemented by successive convolutions of an input image, permitting very high

F. Schwenker and S. Marinai (Eds.): ANNPR 2006, LNAI 4087, pp. 221–232, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

222 A.R.T. Gepperth

Fig. 1. Sketch of the SCNN network model (cross-section, y-dimension not shown).
Receptive fields are drawn in by dotted ellipses, cells in the hidden layers are separated
by black lines. Input filters connecting neurons to their receptive fields are shown as
arrows in different shades of gray which match the shade of the destination neuron
they project to. Arrows of the same shade of gray represent equivalent input filters,
see text for details. In addition, the step sizes Δx

i are shown: they give the number of
neurons by which the SCNN (indicated by large black boxes) samples its layers, i.e.,
the input image for i = 0, when performing whole-image searches. The effect of spatial
sampling, i.e., shifting the classifier in layer 0, is shown on the right-hand side.

execution speed (see [1,11] for recent applications of CNNs). CNNs operating
on unprocessed image data essentially learn a preprocessing transform, thus
integrating feature selection into the training process.

In this article, a new convolutional neural network architecture termed sparse
convolutional neural network (SCNN) is presented and its possibilities for ob-
ject detection are explored. Since SCNNs can be implemented using consecu-
tive convolutions, whole-image search at multiple scales is possible in real-time
on standard present-day computer hardware. Furthermore, the SCNN model is
intended to perform feature selection from unprocessed image data: a hybrid
supervised-unsupervised learning algorithm is described which computes mean-
ingful and diverse features by the interplay of local nonlinear PCA and error
minimization. Lastly, an algorithm for learning a common image representation
that is shared by several SCNN object classifiers is described. The advantage
of different classifiers using the same preprocessing is that preprocessing needs
only to be performed once per image when performing whole-image searches.

2 Sparse Convolutional Neural Network Classifiers

Like the original proposal [7] they are derived from, SCNNs are feed-forward
neural networks with local receptive fields (see fig. 1). However, the connection
structure in SCNNs has been considerably modified as compared to [7]. The
proposed model is simpler and can —once trained— be tested using existing
software for simulating multilayer perceptrons. Furthermore, the issue of obtain-
ing meaningful and diverse features is addressed using a direct approach. The

Object Detection and Feature Base Learning with SCNN 223

original CNN model attempts to achieve this by connecting hidden layers only
to certain (not all) succeeding layers, which has been experimentally shown to
lead to dissimilar feature maps. It is unknown, though, what effect the global
network structure has on this mechanism and how many experimental trials are
necessary for this mechanism to work. In the SCNN model (see fig. 1), feature
complexity and diversity are enforced by additional unsupervised terms in the
learning algorithm. They cause outputs of different feature maps at the same
image location to be (nonlinearly) decorrelated and to have extremal variance
in a way very similar to nonlinear principal components analysis [4]. Employed
principles are gradient-based variance maximization of neuron outputs, decor-
relation and weight vector normalization. The SCNN model has an input layer
of fixed dimension, one or more hidden layers, and an output layer containing
a single element. Each layer receives input from one other layer (the preceding
one) and projects to a single layer (the succeeding one, see also fig. 1).

2.1 Network Model

Since SCNNs are specialized instances of MLPs, the network structure is dis-
cussed without reference to the implementation as successive convolutions. Con-
straints arising from this implementation are discussed at the end of this
section.

Connectivity. A layer l = 0, . . . , lmax, having dimensions Lx
l ×Ly

l is composed
of identical cells of neurons of dimension Cx

l ×Cy
l . Thus, a neuron can be assigned

coordinates n = (l, c, i), where c denotes the two-dimensional index of the cell
within layer l, and i the neuron’s coordinate within its cell. Within one cell, each
neuron is connected to the same rectangular patch of neurons in layer l−1 which
is termed a neuron’s receptive field (RF). Receptive fields in layer l−1 can overlap
in x- and y-direction by Ox

l−1 ×Oy
l−1. The set of all weights connecting a neuron

to its RF is denoted input filter. Since it is in one-to-one correspondence to a
RF, it can naturally be arranged in a rectangular scheme with dimensionality
Ix
l−1×Iy

l−1 which is identical to that of the RF. Connection strengths are denoted
by wn′n where n specifies the coordinates of the destination neuron and n′ those
of the source neuron. Please refer to fig. 1 for a visualization. Each neuron (except
for those in the input layer) is connected by a trainable weight to a bias neuron
whose activation is constant (here: 1.0).

Constraints. The first set of constraints comes from the geometrical consis-
tency of the SCNN. Trivially, given a layer l, Lx

l , Ly
l must be integer multiples of

Cx
l , Cy

l . Furthermore, the number of input filters in layer l− 1 must be identical
to the number of cells in layer l. Thus, we get two conditions

Lx,y
l = kCx,y

l , k ∈ N
+ (1)

Lx,y
l

Cx,y
l

=
Lx,y

l−1 − Ix,y
l−1

Ix,y
l−1 − Ox,y

l−1

(2)

224 A.R.T. Gepperth

As in the CNN model, a weight-sharing constraint enters via the requirement
that neurons within a layer l, having the same within-cell coordinates i but being
connected to different RFs, must have identical input filters. It is this constraint
which allows to implement a network run by a series of convolutions. In con-
trast, each neuron in one cell is allowed to be connected to the common RF by
different filters than the other neurons in that cell. Effectively, the size of one
cell, Cx

l ×Cy
l , specifies the number of convolution filters necessary for the simu-

lation of each layer, whereas the size of receptive fields (equal to input filter size
Ix
l−1 × Iy

l−1) determines the dimensions of the convolution filters. For each layer
l, sets of weights that are required to be identical by the weight-sharing property
are called equivalent. Obviously it is desirable to obtain a trained SCNN which
requires as few convolution filters as possible while maintaining high classifica-
tion accuracy.

A further constraint comes from the implementation that is used for whole-
image search (see section 3) although it is not necessary for the simulation of
the SCNN model per se: it requires that step sizes Δx

l , Δy
l in layer l (i.e., the

differences between the size of input filters projecting to layer l + 1 and their
overlap) must be integer multiples of that layer’s cell sizes. Thus it is ensured
that the classifier starts and ends at cell boundaries in all layers if it is shifted
in the input image by Δ

x/y
0 , see also fig. 1. In precise terms:

Δx,y
l ≡ Ix,y

l − Ox,y
l = kCx,y

l , k ∈ N. (3)

Activation Functions. The activity An of a neuron is calculated from the
activities of its RF and the weight values in its input filter as An = σ(

∑
n′∈RF

An′wnn′) using the sigmoidal activation function σ(x) = x
1+|x| .

2.2 Learning in SCNNs

Initially, all weights are initialized to small random values between -0.01 and
0.01 (see [8] for a motivation of this initialization). Then, a weight-sharing step
is performed: for each layer l, the average of each set of equivalent weights is
computed. Subsequently, all equivalent weights within layer l are set to their pre-
viously computed average value. In this way, all equivalent weights have identical
values at the start of training. During each learning step or epoch, all weights
of the SCNN are treated as if they were independent. An improved variant of
the well-known Rprop learning algorithm (IRprop+, see [5]) is applied to the
SCNN using dataset Dtrain for 80 epochs. After each epoch, the weight-sharing
condition is enforced as described before. Note that weight-sharing is enforced
separately for the bias weights of each layer.

The mean squared error (MSE) is calculated as EMSE(D) = 1
|D|

∑|D|
p=0(A

out
p −

cp)2 using a dataset D. It uses the class label cp of pattern p and the activation
Aout

p of the CNN’s output neuron in response to pattern p. The learning rule for
each weight is composed of the usual MSE-minimizing term plus an additional
unsupervised term. The additional term is a nonlinear version of Oja’s rule [4]:

Object Detection and Feature Base Learning with SCNN 225

Fig. 2. Layer 0 input filters of an SCNN trained on cars (see section 5.1). Shown
are filters obtained by different learning rules: MSE gradient (upper row) and hybrid
learning rule described in the text (lower row). Many filters in the upper row are almost
identical whereas, in the lower row, such redundancy does not occur.

Δwn′n = γAn(An′σ(σ−1(An)) − Anwn′n −
∑

j∈cell(n),j<n

Ajwn′j (4)

where γ is a small positive constant and the sum on the right-hand side of the
equation runs over all neurons in the same cell as n whose within-cell coordinates
are component-wise smaller than those of n.

During training, model selection is performed using EMSE(Dval) alone. When
evaluating the performance of a trained network, the classification error
CE(Dtest) is used. It is defined as CE(D) = 1 − 1

|D|
∑|D|

p=0 θ(Aout
p − τ), where θ

denotes the step function and τ a threshold assigned to each NN (always taken
to be 0).

A few comments on the chosen learning algorithm are in order: local nonlin-
ear principal components analysis is performed within each receptive field, but
modified by the MSE gradient. The unsupervised part of the learning rule per-
forms decorrelation of all neurons within a cell and tends to input filters with
an euclidean norm of 1.0. It is an extension of the algorithm given in [2] where
only orthonormalization was performed (not by gradient descent but operating
directly on the weights). Due to unsupervised learning, neurons within a cell
capture a part of their input whose variance is maximally large. Furthermore,
the neurons’ input filters tend to orthogonality, i.e., diversity (see fig. 2).
For weights connecting to the output neuron, the unsupervised term is not con-
sidered because it interferes too much with minimizing the MSE.

3 A Convolutional Architecture for Whole-Image Search

The neural network architecture described in the previous sections is particularly
suited, due to the weight-sharing constraint, for fast implementation by means
of convolution filters (see, e.g., [6] for an introduction). However, it is possible
to achieve far greater speed gains when considering whole-image search, i.e.,
the application of a fixed-size classifier at every conceivable position within an
image, possibly at several scales. In this context, CNN architectures like the
SCNN model have the tremendous advantage that convolutions for overlapping
classifiers need only be computed once. This can be understood by considering
that input filters in the SCNN do not depend on their spatial position within a

226 A.R.T. Gepperth

Fig. 3. Sketch of the SCNN architecture for whole-image searches. SCNN model. The
input layer consists of the whole image, and successive layers are correspondingly en-
larged. Input filters of the SCNN translate into convolution filters: convolution results
of a layer with its input filters are called feature maps. The recombination of feature
maps into the next layer is defined by the connectivity of the SCNN. Identical shades
of gray of hidden layer neurons and feature maps indicate this. Instead of converging
to a single output neuron, the SCNN now converges to a layer where each neuron
represents the output of one SCNN classifier. The number of input filters (i.e., feature
maps), hidden layer neurons and similar SCNN parameters are examples.

layer due to weight-sharing. By inference, the whole image needs to be convolved
only once with all input filters in order to produce a classification result at
each position within an image. Please see fig. 3 for details of the convolutional
architecture and fig. 1 for details on whole-image search. Furthermore, since the
input image is usually subsampled by the input filters of the first network layer
(always the case when Δx

0 ≥ 2, see fig. 1), only the convolutions with these
input filters contribute significantly to the total processing time. The whole-
image classification problem then reduces to filtering with a limited number of
(usually nonseparable) filters; if real-time performance is desired, the mask size
should be small (typically, sizes of 5, 7 or 9 are chosen).

The SCNN model presented here belongs to the class of convolutional neural
networks which were originally proposed in [7]. A crucial difference is that no
implicit subsampling of feature maps is performed, whereas in [7], feature maps
are successively filtered and subsampled until they converge onto one neuron, the
output of which is combined with similar neurons to form a classification output.
In the SCNN model, subsampling is performed if the step sizes in one layer are
chosen larger than 1, but the choice of subsampling filters is not defined a priori

Object Detection and Feature Base Learning with SCNN 227

Fig. 4. Exemplary SCNN architecture for feature base learning. The horizontal line
indicates that the processing streams converging onto the two (or more) output neurons
do not have any connections in common.

(i.e., Gaussian smoothing) but learned by the network, too. It should be stressed
here that subsampling is possible in the SCNN model, but at this point it seems
more practical to let the SCNN learn the downsampling filters as well. A second
difference is that feature maps are recombined into layers in the SCNN model
after each convolution, whereas in [7], feature map outputs are recombined only
in the last layer of the network. Recombination after each convolution inflicts a
small computational cost, but it can be expected that it results in more reliable
detection of conjunction features similar to the object detection architectures of
[9,12]. Lastly, there exists a direct mechanism of enforcing diversity among the
learned features of the SCNN, which guarantees without the need for additional
experiments that informative and non-redundant features are learned which, in
addition, capture a significant part of the input’s local variance (by the local
PCA property).

4 Feature Base Learning

An interesting application is motivated by the observation made in the previous
section that the computational load is biggest during the simulation of the first
layer. If two networks had identical processing in that layer, they could be used
simultaneously for whole-image search while the convolutions of the input image
would only need to be computed once. Stated in different terms, it would be
interesting to find out if there is a common feature base for two or more object
classes, i.e., a preprocessing of the input which is suited for representing all of
the object classes under consideration. Therefore, it is investigated if and how a
common feature base for N object classes can be learned only from available ex-
amples. It is tested by experiment whether it is possible to achieve classification
rates comparable to separately trained classifiers. In the formalism of SCNNs,
there exists a straightforward approach: N networks are trained independently
from each other using methods given in section 2.2, but after each iteration of the
learning algorithm, a weight-sharing constraint is enforced between the filters in

228 A.R.T. Gepperth

the input layers of all networks.1 An alternative interpretation is a single network
which converges onto N output neurons by non-interfering processing streams
from a common first hidden layer. Please see fig. 4 for a visualization. Model
selection is performed using the sum

∑N
i=0 Ei

MSE(Di
val) of the mean squared

errors of each individual classifier on its validation dataset Di
val.

5 Experiments

Two types of experiments are conducted: the speed of the system is (empiri-
cally, not theoretically) determined using selected SCNN topologies, and tests
of topology-dependent classification performance are conducted. The latter task
is performed off-line using data from real-world classification tasks. (see fig. 5).

5.1 Classification Tasks and Training Data Generation

Most experiments described here are based on the problem of car classification in
real-world video traffic scenes (see, e.g., [3]). For a few experiments, the problem
of traffic sign classification is considered in addition. However, this problem is not
a present focus of investigations, therefore training data are much less rigorously
selected and tested, and results may not be very generalizable.

Object classifiers are trained to distinguish objects from background. Train-
ing data are generated by marking rectangular regions of interest (ROIs) that
contain objects. Objects are enclosed as tightly as possible. Negative examples
are also created manually, although their choice is more ambiguous. Some rep-
resentative training examples for cars and traffic signs are shown in fig. 5.

Due to the fact that whole-image searches usually sample the image at step
sizes Δ

x/y
0 > 1, the classification must be invariant to certain transformations

(especially small translations and rescalings). This requirement is encoded into
the training examples. Let us define some notation: a training example consists
of a class label and a region of interest (ROI) within a specified image. The ROI
either does or does not enclose an object: to indicate this, the class label is set
to 1 for an object and to -1 otherwise. A training dataset D contains N exam-
ples. Before using a dataset for training, a defined number of transformations is
applied to the ROI of each example, creating the transform dataset Dtr.

First of all, the transformations to be applied must be specified as well as the
degree of invariance which the classification should have with respect to these
transformations. Let us assume that each transformation fα

t , t ∈ [0, . . . , T − 1] :
D �→ Dtr can be continuously parametrized by a single parameter α, and that a
total of T different transformations exists. Let fα=0

t denote the identity trans-
form. Then a limit αmax

t > 0 must be specified, stating the range of parameters
It = [−αmax

t . . . αmax
t] in which classification invariance should hold. Further

assuming that all transforms commute (fulfilled for translation, rotation and
scaling in two dimensions), we obtain a map
1 Note that the dimensions of the input layers need not be identical, only the dimen-

sions of the input filters in the input layer.

Object Detection and Feature Base Learning with SCNN 229

Fig. 5. Positive and shared negative examples for the car/traffic sign object classes

τ : D �→ Dtr; r �→ (fα1
1 ◦ · · · ◦ fαT

T)(r), αk ∈ Ik, r ∈ D.

that is applied a defined number of times to each example in D. From the results,
the transform dataset is created: it is therefore larger than the original dataset of
examples. In the implementation presented here, a certain invariance to scaling
and translation is required. Translation is modelled by two transformations, one
for horizontal and one for vertical translations. The parameters αx and αy of
both transformations are interpreted as the percentage of an ROI’s width or
height by which it should be shifted. The single scaling transform enlarges or
reduces an ROI’s width and height by a factor of αsc while ensuring that the
center of the ROI stays constant. In addition, it is required for the map τ that
each transformation result must completely contain the original example.

Dtr is generated from labeled data by applying τ 9 times per example and
uniformly drawing from the parameter intervals Ix,y, Isc defined by αmax

sc =√
2,αmax

x,y = 10. From the transform dataset, three disjunct datasets Dtrain, Dval

and Dtest are created which contain 2000 examples each, half of them positive.
The image content within the ROIs is up- or downsampled to a fixed size of
25x25 pixels. Whenever necessary, appropriate smoothing and bicubic interpo-
lation are performed. For later experiments, three additional car datasets are
created from Dtr where each ROI is shifted by 50% of its width to the left. The
idea behind this classification task is to make detection more robust by check-
ing if the ”left-shifted” object classifier indeed finds half a car at the left of a
detected car.

5.2 Off-Line Classification Performance of Single SCNNs

Due to the weight-sharing constraint (see section 2.2), the number of free pa-
rameters in an SCNN is greatly reduced. The choice of an appropriate topology
is therefore crucial since the number of free parameters in the network depends
directly on it. Since the correct choice of NN topology for a given classification
task is still, in general, an unsolved problem, a number of experiments was con-
ducted to identify suitable topologies. The search space can be reduced by the
requirement that small input filters should be used in the input layer, as well as
by the architectural constraints (1), (2) and (3) which SCNNs must obey.

In each experiment, a certain SCNN topology is trained 6 times using a dif-
ferent random seed each time, and the best classification result CE(Dtest) is

230 A.R.T. Gepperth

Table 1. Best classification errors of various SCNN topologies for cars (C), cars
shifted left (L) and traffic signs (TS) (errors are given in percent). Cells and layers are
quadratic so only one dimension of their sizes is given. In row 0, the result for two fully
connected reference networks of MLP type is given. SCNNs 1-5 demonstrate the effects
of varying input filter sizes and numbers. Notable is the improvement when allowing
4x4 input filters as in SCNN 5. Rows 6 and 7 give results for the feature base learning
(using topology 4, see text) of two and three object classes. For comparison, the last
row shows the results of the SNoW-architecture [10] using the Winnow update rule.

Nr. dimensions filter size nr.filters conn. free param. minexpCE(Dtest)

0 25-5-1 (25) - 15650 15650 5.5 (C), 5.4 (L), 6.7(TS)

1 25-9-1 21-9-x 3-1-x 36162 4050 6.8
2 25-18-1 9-18-x 2-1-x 26568 648 7.8
3 25-30-1 7-30-x 3-1-x 45000 1341 6.7
4 25-22-1 5-22-x 2-1-x 12584 584 6.8(C),5.8(L),11.4(TS)
5 25-44-1 5-44-x 4-1-x 50336 2336 6.3

6 feature base learning using SCNN 4 7.3(C),5.9 (L), 10.9 (TS)
7 feature base learning using SCNN 4 6.5(C),11.0 (TS)

8 SNoW, std. parameters, 50 cycles 13.6

taken to be a measure of that topology’s learning capacity. As a baseline, a fully
connected NN with one hidden layer is identically trained on the car and traffic
sign classification problems. Table 1 gives an overview over representative SCNN
topologies as well as the fully connected reference networks. When considering
SCNNs with one hidden layer, two ways to improve classification results were
identified: increasing the size, or alternatively the number of input filters in the
input layer. Obviously, both operations lead to a larger number of free parame-
ters. The best topology found in this way has filter sizes of 5x5 pixels in the input
layer, yet it is not quite compatible with real-time requirements since it requires
16 convolutions of the input image in the input layer alone. It uses 80000 con-
nections, although the actual number of free parameters is 23842. Classification
performance is only slightly worse than that of the reference network despite the
fact that the number of free parameters is much lower.3 If real-time capability is
desired, SCNN 4 is the topology to choose. Although using a much smaller num-
ber of connections and free parameters than topology 5, it achieves only slightly
worse classification performance. Please see section 5.4 for speed measurements.

For unknown reasons, the inclusion of more hidden layers did not improve
performance. Many-layered topologies were constructed by adding new layers
onto well-performing SCNNs with one hidden layer. Notable was much slower
overall learning convergence. It is therefore conceivable that training was not
conducted sufficiently long. More research will have to be applied in order to
shed light on this particular point.
2 Note that it is the number of free parameters which determines the speed of whole-

image classification.
3 It was also shown that SCNN performance is slightly superior to that of an MLP

with identical connectivity as well as an SCNN using supervised learning only.

Object Detection and Feature Base Learning with SCNN 231

5.3 Feature Base Learning Results

SCNN topology 4 given in table 1 is used for learning a common feature base for
cars and traffic signs. It is not the best-performing topology that was found but
comes very close to it; what is more, it allows real-time operation. Training is
performed using the algorithm given in section 4. Results are given in table 1. It
is evident that classification results are comparable to those of classifiers trained
separately on their respective tasks. Observe that the feature base result for
traffic signs has to be compared to traffic sign results of topology 4 in table 1,
not to the reference network performance: the goal was to show that the perfor-
mance of the individual classifiers can be reproduced by feature base learning.
When choosing SCNN topologies with larger input filters, the performance of
the reference network can be approached for traffic signs, too.

5.4 Online Performance

All tests were conducted using a 1.86Mhz Centrino processor. Images had a
size of 360x288 pixels; convolutions were implemented in C++, and no use was
made of the capabilities of the graphics hardware. Classification was performed
at three spatial scales for each frame, where each scaled image was obtained by
smoothing with a size-5 binomial filter and downsampling by a factor of 2. The
best-performing SCNN topology 5 given in table 1 allows a frame rate of 7 frames
per second (fps), whereas SCNN 4 allows 22 fps at the price of slightly inferior
classification performance. When using three classifiers of topology 4 sharing a
common preprocessing, a speed of 19 fps is attainable.

6 Discussion

The SCNN model is interesting in several respects: on the one hand, it demon-
strates a successful combination of supervised and unsupervised learning rules;
on the other hand, it offers very interesting possibilities for practical applica-
tions. Due to its real-time capability and the ability to search images simulta-
neously for several object classes using using feature base learning, it is suited
for applications where scene analysis is performed, which usually consists of the
recognition of more than one type of object. The driving idea behind the SCNN
model was to reduce the need for ”manual” feature design. With SCNNs, some
prior knowledge must still be provided in the form of the network topology: if
it is known that, for example, that features of a certain size are characteristic
of an object class, the input filters should be chosen accordingly. In many cases,
input filter and step sizes are constrained by real-time requirements; once input
filter and step sizes are fixed, the SCNN topology constraints are sufficient for
removing most of the remaining ambiguities. As with all NNs, the correct choice
of topology is an unsolved problem, although in practice one can simply take
the SCNN with the largest number of parameters that is compatible with ap-
plication constraints. As has been demonstrated, increasing the number of free
parameters tends to improve classification performance.

232 A.R.T. Gepperth

The issue of extending SCNN topology successfully to more than one hidden
layer is a current research topic: SCNNs with two or more hidden layers may be
much more powerful in capturing local combination features; furthermore, it is
intuitive that feature base learning can profit greatly from such topologies. The
SCNN model itself could also be extended; in particular, shortcut connections
which bypass one or more layers, and subsampling layers (as in LeCun’s orig-
inal proposal) suggest themselves. From a theoretical point of view, a detailed
examination of the interplay between the supervised and unsupervised terms in
the learning rule would be interesting; the relation of learned SCNN input filters
to independent components seems to be worth investigating. Last not least, it is
intended to use SCNN classifiers (possibly in conjunction with other modules) to
build robust and fast object detection systems that reliably work in practice4.

References

1. C. Garcia and M. Delakis. Convolutional face finder: A neural architecture for fast
and robust face detection. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 26(11):1408–1423, November 2004.

2. A. Gepperth. Visual object classification by sparse convolutional networks. In
Proceedings of the European Symposium on Artificial Neural Networks (ESANN)
2006. d-side publications, 2006. accepted.

3. A. Gepperth, J. Edelbrunner, and T. Bücher. Real-time detection of cars in video
sequences. In Proceedings of the IEEE Intelligent Vehicles Symposium, 2005.

4. A. Hyvärinen. Fast and robust fixed-point algorithms for independent component
analysis. IEEE Transactions on Neural Networks, 10:626–634, 1999.

5. C. Igel and M. Hüsken. Empirical evaluation of the improved Rprop learning
algorithm. Neurocomputing, 50(C):105–123, 2003.

6. B. Jähne. Digital image processing. Springer-Verlag, 1999.
7. Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied

to document recognition. Proc. IEEE, 86(11):2278–2324, 1998.
8. R. D. Reed and R. J. Marks II. Neural Smithing. MIT Press, 1999.
9. M. Riesenhuber and T. Poggio. Hierarchical models of object recognition in cortex.

Nature Neuroscience, 2(11):1019–1025, 1999.
10. D. Roth. The SNoW learning architecture. Technical Report UIUCDCS-R-99-2101,

UIUC Computer Science Department, May 1999.
11. M. Szarvas, A. Yoshizawa, M. Yamamoto, and J. Ogata. Pedestrian detection

using convolutional neural networks. In Proceedings of the IEEE Symposium on
Intelligent Vehicles, pages 224–229, 2005.

12. H. Wersing and E. Körner. Unsupervised learning of combination features for
hierarchical recognition models. In Proceedings of the ICANN, 2002.

4 Training data as well as the C++ source code for simulating and training SCNNs
are available under http://www.neuroinformatik.rub.de/thbio/group/vision.

	Introduction
	Sparse Convolutional Neural Network Classifiers
	Network Model
	Learning in SCNNs

	A Convolutional Architecture for Whole-Image Search
	Feature Base Learning
	Experiments
	Classification Tasks and Training Data Generation
	Off-Line Classification Performance of Single SCNNs
	Feature Base Learning Results
	Online Performance

	Discussion

