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Object Detection and Recognition for Assistive

Robots
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Abstract—Technological advances are currently being directed
to assist the human population in performing ordinary tasks in
everyday settings. In this context, a key issue is the interaction
with objects of varying size, shape and degree of mobility.
Consequently, autonomous assistive robots must be provided with
the ability to process visual data in real time so that they can react
adequately for quickly adapting to changes in the environment.
Reliable object detection and recognition is usually a necessary
early step to achieve this goal. In spite of significant research
achievements, this issue still remains a challenge when real-life
scenarios are considered. In this paper, we present a vision system
for assistive robots that is able to detect and recognise objects
from a visual input in ordinary environments in real time. The
system computes colour, motion and shape cues combining them
in a probabilistic manner to accurately achieve object detection
and recognition, taking some inspiration from vision science.
In addition, with the purpose of processing the input visual
data in real-time, a Graphical Processing Unit (GPU) has been
employed. The presented approach has been implemented and
evaluated on a humanoid robot torso located at realistic scenarios.
For further experimental validation, a public image repository
for object recognition has been used, allowing a quantitative
comparison with respect to other state-of-the-art techniques when
real-world scenes are considered. Finally, a temporal analysis of
the performance is provided with respect to image resolution and
number of target objects in the scene.

Index Terms—Object detection, Object recognition, Robot
vision systems, Service robots

I. INTRODUCTION

NOWADAYS, robots have found their way from sealed

working stations in factories to people’s living and

working spaces, where they should be able to autonomously

perform different services useful to the well-being of humans,

such as domestic tasks, healthcare services, entertainment,

and education. In particular, with the purpose of improving

people’s quality of life, especially for the elderly, the field of

assistive robotics is becoming increasingly popular. Research

is progressing from special-purpose service robots such as

autonomous cleaning or transport systems, to multi-functional

assistive robots able to integrate diverse abilities such as person

detection and tracking, human-robot interaction, reasoning,

localization, navigation, object detection and recognition, plan-

ning and manipulation. In addition, these assistive robots are

expected to operate in a flexible manner, without constraining

the environment, and in a reasonable time, while guaranteeing
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the safety of all their surrounding elements, especially when

they are human beings [1] [2].

However, despite the wide research in this area (e.g.

Johnny [3], HOBBIT [4], KSERA [5], Cogniron [6], Care-

O-Bot [7], HERB [8], Accompany [9], AAL4ALL [10] and

many others), the progress in assistive robotics has been

relatively slow to date. This is mainly due to the fact that

the environments to cope with are dynamic, unpredictable and

human-oriented. In addition, depending on the application,

long human-robot interactions could miserably fail because

of the limited system’s autonomy and abilities, as broadly

analysed in [11]. Thus, an assistive robot should be pro-

vided with a vast set of perception and action capabilities

to efficiently perform its goal tasks in real scenarios, while

properly interacting with its users along its life. Among all

these capabilities, this paper is focused on perception for

object detection and recognition, a key task for a meaningful

assistance.

In this context, vision is considered a primary cue because of

the information it can provide. Actually, vision has been used

in numerous robotic applications to successfully achieve a task

(e.g. obstacle avoidance for navigation [12], [13], [14], [15],

human recognition for Human-Robot Interaction [16], [17],

activity recognition for cooperative behaviour [18], [19], [20]

and object identification for manipulation [21], [22], [23], to

name only a few). However, despite significant achievements,

the problem of detecting and recognising objects efficiently

and accurately still remains a scientific challenge when real

scenes are considered. Apart from a great number of objects

in the images, the reasons for this difficulty are to be found

in issues such as their interactions and occlusions, along

with photometric and geometric variations in pose, size, etc.

Furthermore, noise in images, the nature of objects themselves,

complex object shapes and illumination changes, make it a

hard task. This is becoming still harder with the advent of

digital cameras with resolutions of megapixels and frame rates

exceeding 100 frames per second, since considerably more

data needs to be processed in less time. Therefore, given

that a practical assistive robot requires real-time performance,

optimized implementations and novel insights are necessary.

Many efforts have been made to overcome these problems.

The most habitual way to recognise shapes and objects is

by means of model-based approaches [24], [25], [26]. These

techniques start by taking a large set of images in different

poses and from different viewpoints. From them, an object

model is built and learnt in advance. Then, the features

extracted from the objects in a scene are matched against

features of the previously stored object models. It is important
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to highlight that the considered features must be invariant with

respect to various transformations (such as view direction,

scale and changes in illumination) and also need to be robustly

extracted; conditions that can hardly be met in unconstrained

environments. Despite being a good procedure for some kind

of objects, it is difficult to learn models of objects with a

high dimensionality or with a rich variability in their motion,

such as human beings. In addition, autonomy is a requirement

in assistive robotics and, consequently, no constraints about

the object appearance or motion can be established. On the

other hand, there exist methods based on local features. In

this case, objects are represented via their edges, colour

or corner cues [27], [28], [29]; steerable filters [30]; haar-

like features [31]; or scale-invariant descriptors (e.g. SIFT,

SURF) [32], [33]. These approaches are commonly used for

their computational simplicity, efficiency, and robustness to

affine transformations. Nevertheless, their accuracy is tightly

coupled to the number of features used for describing an

object. Also, a trustworthy segmentation for obtaining object

features is especially complex when real scenarios are consid-

ered. In addition, object features are only relatively robust to

small affine transformations, a condition that, again, can hardly

be fulfilled when unconstrained scenarios are considered.

Alternatively, the concept of Object Action Complexes

(OACs) could be used. In this case, objects and actions

are assumed to be inseparably intertwined. Thus, OACs are

proposed as a framework for representing actions, objects, and

the learning process that constructs such representations at all

levels, from the high-level planning and reasoning processes

to the sensorimotor low-level. Therefore, OACs can act as

an interface between the Artificial Intelligence planning and

the diverse representation languages for robot control [34].

Moreover, a connection between robot actions and the visual

and haptic perception is defined for the interaction objects [35]

[36].

The same idea underlies in approaches in which a process

to segment interest objects and to extract their shape is based

on active visual exploration [37]. Even though the exploration

system is completely autonomous, the system still requires a

significant amount of prior knowledge about the world (in

terms of a sophisticated visual feature extraction process in

an early cognitive vision system), knowledge about its body

schema and knowledge about geometric relationships such as

rigid body motion. That is, it is necessary to know the system’s

visuomotor map in order to be successful.

The perception-action relationship was also studied from

a cognitive point of view [38] [39]. In this case, perception

and action are linked through a memory component. Basically,

perception allows the system to sense its surroundings with

three sensor modalities: audio, vision, and touch. This data is

fed into the memory module to produce motor-control signals,

that are translated into robot responses by the action unit. In

this way, the intermediate mechanism acts as the robot’s brain

by making the recognition task easier. However, despite the

vast analysis of existing perceptual systems, the conclusion

is that semantic and emotion understanding still remains an

open problem. Consequently, in a similar way, robust object

recognition still requires much efforts, especially when real

scenarios are used. Palomino et al. [40] presented an attention-

based cognitive architecture in which reasoning is the bond

between perception and action. In this case, the core idea is to

select the tasks that will be active at each time based on the

context data and the state of achievement of each action. So,

depending on the perceived elements, a task can be executed

or not since the accomplishment of a task is closely linked

to the presence of specific elements in the scene. This system

has a high success rate (85%) when only one type of object is

used (balls) and the distinctive feature is colour; considerable

additional efforts are still required for an object-based visual

attention system to accurately detect and categorize a wider

range of objects.

New approaches are called for to achieve our goal. In princi-

ple, we would like the required knowledge for object detection

and recognition to be only obtained from the visual input.

From a biological point of view, psychophysics experiments

have shown that humans perform some pre-segmentation using

boundaries and regions as a previous step prior to actual image

understanding [41]. This early segmentation is then tuned by

using a huge object database stored in our brains. Thanks

to this process, real-life objects can be perfectly recognised

even with intense shadows, large occlusions or geometric

distortions.

From the same underlying idea and with the purpose of

overcoming these problems, a combination of several visual

object features can be a promising approach. In this way,

colour-based invariant gradients have been combined with

Histogram of Oriented Gradient (HoG) local features [42]

for object detection in outdoor scenes (such as urban scenes)

under cast shadows. The approach is, however, limited by the

constrained nature of the environments.

This work is based on our previous ideas on this topic [43].

Motivated by the challenges discussed above, we present new

scientific results with a focus on working systems. Indeed, our

robot system is capable of detecting and recognising objects

from a visual input in realistic, truly unconstrained scenarios

in real time. For that, and based on the amazing ability of

the human visual system for object identification, the system

computes object-specific colour, motion and shape cues and

combines them in a probabilistic manner to adequately detect

and recognise objects. Moreover, a Graphical Processing Unit

(GPU) is used to achieve real-time performance in processing

the visual data. Extensive experimental validation has been

conducted with a humanoid torso and an image repository, as

well as a temporal analysis of the performance.

The rest of this article is organised as follows: Section II

describes the architecture of the designed system. Section III

provides the implementation details. The obtained experimen-

tal results are presented and discussed in Section IV, and the

guidelines for our future work are introduced in Section V.

II. SYSTEM DESCRIPTION

From a biological point of view, humans are able to easily

identify the objects present in their environment. Therefore,

insights from human visual processing could be a starting

point for developing computer models. This is the case of Al-

Absi and Abdullah [44], who designed BIORecS emulating
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the human vision system. Concretely, BIORecS achieves ac-

curate object recognition in complex scenarios by combining

functions of some areas of the human visual cortex and the

connection mechanisms between the visual areas in humans,

implemented by feedforward and feedback techniques. This

model consists of four stages closely intertwined: feature

extraction (object shapes are obtained by combining the image

edges extracted with Gabor filters); visual attention (a support

vector machine is used as object shape classifier); recognition

(carried out by Principal Components Analysis) and image

database (containing the objects to be recognised).

However, although this architecture may allow the system

to overcome some key issues in object recognition -such as

changes in illumination, occlusions and high-cluttered scenes-

the description of objects is not adequate since different

objects can have the same visual shape. For example, a ball,

a bracelet, a disk, a coin or a drum would all belong to the

category of circular shape. Furthermore, some factors such

as its pose, scene background or illumination conditions may

modify the object’s shape. Consequently, a model reformula-

tion is necessary.

Alternatively, object detection and recognition could be

considered as an attentional mechanism since it refers to

the extraction of target information from the observed scene.

In this sense, a dorsal attention system could fit. Generally

speaking, this system could be defined as a top-down (goal-

oriented) modulation of stimulus-driven (e.g. saliency) atten-

tional capture by targets versus distractors. In this regard,

a four-module attentional architecture has been defined by

Lanillos et al. [45] in which the first module corresponds to

the perception sense by building an egocentric map according

to relevance encoded as saliency. This information is fed to

the top-down controller which ensures that the selection of

the new focus of attention will take into account the current

system goals and context. Then, the action module chooses the

next fixation location and translates it into the proper control

signals for the actuators. Finally, the behavioural reorienting

module is responsible for detecting novel and behaviourally-

relevant stimuli that should result in interrupting and resetting

the attentional process as an action-perception loop.

Focusing on the task at hand, the developed visual system

should be provided with a perception module which builds a

saliency map based on the most distinctive visual features,

followed by a module in charge of object recognition. In

this way, the system will be centred in the potential targets

by reducing the sensory data to be processed and, therefore,

making tractable the unmanageable amount of information

received from the visual sensors. In addition, a memory that

stores information about the objects to be recognised should

also be integrated. Therefore, our vision system consists of

three different modules (Figure 1):

• Feature Extraction, that generates a saliency map from

image segmentation based on three object properties:

colour, shape and motion

• Memory, which stores the models of the potential target

objects

• Recognition, that is responsible for recognising the ob-

jects from the visual input and the data coming from the

previous modules

Thus, this architecture is based on a richer object description

for robustly detecting and recognising any object in real

scenarios without establishing any constraint about the objects

and the environment.

Fig. 1. Overview of the system architecture for object detection and
recognition, showing its three main modules (Feature Extraction, Memory
and Recognition) and the threefold object description (colour, motion and
shape)

A. Feature Extraction

Visual features are a key point in any detection and recogni-

tion procedure. Deciding what features are required to properly

detect and recognise a target object in detriment of others is

not an easy task. The reason lies in the fact that a wide variety

of features would result in a very time-consuming processing,

while a poor feature-based object description would lead to

an inefficient recognition. So, similar to human attentional

mechanisms (see for example [46] for an extensive survey),

a discrimination between features of incoming stimuli has to

be defined to properly establish behaviour- and task-relevance.

In particular, in this work three distinctive feature types are

considered: colour, motion and shape. Therefore, in an early

step an image is divided into semantically meaningful parts

according to the values of those properties, which will be part

of the robot’s focus of attention for further processing.

1) Colour cues: Colour plays a main role in object detec-

tion and recognition due to the rich information it can provide.

A wide range of approaches can be found in the literature. For

instance, colour histograms can be used to represent and match

images or objects. However, despite its simplicity and efficacy,

its accuracy is significantly deteriorated when the illumination

conditions change.

As an alternative, the colour gradient obtained from the

addition of channel derivatives could be considered. Nev-

ertheless, given that the colour derivatives are separately

computed, differences in the colour edge directions can make

this technique miserably fail.

Another possibility could be to use a different colour model.

Actually, a great variety of colour spaces are normally used

for different purposes such as video and television (YIQ,

YUV); display and printing (RGB, CMY); perceptual uniform

spaces (U*V*W*, L*a*b*, Luv); human perception (HSI); or



ROBOTICS & AUTOMATION MAGAZINE, VOL. X, NO. X, SEPTEMBER 2016 4

standard primary colours (rgb, xyz). However, a large number

of these colour models are combinations of RGB (e.g. CMY,

XYZ and I1I2I3) or normalizations of rgb in terms of intensity

(e.g. IQ, xyz, UV, U*V*, a*b*, uv); others, on the contrary,

are correlated to intensity I (e.g. Y, L* and W*).

Thus, keeping in mind the goal of a visual system able to

accurately detect and recognise multi-coloured objects in real

scenes, existing colour models have been analysed in order to

determine which one is more robust to changes in illumination,

object geometry and camera viewpoint. The aim is a colour

model that is less sensitive to imaging conditions and has a

higher discriminative ability, removing the constraints on the

image process and, as a consequence, considerably improving

object detection and recognition.

In this sense, Gevers and Smeulders [47] and later Vil-

lamizar et al. [42], deeply analysed diverse colour models

by evaluating their robustness for object recognition under

different image parameters. This comparison, summarized in

Table I, concluded that the colour model to be chosen depends

on the imaging conditions. Indeed, if all the imaging condi-

tions are controlled, RGB is the most invariant colour model

for object recognition. However, under the constraints of white

illumination and no presence of highlights, normalized colour

rgb and c1c2c3 are the most robust colour spaces. On the

contrary, in the presence of highlights, o1o2 is the most

appropriate despite its sensitivity to all the other parameters.

Finally, l1l2l3 is the best alternative for the job at hand due to

its invariance.

shadow geometry material highlights

RGB + + + +
rgb - - + +

c1c2c3 - - + +
o1o2 + + + -
l1l2l3 - - - -

TABLE I
COLOUR MODEL SENSITIVITY TO IMAGE PARAMETERS SUCH THAT +

DENOTES SENSITIVITY, WHILE - INDICATES INVARIANCE TO A

PARTICULAR PARAMETER.

Given that no environmental and object constraints are

established, the l1l2l3 colour space is used in our system

for object recognition due of its robustness in the presence

of varying illumination across the scene (e.g. multiple light

sources with different spectral power distributions), and also

with changes in surface orientation of the object (i.e. its

geometry), and with object occlusion and cluttering. Thus,

the first step is to obtain l1l2l3−images from the captured

RGB−images as follows:















l1 = (R−G)2

(R−G)2+(R−B)2+(G−B)2

l2 = (R−B)2

(R−G)2+(R−B)2+(G−B)2

l3 = (G−B)2

(R−G)2+(R−B)2+(G−B)2

(1)

Nevertheless, with the aim of robustly detecting and recog-

nising objects in realistic scenarios, other cues must also be

used.

2) Motion cues: The capability of visually perceiving mo-

tion is a key issue in computer vision. Actually, this is a

requirement for a wide range of applications. By way of

example, Orabona et al. [48] used motion as a salient feature

to focus attention on moving elements. Another alternative is

to use independent motion in weakly supervised object recog-

nition settings thanks to the priors provided on the visual target

location [49]. In addition, other object characteristics that are

significant for detection and recognition can be generated from

motion data (e.g. trajectory, speed or shape).

Nonetheless, the motion present in a visual input could

be caused by various circumstances such as the camera’s

movement, a flickering scene illumination, the movement of

scene elements (targets or vacillating background elements), or

a combination of them. As a consequence, these factors must

be considered when image segmentation for motion detection

is performed.

Research on this topic has taken a number of forms. The

early algorithms [50] were based on temporal information

by using a thresholded frame difference of temporally ad-

jacent frames. This kind of methods have some well-known

problems, such as ghosts and foreground aperture [51]. As a

consequence, they were mostly replaced by methods based on

spatial information in the image sequence, namely background

subtraction. This technique, in its simplest form, detects mov-

ing regions in an image by taking the pixel-by-pixel difference

between the current image and a reference background image.

This approach is sensitive to changes in the scene background

due to the lack of a reliable reference image or the effect of

changing illumination, noise or periodic motion, and requires

the use of a good background model [52] [53] together with

a well-defined stationarity criterion to decide when a pixel

deviates from the background [54]. Afterwards, most of the

research focused on methods for background maintenance,

that is, the construction and updating of a statistical repre-

sentation of the background trying to capture the temporal

evolution of the image sequence. As a representative selection

of methods we can mention Pfinder [52] in which a single

Gaussian distribution was used, multimodal statistical models

such as a mixture of Gaussians (MoG) [55] [56] or Normal

distributions [57]; adaptive background estimation based on

Wiener (Wallflower [54]) or Kalman filtering [29] [58] to make

predictions of the expected background; statistical models

based on the minimum and maximum intensity values and the

maximum inter-frame change (temporal derivative [59]). Other

methods incorporate spatial region-based scene information

such as Kernel Density Estimation (KDE), a Parzen-window

estimate with a kernel [60]), Eigenbackground (eigenspace de-

composition based on images of motionless backgrounds [61])

or Independent Component Analysis (ICA [62]). A number

of alternative approaches used Hidden Markov Models [63],

codebook vectors [64] [63] or explicit models of the fore-

ground [65].

More recent approaches tend to incorporate specific knowl-

edge of the particular application [29] [66] [67]; introduce a

number of enhancements and refinements in the fundamental

methods above [68]; or apply other techniques such as saliency

maps [29] or regions of interest [69] prior to background

subtraction.

Despite the wide research on this topic, there are still some

issues to be solved such as how to arrange for a training
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period with foreground objects in dynamic, real environments;

the adaptation to minor dynamic, uncontrolled changes such

as the passage of time, blinking of screen or shadows; the

adaptation to sudden, unexpected changes in illumination; or

the differentiation between foreground and background objects

in terms of motion and motionless situations.

With the purpose of overcoming these problems, Martinez-

Martin and del Pobil proposed a hybrid algorithm based on

frame differencing and background subtraction along with a

single-Gaussian background model and a mechanism for its ef-

fective maintenance (which is described in depth in [70]). The

underlying idea of this method is to mutually reinforce frame

difference and background subtraction so that the drawbacks

of both approaches are overcome while keeping their original

advantages.

So, in a first stage, an initial background model is built. Un-

like most background estimation algorithms, another technique

for controlling the activity within the system workspace is per-

formed. As computational and time cost are critical issues, this

control is performed by means of a combination of difference

techniques: frame difference with reference frame subtraction.

Thus, frame difference allows the system to identify objects

which have moved from one frame to the next one. However,

it is important to take into account that both previous position

and the current one are detected. This problem was solved

by using background subtraction since the only highlighted

position is the current one. Note that, as the reference frame

is the first taken frame, it might be possible that it contains

objects that are not part of the background. For that reason,

some additional constraints have been defined in order to

solve this kind of situations. Furthermore, the used thresholds

for those subtraction approaches are automatically set for

each pixel from pixel neighbourhood information. In a similar

way, the stationary object problem has been solved with the

combination of both subtraction techniques. Therefore, there

is no danger of missing foreground objects while the initial

model is being built. Moreover, the obtained background

model does not contain information about those moving targets

thanks to the use of a simple frame-difference approach that

detects moving objects within the robot workspace.

In a second stage, adjacent frame difference, background

subtraction and background maintenance techniques are used.

So, the detection and identification of moving objects is

composed of two processes:

1) the adaptive background model, built initially, is used

to classify pixels as foreground or background. This is

possible because each pixel belonging to the moving

object has an intensity value that does not fit into the

background model. That is, the used background model

associates a Gaussian distribution to each pixel of the

image, as defined by its mean colour value and its

variance. Then, when an interest object enters or moves

around the system workspace, there will be a difference

between the background model values and the object’s

pixel values. A criterion based on stored statistical

information is defined to deal with this classification and

it can be expressed as follows:

b (r, c) =

{

1 if |i (r, c)− µr,c| > k × σr,c

0 otherwise
(2)

where b (r, c) is the binary value of the pixel at row

r and column c to be calculated, i (r, c) represents the

pixel brightness in the current frame, µr,c and σr,c are

the mean and standard deviation values estimated by

the background model and k is a constant value which

depends on the point distribution

2) improvement of the raw classification based on the

background model as well as detection and adaptation

of the background model when a global change in

illumination occurs. The proper combination of subtrac-

tion techniques is used to improve the segmentation

carried out at pixel level by using background sub-

traction. Furthermore, this difference processing allows

the system to identify global illumination changes. It

is assumed that a significant illumination change has

taken place when there is a change in more pixels

than two thirds of the image size. When an event of

this type occurs, a new adaptive background model is

built because, otherwise, the application would detect

background pixels as targets, since the model is based on

intensity values and a change in illumination produces

a variation of them.

Once the whole image is processed, those pixels classified

as background are incorporated into the adaptive background

model. For that, the following formulas are used:























µr,c (t+ 1) =

{

(1− α)µr,c (t) + αit+1 (r, c) if background

µr,c (t) otherwise

σr,c (t+ 1) =

{

(1− α)σr,c (t) + αit+1 (r, c) if background

σr,c (t) otherwise

(3)

Here, the constant α (0 < α < 1) controls the adaptation

rate and it is given by the number of pixels which are part

of the Gaussian distribution. However, sometimes the pixel

grey level might change quicker than the background model

as when illumination gradually brightens. As the proposed

updating process is too slow, after a certain period of time,

the background model might not be suitable for foreground

pixel detection. For that reason, a new updating process was

designed. So, during the updating phase two different tasks

are carried out:

• the background model is being updated with each new

frame by using Eq. 3

• a new background model is being built from the segmen-

tation obtained with the current background model

In this way, after some time, the background model is re-

placed by a new one more suitable for the current background

scene.

3) Shape cues: Shape is the third characteristic describing

an object in our system. Similar to the motion cue, enriched

information can be obtained from shape data. However, object

shape may change when the object is observed from a different

point of view. For instance, a car presents different shapes
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depending on the location of the observer (front, bottom, side-

ways or in perspective). To overcome this problem, different

object shapes should be represented in accordance with the

distinct observable views. Obviously, the robustness obtained

from a greater number of shapes will come hand in hand with

a higher computational cost.

As a solution, Principal Components Analysis (PCA) has

been widely used (e.g. [71] [72] [73]) as a statistical tool

for finding patterns in data of high dimension, highlighting

their similarities and differences. In our case, object templates

are matched with their appearance in the current image. First

the provided training data is pre-processed in some way (e.g.

image normalization for contrast, optical flow computation,

face alignment, etc.) and then, the dimensionality of the

search space is reduced by converting a set of observations

of possibly correlated variables into a set of values of linearly

uncorrelated variables (i.e. principal components). As a con-

sequence, invariance with respect to object contrast, rotation

or scale is not provided by PCA itself. In a similar way,

other problems such as occlusions, illumination variations,

high object dimensionality or image noise, are not solved with

this approach.

A neuroscientific viewpoint reveals that Gabor filters is

the approach with a higher biological plausibility [74] [75]

[76] [77]. In this way, images are represented by a sinusoidal

function moved in depth and the wavelength of any sinusoidal

shape pattern can be detected and recognised. What is more,

phase-based methods have been shown to be robust to changes

in contrast, scale and orientation [78] [79].

Therefore, a symmetrical and an anti-symmetrical filter

kernels can be used to estimate the phase difference at any

point x. As a result, the two obtained filter outputs for an

image I would be:







Isin,σ (x, ω) =
∫

ω
(

x−x′

σ
I (x′) sin (ω (x− x′))

)

dx′

Icos,σ (x, ω) =
∫

ω
(

x−x′

σ
I (x′) cos (ω (x− x′))

)

dx′

(4)

where σ corresponds to the spatial expansion of the kernel

filter and ω refers to its frequency. Note that when the ratio

between ω and σ is a constant and a Gaussian bell curve

represents the window function, then Equation (4) describes a

convolution with Gabor functions.

Fig. 2. Bank of oriented Gabor filters used for shape detection and recognition

In particular, the proposed method extracts the object shape

using a bank of eight oriented Gabor filters (Figure 2). For

that, we have constrained the number of shape representations

to four at most: (1) a shape when the object is seen from the

front; (2) a shape when the object is observed sideways; (3) a

shape when the object is seen from the top; and, (4) one shape

representation when it is seen in perspective (chosen thinking

of autonomous systems performing a task). Note that the

system only requires a certain number of shape representations

to recognise an object. For instance, objects like balls only

require one shape representation, while other objects will need

two or three shapes. An example of some shape models for

different objects are shown in Figure 3.

Object Considered Shapes Representation

Fig. 3. Shape cue in terms of Gabor filters based on four shape representations
(front, sideways, top and perspective) used in the proposed approach

B. Memory

Memory performs a fundamental role in human object

recognition. Similarly, in our system, a memory module stores

the description of all the potential targets to be recognised.

It contains all the features integrating the description of each

known object, as shown in Figure 4.

Fig. 4. Object description in terms of colour, motion and shape properties
saved in the system memory for proper object detection and recognition

C. Recognition

The last stage of the process is performed by the recognition

module, which is responsible for the object recognition itself.

At this point, it is important to take into account that two

different kinds of object recognition can be distinguished;

namely, object categorization and object identification. On the

one hand, the goal of object categorization is to classify an

object as belonging to an abstract object class (e.g. animal,

person, car, building, etc.). On the other hand, object identifi-

cation is aimed at identifying an object as a unique instance

within a class. In this paper object identification is addressed,

since no category abstraction is intended.

Our approach is aimed at visually identifying the surround-

ing objects in their corresponding object classes. For that, a

statistical combination of similarity likelihood is used, based

on all the considered cues. Assuming independence between

the three cues (colour, motion and shape), the object-based

likelihood can be obtained as follows:
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P (I|o) = P (Ic|o)|P (Im|o)|P (Is|o) (5)

where P (Ic|o), P (Im|o) and P (Is|o) respectively correspond

to colour-based, motion-based and shape-based likelihoods for

an object o.

Note that the task to be performed and the object charac-

teristics will determine what features are more distinctive for

achieving an accurate object recognition. For that reason, the

cue weights have to be experimentally set. By way of example,

for recognizing a ball, a greater weight is assigned to colour

as compared to shape, since a circular shape is very common

in real-world scenarios and its discriminative value is lower.

III. IMPLEMENTATION DETAILS

Real-time processing is a critical demand when state-of-

the-art robot systems are designed. This requirement calls for

an efficient processing unit. A solution is to process visual

input with a Graphical Processing Unit (GPU), potentially

reducing time consumption in a drastic way. However, despite

its highly parallel computation capabilities, writing efficient

GPU programs is not evident, especially for uneven workloads

(e.g. the higher the number of interest objects is, the higher

the computational costs are).

In particular, our algorithms have been implemented on an

NVIDIA GeForce GTX 745. It includes 384 Compute Uni-

fied Device Architecture (CUDA) cores with 4-GB memory

and chip-level power enhancements. A fast access to shared

and GPU’s main memories characterizes these CUDA cores.

Moreover, graphics API functions are not required for parallel

implementations in C language; this is very convenient for

properly implementing the necessary parallel algorithms that

deal with irregular workloads.

The CPU-GPU system implementation is shown in Figure 5.

The CPU captures an image and uploads it to the GPU, which

will perform the subsequent image processing steps, namely,

from feature extraction to object recognition. The GPU will

return the output to the CPU for it to decide the next action to

be performed by the robot. Then, the visual processing starts

again.

Since object feature detection and tracking is a computation-

ally intensive task, but highly parallelizable, a good parallel

solution can be devised to the effect that all image processing

is carried out by the GPU (using 1023 threads per block). As a

final system output, the CPU shows on the screen the detected

objects.

Fig. 5. Overview of our CPU-GPU implementation, meeting real-time
performance by parallelly implementing on the GPU the computationally
intensive task of object detection and recognition

IV. EXPERIMENTAL RESULTS

The proposed approach for object detection and recognition

in real scenarios has been tested in three different kinds of

scenarios. First of all, a semi-structured scene was considered

so that a methodical study of the efficiency based on different

factors could be carried out (e.g. occlusions, light reflexes,

changes in illumination, shadows, etc.). Then, the second set

of experiments involved two real, cluttered environments in

which the target objects were to be found amongst a set

of ordinary items such as calendars, books, clocks or pens.

Finally, an image dataset has been used to evaluate the perfor-

mance of the system by means of object instance recognition

and in comparison with other state-of-the-art approaches. To

conclude, a performance analysis in terms of execution time

is presented.

For the two first experiments, a humanoid torso endowed

with a Robosoft TO40 pan-tilt-vergence stereo head and two

multi-joint arms was used (see Figure 6). The head mounts two

Imaging Source DFK 31BF03-Z2 cameras acquiring colour

images at 30 Hz with a resolution of 1024x768 pixels. The

baseline between cameras is 270 mm and the motor positions

are provided by high-resolution optical encoders.

Fig. 6. External view of the humanoid torso employed for the experiments
(left) and a detailed view of the pan/tilt/vergence head (right)

A. Experiment 1: Semi-structured scenes

In the case of semi-structured scenes, the robot was located

in front of a table on which the objects were placed. In

this experimental setup, the table was initially empty and,

after a little while, a human was placing and removing the

different objects on the table without interacting directly with

the robot system. In this way, the motion cue was instrumental

in detecting both the human presence in the robot workspace

as well as the new object instance on the table. Actually, in

this experiment, the three visual cues have the same weight

when the segmentation result is determined. Four different

objects have been used as targets: a red ball, a toy car, a bottle

and a money box. The object position and orientation were

modified for each frame. Obviously, the number of resulting

orientations varies based on the considered object; for instance,

the red ball has only one orientation, while the toy car was

observed in 12 different orientations (approximately every 30

degrees). As depicted in Figure 7, the implemented approach

starts with capturing an image. This image is the input of

two different processes: the colour cue segmentation and the

segmentation of the other two considered cues (i.e. motion and

shape). This distinction is for efficiency reasons. Therefore, on

the one hand, the image is expressed in L1L2L3−coordinates

and segmented by using the memory information about the



ROBOTICS & AUTOMATION MAGAZINE, VOL. X, NO. X, SEPTEMBER 2016 8

different objects to be found. On the other hand, an intensity

image is obtained with the purpose of speeding up motion

and shape segmentation. Note that shape detection is obtained

from the combination of the 8 Gabor-filtered images. Once

segmentation for each cue is performed, their fusion allows the

system to reduce the search area for object recognition and,

despite the presence of factors such as shadows or reflexions,

the red ball is properly detected in the image.

Fig. 7. Object detection and recognition process in semi-structured scenes

In a similar way, experiments with the other objects were

carried out. Figure 8 shows some of the obtained results (only

the final result). Note that the illustrated results correspond to

a single trial since there is no randomness in the data. As it can

be observed, only one object is searched each time. The reason

lies in the performance analysis in the presence of different

factors susceptible of making the system fail (e.g. shadows,

flickering light sources, variable light reflexes, objects partially

visible, etc.). As shown, all the objects were successfully

recognised even when they changed their orientation or lo-

cation in the scene, or the cameras changed their viewpoint.
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Fig. 8. Qualitative experimental results in a semi-structured scenario in
which both the camera viewpoint and the object location and orientation were
continuously changed

With the purpose of validating the obtained qualitative

results, a quantitative evaluation has been carried out. In this

case, the true positive rate (TPR) and false positive rate

(FPR) measurements are used [80]. That is, the proportion

of correctly classified positives (TPR); and the proportion of

incorrectly classified negatives (FPR). From their definition,

a good performance is obtained when both measurements

are close to 1. As shown in Figure 9, the obtained results

(blue line) are above the line dividing the ROC space (grey

line), which means a good performance. Consequently, it can

be concluded that the system was successful in the object

detection/recognition task.

Fig. 9. ROC curve for the quantitative evaluation of the proposed approach
in semi-structured scenes

B. Experiment 2: Real scenarios

In this experiment, the objects to be detected and recognised

were placed on a desk. Two unstructured environments were

used composed of everyday objects of different nature and

features such as textured books, pens, clock, etc. In this

context, the objects to be detected and recognised include a

red ball, a toy car, a yellow ball, a green bulb, a stapler, and

a wooden generalized cylinder. These objects were located at

different positions and/or orientations within the considered

scenario, resulting partially occluded in some cases. As in the

previous case, a human is continuously interacting with the

target objects, but not with the robot system, so that the motion

cue triggers again a visual attention focus. However, the other

two visual cues are required to distinguish between the target

objects and other moving elements in the scene such as the

person. For this reason, the three cues have the same weight

in the object recognition process.

In the first experiment, three different objects were used: a

toy car, a stapler, and a wooden generalized cylinder. Some

of the one-trial results are shown in Figure 10. Note that,

despite the nature of the environment and that of the objects

themselves, all the targets were properly detected even in the

case of the toy car, which had a great colour similarity with its

background. An example of the detection of two objects in the

same image is also illustrated, in which the car and the stapler

have been correctly detected and recognised. In a similar way,

the developed approach adequately focuses its attention on the

target object (i.e. the generalized cylinder), although several

objects were added to the scene (the toy car and the stapler)

as shown in the rightmost example in Figure 10.
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Fig. 10. Qualitative experimental results when a real scenario is considered

In the subsequent experiment, the visual system was aimed

at detecting and recognising four objects (a red ball, a green

bulb, a yellow ball, and a wooden generalized cylinder) while

a person is interacting with the objects in the scene, changing
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their position on the desk. As a consequence, the motion cue

again plays a main role in the object recognition process. Some

of the obtained one-trial results are presented in Figure 11.

In this case, unlike in previous examples, the binary image is

shown, highlighting the detected objects, especially when they

are partially occluded, or colour similarity with the background

is considerably high.

Once more, a quantitative analysis validates the above quali-

tative results. In this case, as shown in Figure 12, the detection

and recognition results are presented for two different objects:

the stapler and the toy car. In both cases, the ROC curve

are above the division line (grey dashed line), confirming the

quality of the results for real-life scenarios.

C. Experiment 3: Image Repository

For the third validation experiment we compare the per-

formance of our approach with state-of-the-art methods by

using a public image repository. Actually, given that the

ability to recognise objects is crucial for many applications,

a wide range of public image repositories is available. These

datasets allow researchers to evaluate their approaches with

a large number of objects and under different conditions,

as well as to compare their performance with other state-

of-the-art approaches. However, these repositories could be

classified based on the goal to be satisfied. That is, object

recognition has multiple levels of semantics (e.g. category

recognition, instance recognition, pose recognition, etc.), it can

refer to different application scenarios or it could be based

on certain input data. Consequently, the required evaluation

dataset must correspond to the needs of a particular approach.

This is why the RGB-D Object Dataset [81], publicly available

at http://www.cs.washington.edu/rgbd-dataset, has been used

for this validation. This dataset is composed of thousands of

images of 300 objects commonly found in home and office

environments, taken from multiple views by using an RGB-

D camera (see Figure 13 for some examples). Objects are

organized into a hierarchy of 51 categories composed of a

number of instances between three and fourteen, so that each

object belongs to only one category. In addition, ground truth

images are provided to adequately assess the segmentation

process. In consequence, this image dataset allows object

recognition techniques to be evaluated at two levels:

• Category level. Category recognition refers to classifying

previously unseen objects in a category based on objects

from the same category that have been previously seen.

That is, this recognition level corresponds to answering

questions such as is this an apple or a cup?

• Instance level. Instance recognition, on its behalf, in-

volves identifying if an object is physically the same

object that has been previously seen. In this case, the

questions to be answered take the form is this Angel’s

coffee mug or Ester’s?

Despite the fact that the ability to recognise objects at

both levels is a key point in the context of robotic tasks, in

this work only the instance recognition is considered since

no category abstraction was carried out. So, the task for the

recognition algorithm is to detect the exact physical instance

of an object that was previously presented. In our case, the

previous instance (i.e. the first frame of each object sequence)

based on colour and shape cues is used to build an object

model that will be used for object detection and recognition.

Note that, in this case, the motion cue has not been used

because objects are not moving, although the camera is.

For comparison reasons, we consider the cropped RGB-

D frames that tightly include the object, exactly as used in

the object recognition evaluation of the paper introducing the

RGB-D Object Dataset [81] (i.e. subsampled every 5th video

frame). Actually, these are the images used for obtaining the

different results over this image repository.

Table II compares the obtained results with those from

different state-of-the-art approaches; namely, EB Local

(an exemplar-based local distance function learning tech-

nique [82]), Linear Support Vector Machine (Linear SVM),

Gaussian kernel Support Vector Machine, Random Forest

(RF), kernel descriptors, Convolutional K-Means descriptors

(CKM Desc), HMP and IDL) described in [83] [84] [85]

[86]. As it can be observed from the results, our technique

substantially improves upon the performance of the several

considered state-of-the-art classification approaches.

Approach Accuracy based on RGB information

EB Local 84.5
Linear SVM 90.2

Nonlinear SVM 90.6
RF 90.5
IDL 91.3

CKM Desc 92.1
The proposed approach 96.1

TABLE II
ACCURACY COMPARISON ON THE RGB-D OBJECT DATASET WHEN USING

ALTERNATING CONTIGUOUS FRAMES

In addition, the RGB-D image dataset also includes video

sequences of real-life scenarios such as office workspaces,

meeting rooms, and kitchen areas, where some database ob-

jects are visible from different viewpoints and distances and

may be partially or completely occluded in some frames.

Thus, the proposed algorithm has been also tested in those

common indoor environments. Some of the obtained results

are illustrated in Figure 14. The first two images show an

office and, although the scene illumination and the point of

view have been changed, they correspond to the same video

sequence. As it can be observed, the cellophane box has

been recognised in both of them, highlighting the approach

robustness to lighting changes. Furthermore, the second row

refers to different scenarios with the same target object: a green

bowl. As it is apparent, it was properly detected, even when

it was partially occluded.

D. Experiment 4: Execution Time Analysis

The last evaluation experiment refers to the analysis of the

benefits of using the GPU for parallel computing. A similar

study was presented by Ferreira et al. [87] in the context of

Bayesian models for multimodal perception. With that aim,

we carried out a comparison between the performance using

parallel and non-parallel computing depending on the image

resolution and the number of potential targets.
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Fig. 11. Qualitative experimental results when a real scenario is considered

Fig. 12. ROC curve for the quantitative evaluation of the proposed approach
in unstructured scenarios

Fig. 13. Some objects from the RGB-D Object Dataset belonging to different
object categories

First, the execution time is analysed for different image

resolutions. Our results show that a similar performance is

obtained with the two methods when the image resolution

is low. However, when the image resolution is increased,

the non-parallel computing time drastically climbs, while the

GPU implementation shows a gradual, much slower, growth.

This is apparent in Figure 15 that plots the speedup with

respect to image size. In fact, the execution time for the

GPU remains virtually constant (around 0.48 seconds) for the

first ten image resolutions considered because the thread loads

remain similar. Given that the number of threads is limited,

when the image resolution is increased, both the thread work

load and, consequently, the execution time rise, resulting in

0.95 seconds for our higher resolution (1600x1200).

Another key issue in practical object recognition is that of

scalability, and our last experiment analyses the execution time

when the number of potential target objects is increased. With

that aim, different image sequences from the RGB-D image

dataset were used. The results, shown in Figure 16, illustrate

the speedup evolution for an averaged image resolution of

84x85 pixels when the number of objects that could be

found in the scene increases. As it can be observed, our

results highlight the efficiency when parallel computing is

used; computation times remain almost unchanged between
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Fig. 14. Some object recognition results on the real-life scenarios provided
by the RGB-D image dataset

Fig. 15. Speedup versus image size for parallel (GPU) and non-parallel (CPU)
computing

one object (0.46 seconds) and 50 target objects (0.47 seconds).

Keeping in mind our final goal, an autonomous assistive robot,

the system should provide a similar response time regardless

of the task at hand, as it is the case, and, ideally, this response

time should be the same as that of human beings. As our

results show, the obtained response time is similar in all

the studied cases (up to 50 target objects) and below 0.5

seconds, approximately twice the average human reaction time

(between 200-250 milliseconds [88] [89] [90]). In the context

of human-computer interaction [91] [92] [93], a response time

below 0.1 second is regarded as an instantaneous reaction,

whereas a response delay between 0.1 and 1.0 second is

considered as fast enough for a fluent interaction, even though

the user would notice the delay. Consequently, a response time

of 0.5 seconds is a real-time performance in this sense. In

fact, with this implementation, real-time processing could be

obtained even when hundreds of object instances are searched,

taking us closer to the possibly thousands of objects that could

be found in everyday life.

On the other hand, advances in image technology are

leading to visual sensors with higher image quality to the effect

that higher and higher image resolutions can be expected in

the future. For resolutions higher that 1600x1200, execution
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times would be presumably beyond 1.0 second. In this case,

image resolution could be decreased by using, for instance,

pyramidal images, in order to obtain real-time performance.

Fig. 16. Speedup versus the number of potential target objects for parallel
(GPU) and non-parallel (CPU) computing

V. CONCLUSION AND FUTURE WORK

During the last decades, robotics research moved from

stationary robotic systems in constrained environments to

mobile and service-oriented robots operating in realistic and

unconstrained environments. One rising application field is

assistive robotics, aimed at developing robots that support hu-

mans as their daily-life assistants. With that aim, these systems

must be endowed with different abilities such as localization,

mapping, path planning, obstacle avoidance, object detection,

recognition, and manipulation.

In particular, in this paper we have focused on object

detection and recognition. Even though this issue is the heart

of different robotic assistive abilities, real-time efficient object

detection and recognition is still a challenging problem when

real scenarios are considered. Part of this problem is due to

the presence of cluttered, dynamic backgrounds, with possible

occlusions, interactions and additional photometric and geo-

metric variations.

Motivated by these challenges, we presented a framework

that is able to detect and recognise objects from a visual input

in unconstrained scenes in real time. We take inspiration from

biology and use a rich object description based on colour,

motion and shape cues. Robust colour information is obtained

thanks to an adequate colour model choice that makes visual

data invariant to changes in viewpoint, object geometry and

illumination. The second considered cue is motion, which

is perceived by means of a novel background maintenance

technique overcoming the environmental constraints of exist-

ing methods. Finally, a phase-based representation of shape

concludes the object description presented in this paper.

Once the visual features have been properly extracted,

the system analyses the statistical similarity between the

detected objects and those whose description is stored in

the system’s visual memory. This estimated joint likelihood

allows the system to successfully discriminate between several

objects. Furthermore, with the purpose of effectively achieving

real-time computation in visual data processing, a Graphical

Processing Unit (GPU) is used by taking into account that

irregular workloads are common in the task at hand.

The proposed approach has been implemented on a robotic

platform and tested by considering different parameters which

might make the system fail. This large number of parameters

allows us to analyse the robustness of the proposed method.

For further experimental validation, a public image repository

for object recognition has been used, allowing a quantitative

comparison with respect to other state-of-the-art techniques

when real-world scenes are considered. Finally, a temporal

analysis of the performance was provided with respect to

image resolution and number of target objects in the scene.

As shown by these experimental results, the system is able to

accurately detect and recognise objects in everyday scenarios

where there are no constraints about the environment and the

objects.

As future work, new object features will be studied for

improving object detection and recognition. In addition, a

module for visual attention will be developed and integrated

in the current implementation with the purpose of determining

which features make an object more interesting for the system.

At the same time, we would like to add a new stage in order

to automatically learn new objects, going a step further in

emulating the human visual system.
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