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Abstract. We develop an object detection method combining top-down recog-

nition with bottom-up image segmentation. There are two main steps in this

method: a hypothesis generation step and a verification step. In the top-down hy-

pothesis generation step, we design an improved Shape Context feature, which is

more robust to object deformation and background clutter. The improved Shape

Context is used to generate a set of hypotheses of object locations and figure-

ground masks, which have high recall and low precision rate. In the verification

step, we first compute a set of feasible segmentations that are consistent with

top-down object hypotheses, then we propose a False Positive Pruning(FPP) pro-

cedure to prune out false positives. We exploit the fact that false positive regions

typically do not align with any feasible image segmentation. Experiments show

that this simple framework is capable of achieving both high recall and high pre-

cision with only a few positive training examples and that this method can be

generalized to many object classes.

1 Introduction

Object detection is an important, yet challenging vision task. It is a critical part in many

applications such as image search, image auto-annotation and scene understanding;

however it is still an open problem due to the complexity of object classes and images.

Current approaches ([1][2] [3][4][5] [6][7] [8] [9][10]) to object detection can be

categorized by top-down, bottom-up or combination of the two. Top-down approaches

([11][2][12]) often include a training stage to obtain class-specific model features or

to define object configurations. Hypotheses are found by matching models to the im-

age features. Bottom-up approaches start from low-level or mid-level image features,

i.e. edges or segments([8][5][9] [10]). These methods build up hypotheses from such

features, extend them by construction rules and then evaluate by certain cost functions.

The third category of approaches combining top-down and bottom-up methods have

become prevalent because they take advantage of both aspects. Although top-down ap-

proaches can quickly drive attention to promising hypotheses, they are prone to produce

many false positives when features are locally extracted and matched. Features within

the same hypothesis may not be consistent with respect to low-level image segmen-

tation. On the other hand, bottom-up approaches try to keep consistency in low level

image segmentation, but usually need much more efforts in searching and grouping.
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Fig. 1. Method overview. Our method has three parts (shaded rectangles). Codebook

building (cyan) is the training stage, which generates codebook entries containing im-

proved SC features and object masks. Top-down recognition (blue) generates multiple

hypotheses via improved SC matching and voting in the input image. The verification

part (pink) aims to verify these top-down hypotheses using bottom-up segmentation.

Round-corner rectangles are processes and ordinary rectangles are input/output data.

Wisely combining these two can avoid exhaustive searching and grouping while main-

taining consistency in object hypotheses. For example, Borenstein et al. enforce conti-

nuity along segmentation boundaries to align matched patches ([2]). Levin et al. take

into account both bottom-up and top-down cues simultaneously in the framework of

CRF([3]).

Our detection method falls into this last category of combining top-down recog-

nition and bottom-up segmentation, with two major improvements over existing ap-

proaches. First, we design a new improved Shape Context (SC) for the top-down recog-

nition. Our improved SC is more robust to small deformation of object shapes and

background clutter. Second, by utilizing bottom-up segmentation, we introduce a novel

False Positive Pruning (FPP) method to improve detection precision. Our framework

can be generalized to many other object classes because we pose no specific constraints

on any object class.

The overall structure of the paper is organized as follows. Sec. 2 provides an overview

to our framework. Sec.3 describes the improved SCs and the top-down hypothesis gen-

eration. Sec.4 describes our FPP method combining image segmentation to verify hy-

potheses. Experiment results are shown in Sec.5, followed by discussion and conclusion

in Sec.6.

2 Method Overview

Our method contains three major parts: codebook building, top-down recognition using

matching and voting, and hypothesis verification, as depicted in Fig.1.

The object models are learned by building a codebook of local features. We extract

improved SC as local image features and record the geometrical information together

with object figure-ground masks. The improved SC is designed to be robust to shape

variances and background clutters. For rigid objects and objects with slight articulation,

our experiments show that only a few training examples suffice to encode local shape

information of objects.

We generate recognition hypotheses by matching local image SC features to the

codebook and use SC features to vote for object centers. A similar top-down voting

scheme is described in the work of [4], which uses SIFT point features for pedestrian

detection. The voting result might include many false positives due to small context
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Fig. 2. Angular Blur. (a) and (b) are different bin responses of two similar contours.

(c) are their histograms. (d) enlarges angular span θ to θ′, letting bins be overlapped in

angular direction. (e) are the responses on the overlapped bins, where the histograms

are more similar.

of local SC features. Therefore, we combine top-down recognition with bottom-up seg-

mentation in the verification stage to improve the detection precision. We propose a new

False Positive Pruning (FPP) approach to prune out many false hypotheses generated

from top-down recognition. The intuition of this approach is that many false positives

are generated due to local mismatches. These local features usually do not have seg-

mentation consistency, meaning that pixels in the same segment should belong to the

same object. True positives are often composed of several connected segments while

false positives tend to break large segments into pieces.

3 Top-down Recognition

In the training stage of top-down recognition, we build up a codebook of improved SC

features from training images. For a test image, improved SC features are extracted and

matched to codebook entries. A voting scheme then generates object hypotheses from

the matching results.

3.1 Codebook Building

For each object class, we select a few images as training examples. Object masks are

manually segmented and only edge map inside the mask is counted in shape context

histogram to prune out edges due to background clutter.

The Codebook Entries (CE) are a repository of example features: CE = {cei}.

Each codebook entry cei = (ui, δi,mi, wi) records the feature for a point i in labelled

objects of the training images. Here ui is the shape context vector for point i. δi is the

position of point i relative to the object center. mi is a binary mask of figure-ground

segmentation for the patch centered at point i. wi is the weight mask computed on mi,

which will be introduced later.

3.2 Improved Shape Context

The idea of Shape Context (SC) was first proposed by Belongie et al. ([13]). The ba-

sic definition of SC is a local histogram of edge points in a radius-angle polar grid.

Following works ([14][15]) improve its distinctive power by considering different edge

orientations. Besides SC, other local image features such as wavelets, SIFT and HOG

have been used in keypoint based detection approaches ([4],[12]).

Suppose there are nr (radial) by nθ (angular) bins and the edge map E is divided

into E1, . . . , Eo by o orientations (similar to [15]), for a point at p, its SC is defined as

u = {h1, . . . , ho}, where
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Fig. 3. Distance function with mask. In (a), a feature point v has the edge map of a1

around it. Using object mask b1, it succeeds to find a good match to u in B (object

model patch), whose edge map is b2. a2 is the object mask b1 over a1. Only the edge

points falling into the mask area are counted for SC. In (b), histograms of a1, a2 and b2

are shown. With the mask function, a2 is much closer to b2, thus got well matched.

hi(k) = #{q 6= p : q ∈ Ei,
→
pq∈ bin(k)}, k = 1, 2, ..., nrnθ (1)

Angular Blur A common problem for the shape context is that when dense bins are

used or contours are close to the bin boundaries, similar contours have very different

histograms (Fig.2-(c)). This leads to a large distance for two similar shapes if L2-norm

or χ2 distance function is used. EMD([16]) alleviates this by solving a transportation

problem; but it is computationally much more expensive.

The way we overcome this problem is to overlap spans of adjacent angular bins:

bin(k) ∩ bin(k + 1) 6= ∅ (Fig.2-(d)). This amounts to blurring the original histogram

along the angular direction. We call such an extension Angular Blur. One edge point

in the overlapped regions are counted in both of the adjacent bins. So the two contours

close to the original bin boundary will have similar histograms for the overlapping

bins(Fig.2-(e)). With angular blur, even simple L2-norm can tolerate slight shape defor-

mation. It improves the basic SC without the expensive computation of EMD.

Mask Function on Shape Context In real images, objects SCs always contain back-

ground clutter. This is a common problem for matching local features. Unlike learning

methods ([1][12]) which use a large number of labeled examples to train a classifier, we

propose to use a mask function to focus only on the parts inside object while ignoring

background in matching.

For ce = (u, δ,m,w) and a SC feature f in the test image, each bin of f is masked

by figure-ground patch mask m of ce to remove the background clutter. Formally, we

compute the weight w for bin k and distance function with mask as:

w(k) = Area(bin(k) ∩ m)/Area(bin(k)), k = 1, 2, ..., nrnθ (2)

Dm(ce, f) = D(u, w · v) = ||u − w · v||2 (3)

where (·) is the element-wise product. D can be any distance function computing the

dissimilarity between histograms (We simply use L2-norm). Figure 3 gives an example

for the advantage of using mask function.
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Fig. 4. Top-down recognition. (a) An input image;(b) A matched point feature votes for

3 possible positions; (c) The vote map V . (d) The hypothesis Hj traces back find its

voters {fi}. (d) Each fi predicts the figure-ground configration using Eq. (5).

3.3 Hypothesis Generation

The goal of hypothesis generation is to predict possible object locations as well as to

estimate the figure-ground segmentation for each hypothesis. Our hypothesis generation

is based on a voting scheme similar to [4]. Each SC feature is compared with every

codebook entry and makes a prediction of the possible object center. The matching

scores are accumulated over the whole image and the predictions with the maximum

scores are the possible object centers. Given a set of detected features {fi} at location

{li}, we define the probability of matching codebook entry cek to fi as P (cek|li) ∝
exp(−Dm(cek, fi)). Given the match of cek to fi, the probability of an object o with

center located at c is defined as P (o, c|cek, li) ∝ exp(−||c + δk − li||
2). Now the

probability of the hypothesis of object o with center c is computed as:

P (o, c) =
∑

i,k

P (o, c|cek, li)P (cek|li)P (li) (4)

P (o, c) gives a voting map V of different locations c for the object class o. Extracting

local maxima in V gives a set of hypotheses {Hj} = {(oj , cj)}.

Furthermore, figure-ground segmentation for each Hj can be estimated by backtrac-

ing the matching results. For those fi giving the correct prediction, the patch mask m in

the codebook is “pasted” to the corresponding image location as the figure-ground seg-

mentation. Formally, for a point p in image at location pl, we define P (p = fig|cek, li)
as the probability of point p belonging to the foreground when the feature at location

li is matched to the codebook cek: P (p = fig|cek, li) ∝ exp(−||pl − li||)mk(
−→

plli).
And we assume that P (cek, li|Hj) ∝ P (oj , cj |cek, li) and P (fi|cek) ∝ P (cek|fi).
The figure-ground probability for hypothesis Hj is estimated as

P (p = fig|Hj) ∝
∑

k

exp(−||pl − li||)mk(
−→

plli)P (fi|cek)P (cek, li|Hj) (5)

Eq. (5) gives the estimation of top-down segmentation. The whole process of top-down

recognition is shown in Fig. 4. The binary top-down segmentation (F, B) of figure(F )

and background (B) is the obtained by thresholding P (p = fig|Hj).



4 Verification: Combining Recognition and Segmentation

From our experiments, the top-down recognition using voting scheme will produce

many False Positives (FPs). In this section, we propose a two-step procedure of False

Positive Pruning (FPP) to prune out FPs. In the first step we refine the top-down hy-

pothesis mask by checking its consistency with bottom-up segmention. Second the final

score on the refined mask is recomputed by considering spatial constraints.

Combining Bottom-up Segmentation The basic idea for local feature voting is to

make global decision by the consensus of local predictions. However, these incorrect

local predictions using a small context can accumulate and confuse the global decision.

For example, in pedestrian detection, two trunks will probably be locally taken as hu-

man legs and produce a human hypothesis (in Fig. 5-(a)); another case is the silhouettes

from two standing-by pedestrians.
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Fig. 5. Combining bottom-up segmentation. FPs tend to spread out as multiple re-

gions from different objects. In example of (a). an object O consists of five parts

(A,B, C, D, E). (A′ ∈ O1, D
′ ∈ O2, E

′ ∈ O3) are matched to (A, D, E) because

locally they are similar. The hypothesis of O′ = (A′, D′, E′) is generated. (b) shows

boundaries of a FP (in red) and a TP (in green) in a real image. (c) is the layered view

of the TP in (b). The top layer is the top-down segmentation, which forms a force (red

arrows) to pull the mask out from the image. The bottom layer is the background force

(green arrows). The middle layer is the top-down segmentation (we threshold it to bi-

nary mask) over the segmentation results.(d) is the case for the FP.

In pedestrian detection, the top-down figure-ground segmentation masks of the FPs

usually look similar to a pedestrian. However we notice that such top-down mask is

not consistent with the bottom-up segmentation for most FPs. The bottom-up segments

share bigger contextual information than the local features in the top-down recogni-

tion and are homogenous in the sense of low-level image feature. The pixels in the

same segment should belong to the same object. Imagine that the top-down hypothesis

mask(F,B) tries to pull the object F out of the whole image. TPs generally consists of

several well-separated segments from the background so that they are easy to be pulled

out (Fig. 5-(c)). However FPs often contain only part of the segments. In the example of

tree trunks, only part of the tree trunk is recognized as foreground while the whole tree

trunk forms one bottom-up segment. This makes pulling out FPs more difficult because

they have to break the homogenous segments (Fig. 5-(d)).



Based on these observations we combine the bottom-up segmentation to update the

top-down figure-ground mask. Incorrect local predictions are removed from the mask

if they are not consistent with the bottom-up segmentation. We give each bottom-up

segment Si a binary label. Unlike the work in [17] which uses graph cut to propose

the optimized hypothesis mask, we simply define the ratio
Area(Si

T

F )
Area(Si

T

B) as a criteria to

assign Si to F or B. We try further segmentation when such assignment is uncertain to

avoid the case of under-segmentation in a large area. The Normalized Cut (NCut) cost

([18]) is used to determine if such further segmentation is reasonable. The procedure to

refine hypothesis mask is formulated as follows:

Input: top-down mask (F,B) and bottom-up segments {Si, i = 1, . . . , N}.

Output: refined object mask (F, B).
Set i = 0.

1) If i > N ,exit; else, i = i + 1.

2) If Λ = Area(Si

T

F )
Area(Si

T

B) > κup, then F = F ∪ Si,goto 1);

elseif Λ < κdown, then F = F − (F ∩ Si), goto 1). Otherwise, go to 3).

3) Segment Si to (S1
i , S2

i ). If ζ = NCut(Si) > Υup, F = F − (F ∩ Si), goto 1);

else SN+1 = S1
i ,SN+2 = S2

i , S = S ∪ {SN+1, SN+2}, N = N + 2, goto 1).

Re-Evaluation There are two advantages with the updated masks. The first is that we

can recompute more accurate local features by masking out the background edges. The

second is that the shapes of updated FPs masks will change much more than those of

TPs, because FPs are usually generated by locally similar parts of other objects, which

will probably be taken away through the above process. We require TPs must have

voters from all the different locations around the hypothesis center. This will eliminates

those TPs with less region support or with certain partial matching score.

The final score is the summation of the average scores over the different spatial bins

in the mask. The shape of the spatial bins are predefined. For pedestrians we use the

radius-angle polar ellipse bins; for other objects we use rectangular grid bins. For each

hypothesis, SC features are re-computed over the masked edge map by F and feature

fi is only allowed to be matched to cek in the same bin location. For each bin j, we

compute an average matching score Ej =
P

P (cek|fi)
#(cek,fi)

, where both cek and fi come

from bin j. The final score of this hypothesis is defined as:

E =
∑

j

E′
j ,where E′

j =

{

Ej , if Ej > α;
−α , if Ej = 0 and #{cek, cek ∈ bin(j)} > 0.

(6)

The term α is used to penalize the bins which have no matching with the codebook.

This decreases the scores of FPs with only part of true objects, i.e. bike hypothesis with

one wheel. Experiments show that our FPP procedure can prune out FPs effectively.

5 Results

Our experiments test different object classes including pedestrian, bike, human riding

bike, umbrella and car (Table. 1). These pictures were taken from scenes around campus



Table 1. Dataset for detection task

#Object Pedestrian Bike Human on bike Umbrella Car

Training 15 3 2 4 4

Testing 345 67 19 16 60

and urban streets. Objects in the images are roughly at the same scale. For pedestrians,

the range of the heights is from 186 to 390 pixels.

For our evaluation criteria, a hypothesis whose center falls into an ellipse region

around ground truth center is classified as true positive. The radii for ellipse are typically

chosen as 20% of the mean width / height of the objects. Multiple detections for one

ground truth object are only counted once.

Angular Blur and Mask Function Evaluation We compare the detection algorithm

on images w/ and w/o Angular Blur (AB) or mask function. The PR curves are plotted

in Fig.6. For pedestrian and umbrella detection, it is very clear that adding Angular Blur

and mask function can improve the detection results. For other object classes, AB+Mask

outperforms at high-precision/low-recall part of the curve, but gets no significant im-

provement at high-recall/low-precision part. The reason is that AB+Mask can improve

the cases where objects have deformation and complex background clutter. For bikes,

the inner edges dominate the SC histogram; so adding mask function makes only a little

difference.

Pedestrian Detection Compared with HOG We also compare with HOG.using the

implementation of the authors of ([12]) Figure 6-(a) shows that our method with FPP

procedure are better than the results of HOG. Note that we only use a very limited

number of training examples as shown in Table. 1 and we did not utilize any negative

training examples.

6 Conclusion and Discussion

In this paper, we developed an object detection method of combining top-down model-

based recognition with bottom-up image segmentation. Our method not only detects

object positions but also gives the figure-ground segmentation mask. We designed an

improved Shape Context feature for recognition and proposed a novel FPP procedure

to verify hypotheses. This method can be generalized to many object classes.

Results show that our detection algorithm can achieve both high recall and precision

rates. However there are still some FPs hypotheses that cannot be pruned. They are

typically very similar to objects, like a human-shape rock, or some tree trunks. More

information like color or texture should be explored to prune out these FPs. Another

failure case of SC detector is for very small scale object. These objects have very few

edges points thus are not suitable for SC. Also our method does no work for severe

occlusion where most local information is corrupted.
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Fig. 7. Detection result on real images.The color indicates different segments. The last

row contains cases of FPs for bikes and pedestrians.


