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Modern object detectors always include two major parts: a feature extractor and a feature classi
er as same as traditional object
detectors. 	e deeper and wider convolutional architectures are adopted as the feature extractor at present. However, many
notable object detection systems such as Fast/Faster RCNN only consider simple fully connected layers as the feature classi
er.
In this paper, we declare that it is bene
cial for the detection performance to elaboratively design deep convolutional networks
(ConvNets) of various depths for feature classi
cation, especially using the fully convolutional architectures. In addition, this paper
also demonstrates how to employ the fully convolutional architectures in the Fast/Faster RCNN. Experimental results show that a
classi
er based on convolutional layer is more e�ective for object detection than that based on fully connected layer and that the
better detection performance can be achieved by employing deeper ConvNets as the feature classi
er.

1. Introduction

Modern object detectors [1, 2] always include two major
parts: a feature extractor and a feature classi
er as same as
traditional object detectors. 	ese two parts are thought to
be mutually independent in the traditional object detectors
while they can be considered to be a uni
ed course in
the modern object detectors. 	e feature extractor in tradi-
tional object detection methods is usually a hand-engineered
descriptor, such as SIFT [3] and HOG [4]. At the same time,
the feature classi
er is usually a linear SVM [5], a nonlinear
boosted classi
er [6], or an additive kernel SVM [7]. How-
ever, the deepConvNets have dominated the feature extractor
of the modern object detectors in various application scenar-
ios [8–11]. Aside from being capable of representing higher-
level semantics, ConvNets are also more robust to variance in
scale and thus facilitate recognition from features computed
on a single input scale.

	e successful RCNN [12] method applies high-capacity
convolutional neural networks to extract a 
xed-length
feature vector from each region which is fed to a set of
class-speci
c linear SVMs. It 
rstly pretrains the network

by supervision for image classi
cation with abundant data
and then 
ne-tunes the network for detection where data is
scarce. In fact, it only can be considered a hybrid of traditional
detectors and deep ConvNets. Although its feature extractor
is replaced by pretrained deep ConvNets, the classi
er still
uses a traditional model which is a set of class-speci
c linear
SVMs. SPPnet [13] is also a hybridmodel using convolutional
layers to extract full-image features followed by a set of class-
speci
c binary linear SVMs like RCNN. What is di�erent is
that the spatial pyramid pooling layer proposed by SPPnet
enables feature extraction in arbitrarywindows from the deep
convolutional feature maps.

Fast RCNN [14] and Faster RCNN [15] make further
evolution on the pipeline of object detection. Following the
pioneering RCNN, Fast/Faster RCNN uses convolutional
layers, initialized with discriminative pretraining for Ima-
geNet [16] classi
cation, to extract region-independent fea-
tures followed by a regionwise multilayer perceptron (MLP)
for classi
cation. Besides, they jointly optimize a so�max
classi
er and bounding-box regressors, rather than training
a so�max classi
er, SVMs, and regressors in three separate
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stages. Nevertheless, this strategy ending with MLP classi
er
architectures is memory hog.

Based on a thorough study of regionwise feature classi
er
in Fast/Faster RCNN, our main work and contributions
include the following three aspects. Firstly, we notably prove
that the input size of the prevailing fully convolutional
architectures must satisfy certain condition due to the con-
catenation of the convolutional layer and the pooling layer.
Secondly, based on the detailed analysis of these fully convo-
lutional architectures, we put forward how to employ recent
state-of-the-art image classi
cation networks such as ResNet
[17] and various versions of GoogleNet [18, 19] which are by
design fully convolutional into Fast/Faster RCNN detection
systems. Finally, we adopt the idea of skip connection analo-
gous to the hybrid of PVANET [20] and FPN [21] that com-
bines several intermediate outputs. Consequently, the low-
level visual features and high-level semantic features can be
taken into account at the same time.

In the remainder of this paper, we derive a general
formula for accurately designing the input size of the various
fully convolutional networks in which the convolutional layer
and the pool layer are concatenated (Section 2) and propose
an e�cient architecture of skip connection stemming from
PVANET and FPN (Section 3). Finally, we provide abundant
experimental results on VOC2007 benchmarks in Fast/Faster
RCNN detection systems employing various fully convolu-
tional networks including/excluding the architecture of skip
connection, with detailed settings for training and testing
(Section 4).

2. Deriving the Condition of the Input Size
Based on Fully Convolutional Architectures

Beginning with LeNet-5 [22], convolutional neural networks
have typically had a standard structure which includes some
stacked convolutional layers optionally followed by local
response normalization and pooling layer and ends with
two 4096-d fully connected (fc) layers. Variants of this basic
design are prevailing in the image classi
cation literature,
which have acquired the best results on MNIST [23], CIFAR
[24], and most notably the ILSVRC competition. For larger
datasets such as ImageNet, the latest trend has been to
increase the depth and width of by design fully convolutional
CNN architecture, whose fully connected layers are replaced
by the global average pooling layer, while using dropout [25]
to deal with the problem of over
tting and batch normal-
ization [26] to accelerate deep network training by reducing
internal covariate shi�.Meanwhile, a latest pooling technique
called Mean-Max Pooling is introduced in DPN, which can
improve the performance of awell-trainedCNN in the testing
phase without any noticeable computational overhead.

	ese prevailing fully convolutional networks, such as
ResNet and GoogleNet and their updated versions, have
the e�ective stride, namely, 25 pixels, as same as the ZF
[27]/VGG [28] networks. In other words, the e�ective stride
increases two times by each stage. 	e di�erence is the way
of reducing feature map size by half. 	e ResNet/GoogleNet
specially designs a residual/inception building block while
the ZF/VGG only adopts the max pooling layer. As we know,

Faster RCNN system can take an image of any size as input.
Feeding images with varying sizes is owed not only to the
proposed RoI pooling layer but also to the architecture of the
ConvNets such as ZF/VGG which are stacked with the max
pooling layers and the convolutional layers.

Table 1 has illustrated the detailed network architectures
of various CNN networks. As you can see, the special
inception/residual block is designed to reduce the feature
map size in the fully convolutional networks. Furthermore,
the parameters of the special reduction blocks are precisely
designed to enable the alignment of feature map size in the
concatenation layer. If we want to employ the fully convolu-
tional networks in Fast/Faster RCNN system, we present that
the input size in these various ConvNets must satisfy certain
condition. Taking the Inception v3 architecture as an exam-
ple, we calculate each featuremap size according to themodel
parameters of convolutional and pooling layer. Based on the
CAFFE [29] framework, the output size of each convolutional
and pooling layer can be calculated precisely by the following
two formulas:

output sizeconv

= ⌊ input size + 2 ∗ pad − [dilation ∗ (kernel size − 1) + 1]
stride

⌋
+ 1

output sizepool = ⌈ input size + 2 ∗ pad − kernel sizestride
⌉ + 1,

(1)

where ⌊ ⌋ and ⌈ ⌉ are denoted as the �oor and ceil function,
respectively.

	e detailed Inception v3 architecture is de
ned in
Table 2 according to the original paper. Because the output of
the pooling layer will be concatenated with the outputs of the
convolutional layers by the end of the inception block, these
outputsmust ensure the same featuremap size.We can derive
a general formula for accurately designing the input size of
Inception v3 by reversing-inference method, which is taken
in two stages.

In consideration of the alignment issue of the featuremap
size in an inception block, we 
rst calculate the input size of
the reduction module consisting of a special inception block
whose detailed parameters can be found in Table 2. For one
reduction module, presumably the output size is �out which
represents a known positive integer and the input size is �in
which is unknown. 	en we can establish a link between the
output size and the input size by (1):

�out = ⌊�in − 32 ⌋ + 1,

�out = ⌈�in − 32 ⌉ + 1,
�out, �in ∈ �+,

(2)

where�+ is denoted as a set of positive integers.	erefore, we
can obtain the solution of the equation set; that is, �in = �out+1. Assuming that Inception v3 has� reduction modules, we
can easily derive the relationship between the output size �0
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Table 1: ConvNet con
gurations. 	e convolutional layer parameters are denoted as “layer/receptive 
eld size-stride.” s2 stands for the case
that the stride of the layer is 2 while stride 1 is omitted. All the receptive 
eld size of convolutional layer is 3 × 3 which is omitted in ZF/VGG.
LRN and GAP are short for local response normalization layer and global average pool layer while Inc and Res are the abbreviations for
inception and residual building block, respectively.	e ReLU activation function is not shown for brevity. And the batch normalization layer
only included in the second three architectures is not shown as well.

ZF VGG GoogleNet Inception v2 Inception v3 ResNet 50

Conv1-s2 Conv1 1 Conv1/7 × 7-s2 Conv1/7 × 7-s2 Conv1/3 × 3-s2 Conv1/7 × 7-s2
LRN Conv1 2 MaxPool-s2 MaxPool-s2 Conv2/3 × 3 MaxPool-s2

MaxPool-s2 MaxPool-s2 LRN Conv2/1 × 1 Conv3/3 × 3 Res2a

Conv2-s2 Conv2 1 Conv2/1 × 1 Conv2/3 × 3 MaxPool-s2 Res2b

LRN Conv2 2 Conv2/3 × 3 MaxPool-s2 Conv4/1 × 1 Res2c

MaxPool-s2 MaxPool-s2 LRN Inc 3a Conv4/3 × 3 Res3a-s2

Conv3 Conv3 1 MaxPool-s2 Inc 3b MaxPool-s2 Res3b

Conv4 Conv3 2 Inc 3a Inc 3c-s2 Inc a1 Res3c

Conv5 Conv3 3 Inc 3b Inc 4a Inc a2 Res3d

MaxPool-s2 MaxPool-s2 MaxPool-s2 Inc 4b Inc a3 Res4a-s2

Fc 4096 Conv4 1 Inc 4a Inc 4c Inc a-s2 Res4b

Fc 4096 Conv4 2 Inc 4b Inc 4d Inc b1 Res4c

Conv4 3 Inc 4c Inc 4e-s2 Inc b2 Res4d

MaxPool-s2 Inc 4d Inc 5a Inc b3 Res4e

Conv5 1 Inc 4e Inc 5b Inc b4 Res4f

Conv5 2 MaxPool-s2 GAP Inc b-s2 Res5a-s2

Conv5 3 Inc 5a Inc c1 Res5b

MaxPool-s2 Inc 5b Inc c2 Res5c

Fc 4096 GAP GAP GAP

Fc 4096

Fc 1000

So�max

Table 2: 	e detailed feature size of each layer in the Inception v3 architecture.

Layers Input size Pad Kernel size Output size

Conv1-s2 25(� + 1) + � (� = 5∼12) 0 3 × 3 24� + � (� = 18∼21)
Conv2 24� + � (� = 18∼21) 0 3 × 3 24� + � (� = 16∼19)
Conv3 24� + � (� = 16∼19) 1 3 × 3 24� + � (� = 16∼19)
MaxPool-s2 24� + � (� = 16∼19) 0 3 × 3 23� + 8 or 23� + 9
Conv4 1 23� + 8 or 23� + 9 0 1 × 1 23� + 8 or 23� + 9
Conv4 2 23� + 8 or 23� + 9 0 3 × 3 23� + 6 or 23� + 7
MaxPool-s2 23� + 6 or 23� + 7 0 3 × 3 22� + 3
Inc a1∼Inc a3 22� + 3 1 3 × 3 22� + 3
Inc a-s2

Conv 22� + 3 0 3 × 3 2� + 1
Pool 22� + 3 0 3 × 3 2� + 1

Inc b1∼Inc b4 2� + 1 1 3 × 3 2� + 1
Inc b-s2

Conv 2� + 1 0 3 × 3 �
Pool 2� + 1 0 3 × 3 �

Inc c1∼Inc c2 � 1 3 × 3 �
GAP

Fc 1000

So�max
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Figure 1: 	e derivation process of the initial input size of� reduction modules.

1 × 1 conv

1 × 1 conv

1 × 1 conv

2x upsample

2x downsample

+ 3 × 3 conv

Figure 2: 	e skip-layer connection architecture.

of the 
nal reductionmodule and the input size �� of the 
rst
reductionmodule which is �� = 2��0 +2�–1 (� ∈ �+).	e
detailed derivation process has been shown in Figure 1.

	e remaining part of Inception v3 only consists of some
stacked convolutional layers and pooling layers which are in
front of the Inception v3 architecture. Similarly, we canderive
the relationship between the input size �image and the output
size �� of the part by (1).

�image = 23�� + � � ∈ {13, 14, . . . , 19, 20} . (3)

Finally, we can obtain a general formula about the input
size of Inception v3 architecture which is as follows:

�image = 2�+3 (�0 + 1) + � � ∈ {5, 6, . . . , 11, 12} . (4)

	e detailed input size of each layer for Inception v3 is
shown in Table 2 where� equals 2. It is worth noting that the
dilation of each layer is set to 1 which is omitted in Table 2.
In the same way, we can derive the formula belonging to
the input size of other ConvNets. From here we can see that
their input sizes must be ensured to satisfy certain conditions
when these fully convolutional networks are employed by the
Fast/Faster RCNN system.

3. Skip-Layer Connections

Many studies have shown that multiscale representation and
its combination are e�ective in many recent deep learning
tasks. In essence, multiscale representation is a skip-layer
connection method combining 
ne-grained details with

highly abstracted information in feature extraction layer,
which contributes to the following region proposal and clas-
si
cation network. Our skip-layer connection architecture is
more like a combination of the observation from PVANET
and FPN.

Our design choice combines the last and two intermediate
layers whose scales of feature map are two times and four
times the last layer, respectively. 	e backbone ConvNet
computes a feature hierarchy including feature maps at 
ve
scales with a scaling step of 2. 	e feature maps of some
layers have the same scale and we say these layers are in the
same network stage. As we know, most ConvNets have 
ve

network stages which have strides of {2, 22, 23, 24, 25} pixels
with respect to the input image. Our multiscale features can
be obtained by combining three network stages whose strides

are {23, 24, 25} pixels. Besides, the output of the last layer of
each stage is chosen as our reference set of feature maps.

	ere are four steps to obtain our multiscale features as
shown in Figure 2. To combine multilevel maps at the same
resolution, di�erent sampling strategies are carried out for

di�erent stages. 	e stage with stride 23 is downscaled by 3
× 3 MaxPool with stride 2 while the stage with stride 25 is
upscaled by channelwise deconvolution whose weights are

xed as bilinear interpolation. For the purpose of merging
the features of the three stages by elementwise addition, a 1× 1
convolutional layer is used to adjust their channel dimensions
to a 
xed size which is set as 256 in our experiments. At
last, a 3 × 3 convolution layer on the merged feature map is
appended to generate the 
nal featuremap, which is to reduce
the aliasing e�ect of upsampling.
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Figure 3: Faster RCNN diagram using fully convolutional networks.

4. Experiments

4.1. Experimental Setup. As we know, Faster RCNN system
includes two stages shown in Figure 3. 	e 
rst stage called
the region proposal network (RPN) processes the input of
arbitrary size by some shared convolutional layers known as
feature extractor. And then the extracted features output by
the last shared convolutional layer are slid over with a 3 × 3
spatial window by a small network. Each sliding window is
then mapped to a lower-dimensional feature which is fed
into two sibling 1 × 1 convolutional layers for box regression
and box classi
cation, respectively.	e second stage includes
a detection network where Fast RCNN is adopted. 	e
proposals generated by the RPN and the shared convolutional
features are fed into the RoI pooling layer followed by the
remaining layers of the backbone ConvNet in order to predict
a class and class-speci
c box re
nement for each proposal.

We only perform all our experiments on the 20 category
PASCAL VOC2007 detection dataset. Our code is based on
the o�cial Faster RCNNcodewritten inMATLABwhich also
includes the reimplementation of Fast RCNN. As a common
practice, all network backbones used are pretrained on the
1000-class ImageNet dataset and then 
ne-tuned on the
detection dataset. We investigate the pretrained GoogleNet,
Inception v2, Inception v3, and ResNet-50 models that are
publicly available. From the above analyses, any latest net-
work can be similarly used as a backbone ConvNet in
Fast/Faster RCNN, provided that the issue on the input size
is solved.

All parameters related to Fast/Faster RCNNwere set as in
the original work except that the shorter edge of each input
imagewas resized to be 587.What is noteworthy is that the last
max pooling layer of ZF/VGG is replaced by a RoI pooling
layer in the original Fast/Faster RCNN, which leads to an

e�ective output stride of 24 instead of 25. To put all ConvNets
on an equal foot, we slightly modify the original models by
modifying the last network stage to have stride 1 instead of 2.
Furthermore, the atrous [30] convolution is used in the last
network stage to compensate for reduced stride. Except for
GoogleNet, the batch normalization, whose parameters are

frozen to be those estimated during ImageNet pretraining,
is used a�er convolutional layers. All experiments were
performed on Intel i7-6700K CPU and NVIDIA GTX1080
GPU.

4.2. Experiments on ConvNets for Fast/Faster RCNN System.
RoI pooling is used to pool regionwise features from the
shared convolutional feature maps. And it generates a 
xed-
size feature map for each proposal replacing the last pooling
layer while ZF/VGG is the backbone network. Naturally, the
remaining fc layers are used as regionwise classi
er typically.
Di�ering from ZF and VGG, other ConvNets replace the
fc layers with a global average pooling layer. 	erefore, we
must choose the layer to insert RoI pooling layer for these
ConvNets. Based on our observation, we choose the last net-
work stage to insert RoI pooling layer to ensure the e�ective

output stride of 24. Besides, we set the output size of RoI
pooling as 7×7 like VGG in all cases. Because three layers are
included in the last network stage, we perform experiments
on di�erent layers of various depths for Fast/Faster RCNN
system and get some exciting results shown in Table 3.
According to the experimental results, we intuitively make
an argument that a deeper convolution-based regionwise
classi
er is more e�ective but more time-consuming and is in
general orthogonal tomore powerful and deeper featuremap.
Moreover, we also perform original Fast RCNN experiments
based on ZF/VGG and get the detection mAP of 58.9
and 68.2, respectively, which are signi
cantly improved by
Inception v3 and ResNet 50. Besides, the results also indicate
that the fully convolutional networks have smaller 
nalmodel
size due to lack of fully connected layers.

As discussed above, our skip-layer connection is used
in the feature extraction stage by combining three network

stages whose strides are {23, 24, 25} pixels. 	en all the stages
of the fully convolutional networks are considered as a feature
extractor. According to the previous experiment results, the

nal detection mAP is much less than others when the RoI
pooling layer is only followed by the global average pooling
layer. Consequently, we replace the global average pooling
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Table 3: 	e results of Fast RCNN using convolution-based regionwise classi
er. “Inc” indicates an inception block and “Res” indicates a
residual block. CRC is short for convolution-based regionwise classi
er. 	e training time refers to the consuming time of 20 iterations.

Network CRC Training time Model size mAP (%)

GoogleNet

Inc 5a, 5b, GAP 15 s

23.2MB

65.8

Inc 5b, GAP 7 s 62.9

GAP 5 s 41.2

Inception v2

Inc 4e, 5a, 5b, GAP 17 s

39.3MB

67.0

Inc 5a, 5b, GAP 14 s 66.6

Inc 5b, GAP 10 s 65.6

GAP 7 s 42.9

Inception v3

Inc b, c1, c2, GAP 27 s

84.1MB

69.8

Inc c1, c2, GAP 23 s 69.4

Inc c2, GAP 18 s 68.9

GAP 12 s 49.7

ResNet 50

Res 5a, 5b, 5c, GAP 17 s

90.7MB

71.5

Res 5b, 5c, GAP 13 s 70.9

Res 5c, GAP 10 s 69.5

GAP 8 s 50.4

Table 4: 	e results of Fast RCNN with skip-layer connections.

Network Training time Model size mAP (%)

GoogleNet 6 s 129MB 64.0

Inception v2 11 s 145MB 65.2

Inception v3 16 s 191MB 68.9

ResNet 50 14 s 200MB 70.8

layer with two 1024-d fc layers. 	ey are randomly initialized
by the Xavier method due to having no pretrained fc layers
available. Each fc layer is followed by a ReLU layer and
a dropout layer with the dropout ratio of 0.25. Similarly,
we perform experiments on di�erent backbone ConvNets
with our skip-connection layers for Fast RCNN system. 	e
experiment results are shown in Table 4, which indicates our
skip-connection architecture is fairly e�ective and the skip-
connection architecture has almost identical performance as
the third convolution-based regionwise classi
er. Obviously,
the fc layers account for most of the 
nal model compared
to convolutional layers. Besides, we assume that the perfor-
mance can be improved further while using more fc layers.

In fact, Faster RCNN innovatively merges the proposed
RPN and Fast RCNN into a single network by sharing their
convolutional features. 	erefore, we only perform some
experiments on the above best case for Faster RCNN. Due
to a lack of time, we only experiment on the ResNet 50 and
get the detection mAP of 73.1 which is boosted by almost two
percentage points in comparison with Fast RCNN. What is
more, we try to run some experiments on the convolution-
based regionwise classi
er where our skip-layer connection
is used in the feature extraction stage by combining three

network stages whose strides are {22, 23, 24} pixels. To our
great pity, the obtained detection mAP is fairly low, only

62.4 and 65.9 for Inception v2 and ResNet 50, respectively.
	erefore, we put forward an argument that combining
higher feature is more e�ective.

5. Conclusions

In this paper, we have presented how to use the prevailing
fully convolutional architectures in the notable object detec-
tion systems such as Fast/Faster RCNN. Speci
cally, we have
derived a general formula for accurately designing the input
size of the various fully convolutional networks in which
the convolutional layer and pooling layer are concatenated
with their strides being greater than 1 and have proposed
an e�cient architecture of skip connection to accelerate the
training process. It is worth noting that our experiments
are only performed on the VOC2007 set for some reason.
We strongly believe that the results clearly can be boosted
by a large margin as using more training data. We believe
that our theoretical analysis and experiments can bring in
some insights into how to employ other CNN architectures
in single-stage or two-stage object detection systems. Besides,
we will leverage the Faster RCNN whose backbone ConvNet
is replaced with the ResNet 50 to detect small objects in
optical remote sensing image by accurately modifying the
strides in the future work.
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