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Abstract

Object detection is often conducted by object proposal

generation and classification sequentially. This paper han-

dles object detection in a superpixel oriented manner in-

stead of the proposal oriented. Specially, this paper takes

object detection as a multi-label superpixel labeling prob-

lem by minimizing an energy function. It uses the data cost

term to capture the appearance, smooth cost term to encode

the spatial context and label cost term to favor compact de-

tection. The data cost is learned through a convolutional

neural network and the parameters in the labeling model

are learned through a structural SVM. Compared with pro-

posal generation and classification based methods, the pro-

posed superpixel labeling method can naturally detect ob-

jects missed by proposal generation step and capture the

global image context to infer the overlapping objects.

The proposed method shows its advantage in Pascal

VOC and ImageNet. Notably, it performs better than the Im-

ageNet ILSVRC2014 winner GoogLeNet (45.0% V.S. 43.9%

in mAP) with much shallower and fewer CNNs.

1. Introduction

Object detection is a computer vision task to automat-

ically localize objects in categories of interest from im-

ages. Starting from early methods which can successfully

localize constrained object categories, such as face [42, 52]

or pedestrian [8, 11], state-of-the-art methods [15, 20] are

moving focus to the detection of varying categories with

large appearance variations, such as the twenty categories in

Pascal VOC [13] and two hundred categories in ImageNet

[43].

While numerous works have been proposed for object

detection, most of them actually transform the object detec-

tion to image classification. They first generate object pro-

posals and then classify each proposal independently by the

image classification techniques. The traditional paradigm

to get proposal [38, 52] is to use the sliding window to ex-

haustively sample about 100, 000 bounding boxes in vari-

ous scales and locations. The recently popular paradigm is

to generate about 2, 000 proposals by clustering or segmen-

tation according to low-level image cues. After that, image

classification techniques are used to classify each proposal.

The classification has achieved great advances recently, due

to the robust low level features [8, 35], sophisticated mod-

els [40, 4, 15] and convolutional neural networks (CNN)

[28, 46].

Through the transformation, the detection performance

can benefit from the advances in image classification. It

leads to the great improvement in detection of face, pedes-

trian and more general object categories in the last two

decades. However, it also results in two problems. The

first is that if an object is missed in object proposal step,

such as an object with partially occlusion or unusual aspect

ratio, the detection system would definitely miss the object.

The second is that the independent classification of propos-

als cannot incorporate the global image context, which is

very important to detect overlapped objects and distinguish

object part and object itself.

To alleviate the two problems, we believe one possible

solution is to move the focus in detection from proposals to

superpixels. The superpixels are compact and perceptually

meaningful atomic regions for images. The pixels in one su-

perpixel can be safely assumed to belong to the same object

(as long as the scale of superpixel is small enough) and su-

perpixels can be grouped together flexibly to form objects.

The interaction between objects, which is hard to model in

object level, also becomes easier in superpixel level. If we

know the label of each superpixel (e.g., it belongs to which

object in what category), then the object detection problem

becomes trivial. To this end, we conduct object detection

by labeling superpixels.

However, reliable inference of a superpixel’s label can be

very difficult, due to the ambiguity in its appearance. In this

paper, we exploit three types of information on entire image

jointly by constructing an energy function on image’s super-

pixel partition. The appearance of the superpixel is captured

by a data cost term, which is propagated from classification

result of the regions it belongs to by RCNN[20]. The spa-
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(a) sliding window (b) selective search (c) superpixel labeling (d) definition of object detection

Figure 1. Different methods for object detection. The sliding window (Fig. 1(a)) and selective search (Fig. 1(b)) based methods handle the

object detection by proposal generation and independently classification in a sequential manner. The proposed superpixel labeling method

(Fig. 1(c)) directly outputs the object masks for detection. The object detection problem itself can be taken as a pixel labeling problem

(Fig. 1(d)), where the detection is a task the predict the labels of pixels (best viewed in color).

tial context, such as whether two superpixels belong to the

same object, is captured by a smooth cost term. Since com-

pact detection is always favored, we add a label cost term to

punish the number of labels used. In this way, the detection

becomes a multi-label labeling problem with label cost, and

α-expansion based method such as [9] can be used for ap-

proximate inference. To learn the parameters in the energy

function, such as the weight of different terms, a structural

SVM is conducted to maximize the detection performance.

It should be noted that the proposed superpixel labeling

method is closer to the essential definition of object detec-

tion, which infers pixels’ labels of belonging objects. As

shown in Fig. 1, for sliding window and selective search

based method, the inference is conducted by classifying

each proposal and the heuristic method like NMS is used

to merge the classified proposals. Instead, the proposed

method infers the labels of superpixels globally to derive the

object location. One by-product of the proposed superpixel

labeling based detection is that it can output a coarse mask

for each detection, although only annotations of bounding

boxes are used for training.

The rest of the paper is organized as follows. Section

2 reviews the related work. The motivation of superpixel

based detecton and the details of the superpixel labeling

method are described in Section 3 and Section 4. In Sec-

tion 5 we show experimental results and finally in Section 6

we conclude the paper.

2. Related Work

The improvement in object detection can be divided

into proposal generation and proposal classification. Typ-

ical trends are the proposal number becomes smaller and

smaller and the classification method becomes more and

more complex.

To generate object proposals, the most direct and com-

monly used procedure is the sliding window for exhaustive

search. It is popularized by early works in pedestrian de-

tection [38] and face detection [52]. The current publicly

available state-of-the-art face detection [37, 5] and pedes-

trian detection [55, 57] methods are all based on sliding

window. The deformable part model (DPM), which is the

foundation of champion systems in Pascal VOC 2007-2011,

is also based on sliding window. The main drawback of the

sliding window is that the number of proposals can be about

O(106) for a 640×480 image, which limits the complexity

of classification due to the evaluation efficiency.

Various methods are proposed to reduce the number of

proposals. It is proven useful in [23] and popularized by

[50]. In [50], the superpixels generated by [16] are hierar-

chically grouped to form object proposals. The number of

proposals can be about 2, 000 with a recall rate of 98% on

Pascal VOC and 92% on ImageNet. Besides the small num-

ber, another advantage is that proposals at arbitrary scale

and aspect ratio can be generated, which provides more flex-

ibility for general object detection. This method is widely

used by leading object detection methods on Pascal VOC

[20] and ImageNet [46]. Recently, many methods are fur-

ther proposed to get more compact and efficient object pro-

posals, including the unsupervised approach [23, 50, 2] and

the supervised approach [1, 62, 6, 36]. An evaluation and

survey on recent object proposal method can be found in

[24].

When the proposals are fixed, detection becomes classi-

fication of each proposal. It involves how to represent the

proposal and how to classify the representation. The fea-

ture representation becomes more and more sophisticated,

from hand-crafted Haar [52] and HOG [8] to learning based

CNN [20]. Built on top of these feature representations,

carefully designed models can be incorporated. The two

popular models are the deformable part model (DPM [15])

and the bag of words (BOW [40, 4]). Given the feature

representation, classifier such as Boosting [17] and SVM

[7] are commonly used for classification. Structural SVM

[49, 26] and its latent version [60] are recently widely used

when the learning data has structural loss, such as DPM.

A recent work [21] also shows that the DPM can be inter-

preted as a CNN. The CNN based representation has shown

great advantages and has been adopted by all the leading



methods in ImageNet [43].

Previous works have noticed the problems in proposal

based detection. In [10, 41], context models are built to

learn the context information to improve the heuristic non-

maximum suppression. In [19, 48], spatial models are used

to inference the occlusion. In [15, 20], regression is used

to refine the bounding box. However, all of these methods

cannot generate new object proposals and their performance

is limited by the proposal used.

A small number of methods which do not use the pro-

posal generation and classification paradigm have been pro-

posed. The implicit shape model [32] generalizes the hough

transform to combine object shape information of training

samples for object detection and probabilistic segmentation.

This method is further improved in [18, 3]. [47, 12] use

deep neural network to simultaneously regress the detec-

tion bounding boxes and their detection scores. [22, 58, 59]

infer whether an off-the-shelf detection is right or wrong

by jointly optimize the detection and segmentation. Al-

though promising directions are provided, the performance

still does not match the leading proposal generation and

classification method, such as the RCNN [20].

Our superpixel labeling method for object detection is

related to semantic image segmentation and scene parsing.

[30] captures the object co-occurrence by the label cost term

for semantic segmentation. [31] uses the conditional ran-

dom field (CRF) to combine object detection and segmen-

tation. However, these works are designed for Pascal VOC

segmentation task, where overlapped objects of the same

category are taken as one segment. In [14], CRF is built

on top of CNN features for scene parsing. [29] proposes

to use detection annotation to infer the segmentation mask.

Very Recently, [34] releases the Microsoft COCO dataset

with object level mask, which can be used to improve our

method.

3. Motivation

We use superpixel as the atom in further operations. The

ideal superpixel partition for detection is that the superpixel

number is small enough for the efficiency in inference and

each superpixel does not span in multiple objects. In this

paper, we use the superpixel generation algorithm proposed

in [16], which well satisfies this requirement. To increase

the diversity of superpixels, four parameter settings are used

to generate superpixels, as the setting of “fast mode” sug-

gested in [50]. Throughout this paper, the four superpixel

partitions are handled independently, and we only describe

operations in one superpixel partition for the simplicity in

notation.

We compare the superpixel based method for detection

with proposal based method and pixel based method on val2

Table 1. Comparison of labeling pixels, superpixels and proposals

for object detection on ILSVRC2014 val2. The Np, Ns and Nr

are the number of pixels, superpixels and proposals, respectively.

K is the possible number of objects in one category for an image,

for example 5.

Method Recall @0.9 Recall @0.5 Solution Space

Pixel 100% 100% NK
p (∼ 1026)

Superpixel 99.8% 100% NK
s (∼ 1013)

Proposal 25.5% 91.7% Nr (∼ 2000)

of ILSVRC2014 1. If we can successfully label each pixel,

superpixel and proposal (this is to say, we know it belongs

to which object in what category), the recall rates at 0.9

and 0.5 overlap ratio 2 are listed in Tab. 1. The pixel based

method can naturally get 100% recall rate at any overlap ra-

tio, but the output space is too large and becomes infeasible.

To our best knowledge, no successful methods have been re-

ported on pixel based object detection. The proposal based

methods have very small output space, but the recall ratio

is not enough, especially when the requirement of overlap

ratio is high. The proposed superpixel based method, can

be taken as a trade-off between the pixel based method and

proposal based method. It has nearly 100% recall with a

reasonable output space.

By moving the focus from proposal to superpixel, it is

possible to achieve higher recall and larger overlap ratio,

but it also confront challenges due to the large output space.

In the following part, we show how to regularize the model

for effective inference and learning.

4. Methodology

For each superpixel generation setting, we can get a

superpixel partition of an image and denote it as P =
{p1, p2, · · · , pN}, where pi is the i-th superpixel and N

is the superpixel number. Based on the partition, we also

have a neighborhood system N , where (pi, pj) ∈ N if pi
and pj are spatially connected. The detection is conducted

by finding a label configuration for each superpixel L =
{l1, l2, · · · , lN}, where the label li ∈ {0, 1, 2, · · · ,∞}.

Here li = 0 means pi belongs to the background, li = j

means pi belongs to the j-th object and the object number

can be any non-negative integer. For the simplicity, we han-

dle each category independently at the labeling step.
For each labeling configuration, we define an energy

function E(L) to measure its cost and can find the best la-
bel configuration L∗ with the smallest cost by minimizing
E(L). Now let us think what an appropriate label configu-
ration should be. When considering each superpixel inde-
pendently, its label should be based on the fitness between
its appearance and the appearance model learned from the

1https://github.com/rbgirshick/rcnn/tree/ilsvrc.
2The overlap ratio is based on the definition in Pascal VOC [13], which

is the intersection of two regions against the union of the two regions.



(a) Input Image (b) Superpixel Partition (c) Data Cost (d) Superpixel Labeling

Figure 2. Example of the proposed superpixel labeling approach. We generate superpixel partitions for input images, and then calculate

data cost for each superpixel by propagating the score of regions. However, the data cost term is always not enough for interacting objects,

and we need smooth term and label cost term. The final superpixel labeling result is shown in Fig. 2(d).

training data of this category. Considering the smoothness
nature of objects in image, the labels of neighborhood su-
perpixels should be correlated and punished for varying la-
bels. If two neighborhood superpixels have the same la-
bel and thus be taken as the same object, their appearance
should also be correlated. Finally, the label configuration
should favor fewer labels for compact detection. To this
end, we use the following energy function,

E(L) =
∑

pi∈P

D(li, pi)+
∑

(pi,pj)∈N

V (li, lj , pi, pj)+C(L), (1)

where we always ignore the image notation I to simplify

the notation. D(li, pi) is the data cost to capture the appear-

ance of pi and assign a cost based on the conflict between

the appearance model and the label li. V (li, lj , pi, pj) is the

pairwise smooth cost defined on the neighborhood system

N . C(L) is the label cost term, which is defined on the label

configurations L and is image invariant. It is motivated by

the MDL prior and plays an important role to get objects in

detection instead of object parts. In the following part, we

show how to define the three terms in order to make them

meaningful for detection and then show the inference and

learning details.

4.1. Data Cost

The data cost for each superpixel should only be calcu-

lated by its appearance. However, appearance of a super-

pixel usually does not have enough semantic information,

considering that it may only have a small number of pixels

and corresponds to an ambiguous object part. One obser-

vation is that the regions (proposals), which are grouped

neighborhood superpixels, provide more semantic object

level information and the appearance model of regions can

be well learned from annotation of detection. To make the

superpixel data cost term more reliable, we classify regions

and then propagate their costs to superpixels.
To get scores of regions, we use the RCNN approach

proposed in [20], where output of the penultimate layer of a
CNN trained for multi-category classification is used as fea-
ture extraction. For each category, a binary SVM is trained
to distinguish object regions from the background and ob-
jects of other categories. Different CNN features can largely

affect the final performance and we leave the details in the
Section 5.2. Suppose the region set is R = {r1, · · · , rT },
and the classification score of rt by RCNN is st, we use the
sigmoid function to map it to the data cost ranging in (0, 1),

D(lt, rt) =

{
1

1+exp(−α·st)
, if lt > 0

exp(−α·st)
1+exp(−α·st)

, if lt = 0
(2)

where α is set to be 1.5 empirically. The costs of all labels
except 0 are the same since they indicate the region belongs
to objects of a special category. One superpixel can belong
to different regions, so that we need to pool the costs of
different regions to a single value. For each superpixel, we
use the weighted sum of T smallest costs,

D(li, pi) =

T∑

t=1

wdt ·D(lt, R(pi)t), (3)

where R(pi)t is the i-th regions pi belongs to with the t-th

smallest cost. The weight wd is learned from the training

data and T is set to be 3 empirically.

4.2. Smooth Cost

The smooth cost is used to encode the pairwise informa-
tion. For the detection task, two kinds of information are
useful. The first is that adjacent superpixels are often posi-
tively correlated and should be encouraged to have the same
label. The second is that when the two adjacent superpixels
have the same label and thus belong to the same object, they
should be similar in appearance. To this end, the pairwise
term is defined as:

V (li, lj , pi, pj) = wslVl(li, lj) + Va(li, lj , pi, pj), (4)

where the Vl(li, lj) captures the first information and the

Va(li, lj , pi, pj) captures the second information.

For the Vl(li, lj), we set it to be a boolean variable. If

li = lj and (pi, pj) ∈ N , the cost is zero, otherwise the

cost is a punishment 1. It can be denoted as δ(li 6= lj). This

term has a weight wsl .
For the Va(li, lj , pi, pj), we need a cost to measure the

appearance consistency of two neighborhood superpixels
which are assigned with the same label. In this paper, we
use the color and texture as two complementary criteria. We



calculate a histogram with 25 bins for each color channel
and then concatenate them to be a histogram with 75 bins.
For the texture, we use the SIFT histogram as suggested in
[50]. The cost is defined as,

Va(li, lj , pi, pj) = wsc(1−
∑

q

min(cqi , c
q
j)) (5)

+wst(1−
∑

q

min(tqi , t
q
j)),

where c
q
i and t

q
i are the values in the q-th bin of color

and texture histogram of superpixel pi.
∑

min(cqi , c
q
j) and∑

min(tqi , t
q
j) are the intersection distances of color and

texture, ranging in [0, 1]. The weights wsc and wst will be

learned automatically in the training step.

4.3. Label Cost

By introducing the similarity part in the smooth term,
the final labeling result may contain many labels, such as
parts of an object may have varying appearance and may
be labeled as different objects. To this end, we need a
term to favor compact detection by punishing the number
of labels. The idea is related to the minimizing description
length (MDL). In this paper, we use the following defini-
tion,

C(L) =
K∑

i=1

wli · δ(i,L), (6)

where δ(·) is an indicator function defined as,

δ(i,L) =

{
1, if i ∈ L

0, otherwise
(7)

where the weight wl will also be learned from the data. It is

always the need that the weight wi increases monotonically

with i. Here we constrain the max number of objects for

each category K to be 5 and set the weight of background

label to be 0. Note that this cost is only related to the label

configuration L and does not depend on image.

4.4. Inference and Learning

When the smooth cost term is a metric, the energy func-

tion can be solved by the extended α-expansion algorithm

with well characterized optimal bounds as proved in [9].

Unfortunately, the smooth cost term used in this paper does

not satisfy this, and we can only find the solution in a heuris-

tic manner. To get the reliable labeling result, we need a

good initialization. In this paper, we use the RCNN [20]

detection result (the details of CNN can be found in Sec-

tion 5.2) for initialization. For each detection of RCNN, we

assign labels of superpixels in this detection to the detec-

tions’ order number. The superpixel number for each par-

tition is always no more than 500 for an image, so that the

α-expansion is usually very efficient. After we get the su-

perpixel labeling configuration L∗, we simply connect su-

perpixels with the same labels and use the corresponding

bounding box as the detection result, where the score is the

average score of its superpixels. If two regions are formed

by superpixels of the same label but are not connected, we

take them as two different instances in detection. An ex-

ample of the superpixel labeling procedure can be found in

Fig. 2.

The energy function defined above has the parameters

wd, ws and wl, where ws = [wsl , wsc , wst ]. We learn

them from the training data to optimize the detection per-

formance. For each category in each image, the energy can

be rewritten as a linear form in terms of wd, ws and wl,

E(L) = w
TΦ(P,L), (8)

where w is the concatenation of wd, ws and wl. Φ(P,L) is

the concatenation of the costs on the entire image, which is

defined as,

Φ(P,L) = [
∑

pi∈P

D(lt, R(pi)t)

︸ ︷︷ ︸

i=1,··· ,T

,
∑

(pi,pj)∈N

δ(li 6= lj), (9)

∑

(pi,pj)∈N

(1−
∑

q

min(cqi , c
q
j)),

∑

(pi,pj)∈N

(1−
∑

q

min(tqi , t
q
j))

δ(i,L)
︸ ︷︷ ︸

i=1,··· ,K

]T .

For an image Im, suppose the ground truth superpixel
labeling configuration is Lm and the labeling configuration
inferred from the energy function is L∗

m. We want to find
the combination of {wd, ws, wl} that, given the image Im,
it tends to get L∗

m = Lm. Given M training images, the
objective function can be defined as,

arg min
w,ξm≥0

w
T
w + C

M∑

m=1

ξm (10)

s.t.∀m ∈ [1,M ], ∀L′
m

w
TΦ(Pm,L

′
m)− w

TΦ(Pm,Lm) ≥ l(Lm,L
′
m)− ξm

where wTw is the regularization term. The constraint in

Eq. 10 is specified as follows. Let us consider the m-th

image with superpixel partition Pm and its ground truth la-

bel configuration is Lm. We want the Lm to have smaller

cost than all other label configurations L′

m. However, not

all the incorrect label configurations are equally bad. The

loss function l(Lm,L′

m) measures how incorrect L′

m is and

penalizes the slack variable ξm according to the difference

between Lm and L′

m.

We decompose the loss (Lm,L′

m) of superpixel labeling

configurations to object level. Given the labeling configu-

ration L′, we can naturally get the object detection config-

uration. We calculate the number of true negative and false

positive according to the Pascal VOC criterion [13] and use

it as the cost. After the loss function and inference method



are provided, the objective function defined in Eq. 10 can be

solved by a cutting plane procedure and we use the package

in [51] and refer the theory to [26].

5. Experiments

We evaluate the proposed method on ImageNet

ILSVRC2014 detection task, which is currently the most

challenging large scale detection dataset with 200 cate-

gories collected from the Internet. For the best practice,

annotation of the testing set is not publicly available and

the detection results are submitted to the testing server to

get the performance. We compare our method with current

state-of-the-art methods and then diagnose contribution of

each step. We also report the performance on the widely

used Pascal VOC 2007.

5.1. Comparison on ImageNet Detection

For the ImageNet object detection, we follow the train-

ing, validation and testing set partition in ILSVRC2014

[43]. We uses the CNNs, which are trained on the 1000

category classification data for initialization and fine-tuned

on the detection data, as the setting in [20, 50, 56, 46]. As

in [20], the proposal which overlaps a ground truth window

with at most 0.3 is taken as a negative sample. We train four

CNN models with the depth of 9, 10, 11 and 12, respec-

tively. For the four CNNs, the final convolution layer is fol-

lowed by a spatial pyramid pooling layer [27] and the output

of the penultimate layer (the dimension is 4096) is used as

the feature representation. Features of the four CNNs are

concatenated as the final feature representation and fed into

the binary linear SVM classifier. The final classification re-

sults are used to initialize the data cost term. After that, we

use the proposed energy function to infer superpixel labels

and get the detection result. We list mean average precision

of the leading methods from 2013 to 2014 on the testing

set, as well as our method, in Tab. 2. Since the number of

models used for ensemble may significantly affect the final

results, we also report the performance of single model to

fairly compare each detection method.

Our best single CNN based model has a detection mAP

of 42.5%. After ensemble of four CNNs, the mAP increases

to be 45.0%. Our method improves one times compared

with the champion in ILSVRC2013 and has already been

better than the ILSVRC2014 champion GoogLeNet. We

only use 4 CNNs while the GoogLeNet uses 7 CNNs, and

our CNNs are not as sophisticated as the GoogLeNet. Our

method shows that by carefully designing new detection

method, there exists potentials to get better detection re-

sult although the CNN is not good enough. From Tab. 2,

we find that large improvement from 2013 to 2014, mainly

comes from the adoption of RCNN framework, which was

originally proposed in [20]. Actually, all the 2014 methods

listed above use the RCNN framework. The reasons of the

Table 2. Results on the testing set of ILSVRC2014 detection task,

which are merged by mean average precision (mAP) on 200 cate-

gories. The numbers of our method are got from the testing server,

while numbers of other entries are directly from the ILSVRC2014

result page and corresponding papers. The methods marked with
∗ do not use classification data for pre-training and marked with +

only use the 2013 data.

Method single model # CNNs Combined

NEC-RegionLet [54] + 20.8 1 20.8

NYU-OverFeat [44] + - 7 24.3

UvA-Euvision [50] + 22.6 6 22.6

MSRA-SPP-Net [27] ∗ 31.8 6 35.1

NUS-NIN [33] ∗ 35.6 3 37.2

Berkeley Vision [20] 34.5 1 34.5

UvA-Euvision [50] 35.4 1 35.4

Deep Insight [56] 40.2 3 40.5

CUHK-DeepID-Net [39] 37.7 10 40.7

GoogLeNet [46] 38.0 7 43.9

Superpixel Labeling 42.5 4 45.0

5.2%

2.6%

0.9%

0.6%

1.3%

3.5%

Diagnosis Experiments on Val2

SuperPixel Labeling

Context

Model Ensemble

Better Proposal

Better Tuning

Deeper CNN

Final result

45.4% mAP

Baseline

31.4% mAP

Figure 3. Diagnosis experiments on val2 of ILSVRC2014 detec-

tion (best viewed in color).

different results are the proposals used and the features gen-

erated by different CNNs. The proposed superpixel labeling

method can be naturally incorporated with these methods

(by using them to enhance the data cost term in the energy

function) to get further improvement.

The detection performance varies a lot in 200 categories.

We show the top 24 categories and bottom 24 categories in

Tab. 5.1. Most categories of good performance are from the

nature, while some manufacture categories still have poor

performance. It is mainly because that the manufacture cat-

egories can have large aspect ratio and usually have much

occlusion. The category with the highest performance is

the butterfly with a AP of 92.7%, which is already better

than the well-explored pedestrian detection on INRIA [8]

(88.2%) and approaching that of face detection on AFW

[61] (93.7%).



top 24

butterfly 92.7 rabbit 83.9 frog 80.4 fox 75.9 snowmobile 73.9 elephant 72.8 tiger 70.4 tennis ball 68.2

volleyball 86.2 basketball 82.8 bear 78.5 skunk 75.3 scorpion 73.5 iPod 71.4 armadillo 70.0 harp 67.6

dog 85.9 bird 82.1 snowplow 77.7 zebra 74.3 turtle 73.0 red panda 70.7 antelope 68.3 whale 67.2

bottom 24

head cabbage 23.9 swimming trunks 21.3 ruler 20.9 purse 18.1 stove 16.9 lamp 14.1 microphone 12.9 horizontal bar 11.3

bookshelf 23.7 diaper 21.2 bench 20.1 pencil box 18.0 plastic bag 14.9 ski 14.0 nail 12.5 ladle 9.3

miniskirt 23.3 flute 21.2 screwdriver 19.5 water bottle 18.0 binder 14.5 eraser 12.9 spatula 11.8 backpack 6.8

Table 3. The average precision of top and bottom 24 categories by the superpixel labeling method in ILSVRC2014 testing set.

plane bicycle bird board bottle bus car cat chair cow table dog horse motor person plant sheep sofa train tv mean

SS-BOW [50] 43.5 46.5 10.4 12.0 9.3 49.4 53.7 39.4 12.5 36.9 42.2 26.4 47.0 52.4 23.5 12.1 29.9 36.3 42.2 48.8 33.8

DPM v5 [15] 33.2 60.3 10.2 16.1 27.3 54.3 58.2 23.0 20.0 24.1 26.7 12.7 58.1 48.2 43.2 12.0 21.1 36.1 46.0 43.5 33.7

RegionLet [54] 54.2 52.0 20.3 24.0 20.1 55.5 68.7 42.6 19.2 44.2 49.1 26.6 57.0 54.5 43.4 16.4 36.6 37.7 59.4 52.3 41.7

RCNN [20] 68.1 72.8 56.8 43.0 36.8 66.3 74.2 67.6 34.4 63.5 54.5 61.2 69.1 68.6 58.7 33.4 62.9 51.1 62.5 64.8 58.5

RCNN-gt 68.8 73.6 55.6 50.1 51.7 71.1 77.0 61.3 38.5 60.4 48.5 58.9 69.0 69.2 69.2 39.0 60.0 49.6 61.2 67.2 60.0

Proposed Method 71.8 70.3 58.1 46.2 39.8 70.2 75.2 71.9 38.3 69.0 56.7 66.9 73.5 71.8 59.0 31.9 67.3 56.0 64.3 69.6 61.4

Table 4. Average-Precision of different methods on 20 categories of Pascal VOC 2007 testset.

5.2. Diagnosis Experiments

Our current system except the superpixel labeling is

based on the framework of RCNN. In this part, besides the

proposed superpixel labeling detection algorithm, we also

expose the details which significantly improve the baseline

RCNN implementation [20].

The baseline RCNN implementation3 uses a CNN with

AlexNet [28] which is trained on imageNet classification

data and fine-tuned on detection data. We independently

find that the depth of CNN plays a key role to the final per-

formance, which is in consistent with [46, 45] for classifica-

tion and [46, 56] for detection. In our experiment, directly

deepening the 7 layer AlexNet to 12 layer model can get a

5.2% mAP gain. Further improvement comes from better

model tuning, including larger mini-batch sizes and more

iterations. A cascade, which prunes many easy background

proposals, enables the classifier to focus on the most diffi-

cult and has a 0.9% improvement. It also helps to accelerate

the training and inference procedure. This observation is in

consistent with the bounding box rejection in [39]. When

multiple models are combined, a 0.6% performance gain

is obtained. Further performance gain comes from the im-

age level context. We find that simply weighted sum the

image classification score and the detection score could re-

liably improve the performance. The proposed superpixel

labeling based detection method finally brings a 3.5% im-

provement, which enables our system to perform better than

the GoogLeNet. By accumulating these techniques, we get

about 50% relative performance gain over the baseline.

Due to the limitation in time and machine (and a highly

optimized code), we only have four CNNs for model ensem-

ble, but we find that they are enough to achieve the lead-

ing performance. Empirically, better classification CNN

(which is used for fine-tuning), more fine-tuning itera-

tions and more model ensemble lead to better detection re-

sults. Currently, the CNNs used for initialization get the

13% accuracy of top 5 classification accuracy on classifi-

3publicly available in https://github.com/rbgirshick/rcnn/tree/ilsvrc

cation data with single center test, while the GoogLeNet is

about 10%. Directly changing the CNN used in this paper

to GoogLeNet could further improve the detection perfor-

mance4. We plan to release these models.

5.3. Experiments on Pascal VOC

We finally evaluate our method on Pascal VOC 2007

[13], which is a widely used benchmark for object detec-

tion. We use the “comp4” protocol since that the CNN

trained on additional ImageNet classification data is used

to initialize the CNN. To fairly compare our method with

the RCNN baseline, we use exactly the same CNN feature

extractor and the same object proposals, as in [20]. We also

add the result of “RCNN-gt”, where the ground truth bound-

ing boxes are added to the proposals and can be taken as an

upper bound of the RCNN. The standard DPM, selective

search proposal with bag-of-words classifier and RegionLet

are used for comparison. The results are listed in Tab. 4.

All the methods except the DPM in Tab. 4 use the se-

lective search for proposal generation. The performance in-

creases with better classification, from BOW, RegionLet to

CNN. An interesting observation is that when the ground

truth bounding boxes are added, the performance only has

a 1.5% improvement. It indicates that the proposals with

small overlaps, instead of the missed objects, mostly harm

the performance. Our method can reduce the influence by

exploring the global image information to more clearly infer

the overlapped objects and reduce the influence of localiza-

tion problem. It is even better than the RCNN with ground

truth by 1.4%. Similar to the observations on ImageNet, the

superpixel labeling algorithm has a 3% improvement com-

pared to the RCNN when using the same CNN feature.

The speed of our system depends on the algorithm used

to initialize scores of superpixels. In our current implemen-

tation, we use the RCNN framework with new CNN feature

extractor based on the open source software Caffe [25]. It

4In preparing the camera ready version, we find that by adding a

GoogLeNet, the mAP on val2 improves to be 48.0%.



Figure 4. Qualitative results of Superpixel Labeling based object detection on ImageNet and Pascal VOC (best viewed in color).

runs at 1fps for each 128 object proposals on a NVIDIA

Telsa K40 GPU. We note that it can be significantly accel-

erated by the spatial pyramid pooling method proposed in

[27]. Benefiting from the efficient α-expansion based graph

cut implementation in [9], the superpixel labeling procedure

is very efficient. The qualitative detection result of the pro-

posed superpixel labeling method on ImageNet and Pascal

VOC are shown in Fig. 4.

6. Conclusion

This paper proposes to handle object detection by la-

beling superpixels. Compared with the traditional proposal

generation and classification based methods, the superpixel

based method has a much larger output space and provides

more flexibility. It can alleviate the problems in proposal

based method. For example, it can infer overlapped objects

by encoding global image information. Current leading

methods, such as RCNN with very deep CNN, can be incor-

porated into the superpixel labeling by providing a strong

data cost term. The CNN used in RCNN and the parame-

ters in the energy function are learned sequentially, and we

plan to jointly learn them for further performance gain. Our

work can also give a rough mask and can be extended to se-

mantic segmentation, which is taken as a future work. We

believe our approach can also be used for other applications,

such as detection based visual tracking[53].
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