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ABSTRACT With the rapid development of machine learning, its powerful function in the machine vision 

field is increasingly reflected. The combination of machine vision and robotics to achieve the same precise 

and fast grasping as that of humans requires high-precision target detection and recognition, location and 

reasonable grasp strategy generation, which is the ultimate goal of global researchers and one of the 

prerequisites for the large-scale application of robots. Traditional machine learning has a long history and 

good achievements in the field of image processing and robot control. The CNN (convolutional neural 

network) algorithm realizes training of large-scale image datasets, solves the disadvantages of traditional 

machine learning in large datasets, and greatly improves accuracy, thereby positioning CNNs as a global 

research hotspot. However, the increasing difficulty of labeled data acquisition limits their development. 

Therefore, unsupervised learning, self-supervised learning and reinforcement learning, which are less 

dependent on labeled data, have also undergone rapid development and achieved good performance in the 

fields of image processing and robot capture. According to the inherent defects of vision, this paper 

summarizes the research achievements of tactile feedback in the fields of target recognition and robot 

grasping and finds that the combination of vision and tactile feedback can improve the success rate and 

robustness of robot grasping. This paper provides a systematic summary and analysis of the research status 

of machine vision and tactile feedback in the field of robot grasping and establishes a reasonable reference 

for future research.  

INDEX TERMS Machine learning, recognition, grasping, robot, tactile feedback, vision.

I. INTRODUCTION 

Vision is the main way in which humans to receive all types 

of information, followed by tactile feedback. One goal of 

researchers is to equip robots with vision systems that have 

high accuracy and robustness, similar to human beings, to 

help people complete all types of work. Thus, machine 

vision has always been an important research topic in the 

field of artificial intelligence and robotics. With the rapid 

development of machine learning, machine vision has been 

widely and successfully applied in various image 

processing tasks, such as defect detection, target detection, 

medical image judgment[1-14], etc. To this end, researchers 

hope to achieve great breakthroughs in machine vision to 

allow for precise recognition, positioning and grasp strategy 

generation and the realization of stable grasping of robots, 

which could lead to wide application. 

Although the above papers provide a wide range of 

research and surveys of machine learning and machine 

vision in plain image processing, there are very few surveys 

of machine learning used for object detection recognition 

and robot grasping. Accurate and fast object recognition 

and grasping based on vision are the basis of robot 

applications in both industry and real-life scenarios. This 

paper mainly summarizes the research achievements of six 
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mainstream methods in object detection recognition, 

positioning, grasp strategy generation and grabbing, 

including traditional machine learning, deep learning, 

unsupervised learning, self-supervised learning, 

reinforcement learning and visual-tactile fusion. Machine 

learning is the inevitable product of artificial intelligence 

development to a certain stage and has been put forward 

and developed for decades. The most substantial advantage 

of traditional machine learning (support vector machine 

(SVM), random forest, decision tree, clustering, and 

Bayesian algorithms) is that it requires only a small amount 

of data and has strong interpretability and fast running 

speed[15-17]. However, with the increase in the amount of 

data, the performance of these algorithms becomes limited 

and stagnated instead of continuing to improve[18, 19]. For 

a long time after the birth of the neural network algorithm 

in the 1980s, SVMs and other machine learning algorithms 

had an advantage. However, the gradient vanishing problem 

of these algorithms has led to difficulties in deep network 

training[20, 21] and revealed limitations in the number of 

samples and computing power. In 2012, the success of the 

Alex network led to the comeback of the deep neural 

network[22]. It is widely used in various fields of machine 

vision, and its performance continues to increase with the 

increase in datasets, avoiding the disadvantages of 

traditional machine learning in large datasets. Deep 

learning needs numerous labeled data, but it is not easy to 

label all of the data, which has led to the emergence of 

unsupervised and self-supervised learning algorithms. 

Unsupervised learning mainly addresses situations in which 

the input data is not labeled and the output is not 

determined[23, 24]. This approach classifies the samples 

according to the similarity. However, unsupervised learning 

has no label data at all, which may lead to slow speed and 

low precision[25]. Self-supervised learning uses the input 

data to generate supervisory information and benefits 

almost all types of downstream tasks[26, 27]. With Google's 

successful application of reinforcement learning in the Go 

game, reinforcement learning has attracted the worldwide 

attention of researchers. Reinforcement learning considers 

sequence problems and has a long-term perspective on 

long-term returns[28], while supervised learning generally 

considers one-off problems and focuses on only short-term 

and immediate returns. This long-term perspective of 

reinforcement learning is very important for determining 

the optimal solution to many problems. The key point of the 

above algorithm is to process the image collected by the 

camera, realize the object detection recognition positioning 

and grasp strategy generation and then guide the robot to 

complete the capture. However, noncontact object 

perception always has inherent defects, especially in 

unstructured environments and real-life scenes, and it is 

difficult to accurately predict the weight, shape and 

grasping strategy of the object[29]. Based on the above 

situation, adding pressure sensors to the dexterous hand to 

provision it with tactile feedback and combine it with vision 

has become a new direction in robot grasping research[30, 

31]. 

This paper is organized as follows. The first part 

introduces the advantages and disadvantages of the six 

methods and the main content of this paper. The second 

part discusses the research achievements of several 

mainstream traditional machine learning methods in image 

processing, object recognition and guided robot grasping. 

The third part summarizes the performance of the 

convolutional neural network (CNN) algorithm in object 

detection recognition position and grasp strategy generation. 

In the fourth part, aiming to address the difficulty of 

acquiring label data, the paper describes the performance of 

unsupervised learning, self-supervised learning and 

reinforcement learning in the fields of vision and grabbing. 

The fifth part discusses the inherent defects of vision and 

summarizes the research achievements of robot tactile 

feedback and the combination of vision and tactile. In the 

sixth part, the future development prospects of machine 

vision in robot object recognition and grasping are 

proposed based on the above analysis. Finally, conclusions 

are drawn in the seventh part. 

II. CLASSICAL MACHINE LEARNING 

It has been nearly 70 years since Arthur Samuel put forward 

the concept of "machine learning" in 1952. In the 1980s, 

machine learning became an independent discipline and 

developed rapidly. Since 2006, due to the demand of big data 

analysis, neural networks based on machine learning have 

attracted more attention and become the basis of deep 

learning theory. Currently, the research of machine learning 

is mainly divided into two directions: the first is traditional 

machine learning, which mainly studies the learning 

principle and pays attention to exploring the learning 

mechanism of humanoids[32-36]; the second is the research 

of machine learning in big data environments, which mainly 

focuses on how to use information effectively and how to 

acquire hidden, effective and understandable knowledge 

from massive amounts of data[37-41]. From the perspective 

of methodology, machine learning can be divided into linear 

models and nonlinear models. Linear models are relatively 

simple, but they are the basis of nonlinear models, and many 

nonlinear models are transformed from linear models[42-46]. 

Nonlinear models can be divided into traditional machine 

learning models (SVM, KNN, decision tree, etc.) and deep 

learning models. Fig. 1 lists the currently mature traditional 

machine learning algorithms and briefly describes their 

principles and characteristics[47-51]. It is found that the 

functions of different algorithms are varied, indicating that 

each algorithm has different application scenarios. Although 

deep learning plays a dominant role in the field of machine 

vision, deep learning is data-driven and has poor 

performance in small datasets[52-54]. However, traditional 

machine learning can adapt to a variety of datasets; 
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especially in scenarios with small amounts of data (such as 

the medical field), machine learning has better 

performance[55, 56]. In this case, the advantages of 

traditional machine learning algorithms are highlighted. 

Alternately, the traditional machine learning model is small, 

and the requirement of computer hardware is not high, which 

yields a strong speed advantage in the field of manipulator 

grasping-based vision[57-59]. According to the 

characteristics of different machine learning algorithms, they 

can be applied in all aspects of manipulator grasping to 

improve the accuracy and robustness. 

A. SUPPORT VECTOR MACHINE (SVM) 

The SVM has strong generalization performance and can 

address machine learning problems in high-dimensional 

datasets and small samples, so it is widely used in the field of 

image processing. Based on RGB images and point cloud 

images, Yuan et al. [12] used the SVM-rank algorithm to 

recognize object features and generate the grabbing strategy 

and then realize the accurate grabbing of objects by a five-

fingered dexterous hand. Ergene et al.[60] used the bag of 

words (BoW) method and an SVM to achieve feature 

extraction and object classification based on the grid and then 

guide the manipulator to achieve the classification and 

grabbing of a pen, water cup and stapler. The accuracy was 

83%. Hu et al.[61] developed an operation and grasp control 

system based on sensor-motor fusion for a robot hand-eye 

system, proposed a motion recognition method of a 

multifinger manipulator based on an AdaBoost-SVM, and 

proved the high response and flexibility of this method. 

Valente et al.[62] used the competitive Hopfield neural 

network to collect several points on the edge of the object to 

build an approximate polygon, used the radial bases function-

global ridge regression (RBF) network to process the 

polygon, and selected the appropriate grasping points to 

guide the grasping of the manipulator. 

SVM is a type of supervised learning method that has 

the advantages of good classification performance and simple 

structure but is difficult to train on large datasets and has 

poor performance on multiclassification problems. 

According to related research[12, 60, 61], SVMs have the 

disadvantages of complex feature work and poor 

generalization performance in target recognition, location 

and grasping. However, the improved SVM can be used in 

the robot grasping control algorithm and achieves good 

results. 

B. CLUSTERING ALGORITHM 

The clustering algorithm has the advantages of simplicity and 

easy implementation and can utilize large datasets, so it is 

widely used. Hannat et al.[63] presented a real-time method 

for visual categorization to achieve robot grasping. This 

method uses the speeded up robust feature (SURF) points to 

describe the feature data of objects and uses the K-means 

algorithm to extract the vocabulary. The results of our object 

recognition experiments show an average accuracy between 

95% and 100%. Harada et al.[64] first clustered the polygon 

model of the object and the surrounding environment and 

then separated the environment and the object through 

different clustering algorithms to achieve successful grasping 

and stable placement. Verma et al.[65] proposed that the 

algorithm of density clustering and homography 

transformation can obtain the maximum stable extremal 

approach of the object and then realize the accurate 

positioning of the object, which provides powerful assistance 

for the successful grasping of the manipulator. Zhang et 

al.[66] extracted effective local features from photos of the 

object. After clustering, these key points of each image are 

mapped into a uniform dimension histogram vector, and the 

histogram is used as the input vector of the multiclass SVM 

algorithm to establish the training classifier model and realize 

the real-time recognition of moving objects. Kouskouridas et 

al.[67] combined shape retrieval technology with a 

classification and clustering algorithm for attitude estimation 

of objects. Wiesmann et al.[68] proposed an event-driven 

embedded system for feature extraction and object 

recognition during robot grasping. Skotheim et al.[69] 

proposed a flexible 3D object positioning system that can 

make the manipulator assemble, grasp and place in a 3D 

environment. The system is improved based on a robust 

clustering algorithm and attitude verification algorithm, 

which significantly improves the accuracy and robustness of 

the system. 

The clustering algorithm is a type of unsupervised 

algorithm with a long history, and it is widely used because it 

does not need training datasets and has a simple structure and 

fast speed. In tasks related to target detection and recognition, 

the clustering algorithm is mainly used for feature extraction 

and clustering, and it achieves the segmentation of the 

background and target location. However, existing research 

results[63, 66, 67, 69] have indicated that the clustering 

algorithm usually needs to be used together with other 

algorithms to achieve the classification and grasping of 

different targets. 

C. BAYESIAN ALGORITHM 

The Bayesian algorithm plays an important role in 

manipulator grasping planning. The naive Bayesian model 

originated from classical mathematical theory; it has a solid 

mathematical foundation and stable classification efficiency, 

performs well in small-scale datasets, and can handle 

multiclassification tasks. Budiharto[70] proposed a fast 

object detection algorithm based on stereo vision and used 

the Bayesian algorithm to reduce camera noise and achieve 

robust tracking. Wang et al.[71] proposed an online 

estimation method of a robot vision servo system based on a 

traceless particle filter and the Jacobian matrix. First, the 

definition of the total Jacobian matrix is given, and the 

estimation of the total Jacobian matrix is transformed into a 

Bayesian filtering framework. Then, the paper proposes to 
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estimate the Jacobian matrix by a traceless particle filter and 

use the traceless Kalman filter equation to propagate and 

update each particle. Bekiroglu et al.[72] proposed a 

probabilistic framework for grasp modeling and stability 

assessment, which integrates supervised learning and 

unsupervised learning, and Bayesian networks are used to 

model the conditional relationship between tasks and 

multiple sensory flows (vision, ontological sensation and 

tactile). The obtained model can not only predict the success 

rate of grasping but also provide insight into the dependency 

between the related variables and features of object grabbing.  

The Bayesian algorithm is widely used in noise 

reduction, servo control and grasping probability prediction 

in the research of target detection and recognition and robot 

grasping, which is mainly due to its solid mathematical 

foundation and its ability to address multiclassification tasks. 

 

Unsupervised 
learning: No label 

data

 principal component analysis （PCA）

LDA

SVD

 Dimensionality reduction ： High 

dimension data becomes low 
dimension data

 Clustering: combining data with 
the same characteristics 

 hierarchical 
clustering 

 Hierarchical clustering algorithm :
1. At the beginning, all data points are the same cluster;
2. Find the nearest two clusters (two points at the beginning) to        
form one cluster;
3 . The distance between two clusters refers to the distance 
between the nearest two points in the cluster; 
4.  Repeat the second step until all the points are clustered into 
the cluster.

KMeans

1. Randomly take K central seed points in a graph ;
2. Find the distance of K central seed points for all points in the 
graph. If the point P is closest to the central S point, then P 
belongs to S point clustering;
3. Move the center point to its "cluster" center 
4. Repeat steps 2 and 3 until the center point does not move, 

indicating that the algorithm converges and finds all clusters 

 Several problems of K-means algorithm: 
1. How to determine K value? We often don't know the number 
of categories should be divided into.
2. Due to the initial positions of the center points are random, it 

may not be classified correctly 

Unsupervised 
learning: No label 

data

 

Figure 1.  Introduction of traditional machine learning 
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D. PRINCIPAL COMPONENT ANALYSIS (PCA) 

In addition to the above algorithms, PCA also has 

applications in the field of vision and robotics. PCA finds the 

principal axis direction, which is used to effectively represent 

the common characteristics of the same type of samples. 

Song et al.[73] developed a general framework to estimate 

the ability of grasping from the 2D data of an object, which 

includes the identification of the similarity of the local 

features of the object and the generation of the object 

grabbing strategy based on the experience obtained from the 

prelearning. Zhang et al.[74] proposed a shared control 

wheelchair manipulator, which can automatically detect a 

water cup based on vision and help the disabled achieve the 

task of drinking water. In this scheme, a CNN and PCA are 

used to separately identify and estimate the attitude and 

direction of the object. Mattar et al.[75] proposed a learning 

mechanism for stable grasping and control of a manipulator. 

Based on a PCA neural network and the Widrow-Hoff 

method to learn a large number of patterns of prosthetic 

behavior, good grasp control of the prosthetic is realized. 

PCA is an unsupervised learning method without 

parameter limitations, but it is seldom used in the image 

processing field. To achieve ideal robot grasping operation, 

PCA is commonly used with a CNN. 

Table 1. Comparison of Machine Learning Application Scenarios 

Algorithms 
Supervised/ 

Unsupervised 

Detect

ion 

Recog

nition 

Contr

ol 

Classific

ation 

Support Vector 

Machine (SVM) 
Supervised × × √ √ 

Clustering 

Algorithm 
Unsupervised √ × × × 

Bayesian 

Algorithm 
Supervised × × √ √ 

Principal 

Component 

Analysis (PCA) 

Unsupervised × × √ × 

Machine learning algorithms have a long history of 

development and have made outstanding achievements in 

their respective fields. According to the algorithm principle 

and research (Table 1), it is found that target detection 

recognition and image processing are not the strong points of 

machine learning. First, machine learning algorithms require 

an arduous amount of feature engineering, which greatly 

increases the difficulty and cost of image processing. Second, 

machine learning requires a variety of algorithms to work 

together or with CNNs to achieve complete recognition, 

positioning and grasping, which increases the difficulty of 

model building and training. Finally, with the explosive 

growth of data in the era of big data, the disadvantages of 

traditional machine learning have become increasingly 

prominent. 

III. CONVOLUTIONAL NEURAL NETWORK (CNN) 

The CNN is one of the most representative neural networks 

in the field of deep learning and has made many 

breakthroughs in the field of image analysis and processing. 

Based on the standard image annotation set, ImageNet, the 

CNN has many achievements, including image feature 

extraction and classification, scene and target recognition, 

and so on. Compared with the traditional image processing 

algorithm, the CNN has the advantages of no preprocessing 

requirements and high precision[76-83]. In 1998, Yann 

Lecun et al. proposed a gradient-based back-propagation 

algorithm (LeNet-5) for supervised training of networks[84]. 

Yann Lecun is known as the father of the CNN for his 

outstanding contributions to machine learning and computer 

vision. Due to the lack of large-scale training datasets and 

hardware, LeNet-5 is not ideal for complex problems. In 

2012, the AlexNet proposed by Alex Krizhevsky et al. won 

the image classification championship on the ImageNet 

training set, making the CNN a key research direction in 

computer vision. AlexNet uses the rectified linear unit 

(ReLU) instead of the sigmoid as the activation function, and 

it achieves good results and solves the problem of gradient 

disappearance when the network is deep[22]. At the same 

time, the use of the GPU-based Compute Unified Device 

Architecture (CUDA) greatly accelerates the training speed 

of neural networks. Based on the above advantages, AlexNet 

has been applied in defect detection, location and visual 

tracking of dynamic objects[85, 86]. In 2014, the GoogLeNet 

network proposed by Google[87] won the ILSVRC 

competition, and its error rate was lower than that of 

VGGNet proposed in the same year. Generally, the position 

and size of the same object in different images are greatly 

varied, and an accurate convolution operation is needed to 

recognize this type of object. To solve the problem 

exemplified by large convolution kernels, which usually tend 

to perceive global information, while small convolution 

kernels mainly capture local information, the idea of 

GoogLeNet is to use multiple convolution kernels of 

different sizes in the same layer to capture information, and 

this structure is called inception[88-90]. Due to the good 

performance of GoogLeNet in image recognition, it has also 

achieved good accuracy in robot target detection[91]. 

VGGNet achieved second place in the classification task of 

the ILSVRC competition in 2014 (first place was GoogLeNet) 

and first place in the positioning task. At the same time, the 

model has good generalization ability for use with other 

datasets, and VGGNet has proven that a deeper network can 

affect the recognition effect of the network to a certain 
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extent[92]. Because of its simple structure and strong feature 

extraction ability, VGGNet has a wide range of application 

scenarios. It is often used in the backbone of target detection 

(Fast-RCNN, single-shot multibox detector (SSD), etc.) to 

extract features[93, 94] and for target detection of robot 

grasping[95, 96]. The ResNet deep residual network 

proposed in 2015 won first place in the classification task of 

the ImageNet competition[97]. Because of its simple and 

practical structure, many target detection, segmentation and 

recognition algorithms are completed on the basis of 

ResNet50 or ResNet101[98, 99]. The residual design mainly 

solves the performance degradation problem of deep 

networks and reduces the computation through a long jump 

connection. Even if the number of model layers is very deep, 

it can ensure normal training. The SSD algorithm proposed 

in 2016 is improved on the basis of VGG-16 and uses a 

multiscale feature map to a priori detect and set a box for 

target detection[100]. The entire process of SSD requires 

only one step, so its most substantial advantage is that it runs 

faster. First, dense sampling is carried out in different 

positions of the image according to different scales and 

aspect ratios, and then the features are extracted by a CNN 

and then directly classified and regressed[101, 102]. 

However, uniform density sampling will lead to the 

imbalance of positive and negative samples, which makes 

training more difficult and leads to a reduction in model 

accuracy. The You Only Look Once (YOLO) algorithm 

proposed in 2016 is a typical one-stage method for target 

detection; the core idea is to transform the object detection 

problem into a regression problem. The model can directly 

predict the bounding box and category probability from the 

input image by using a CNN structure[103]. The execution 

speed is fast, and very high detection accuracy can be 

achieved by using a regression method. From YOLOv1 in 

2016 to YOLOv3 in 2018, the YOLO algorithm has 

continuously absorbed the advantages of similar algorithms 

(such as the feature pyramid network (FPN) and the Fast-

Region-based CNN (RCNN)) and achieved higher detection 

speed and accuracy through its own continuous improvement 

and progress, which is more in line with the real-time 

requirements of the industry for the target detection 

algorithm compared with other algorithms[104]. As two 

algorithms proposed in the same year, SSD and YOLO 

algorithms have made outstanding achievements in the field 

of image and vision, and they have good performance in 

target recognition, location and capture strategy 

generation[104-110]. The greatest contribution of the 

RetinaNet algorithm put forward by Tsung-Yi Lin et al. in 

2018 is the proposal of focal loss to solve the problem of 

class imbalance[111], thus enabling the algorithm accuracy 

to exceed the target detection model of the classic two-stage 

approach. Both one-stage and two-stage detection algorithms 

are proposed based on an anchor mechanism (e.g., Fast-

RCNN, RetinaNet, YOLO, or SSD), and these anchors are 

mainly used to find the location of the box; however, all of 

these algorithms incur excessive costs because of the anchor 

mechanism. This mechanism has two disadvantages. First, 

many anchors will be generated in the network, and most of 

these anchors cannot box the target; therefore, most of them 

are negative samples, with few positive samples. This 

outcome leads to the problem of unbalanced positive and 

negative samples and consumes an extensive amount of 

computation. Second, the anchor mechanism introduces a 

vast amount of superparameters for the complex network, 

which often makes the adjustment of these superparameters 

very complicated and increases the complexity of the 

network. Based on the above problems, Hei Law et al. 

proposed an anchor-free mechanism in 2019, and it used the 

upper left corner and the lower right corner to predict the 

bounding box instead of implementing an anchor[112]. Fig. 2 

lists the major improvement process of the CNN algorithm 

from 1998 to 2019 and illustrates the core structure of 

various improved algorithms. The recognition accuracy and 

operation speed of algorithms have greatly improved by 

these developments. To date, various improved algorithms 

based on CNNs continue to emerge and are one of the main 

research directions in the field of vision. 

A.  ROBOT GRASP POINT AND GRASP STRATEGY 

To solve the problem of robot grasping angle prediction, 

Cheng et al.[113] proposed a two-stage cascade training 

process solution. First, the neural network performs 20000 

iterations to obtain the ability to locate the object, and some 

parameters in the network are frozen. Second, the scale factor 

of 1.14 (superparameter) is multiplied by the sin(θ) and cos(θ) 
of the ground truth value. Through these two cascaded 

training processes and 500 iterations, the network can obtain 

strong direction prediction ability. Zunjani et al.[114] found 

that robots need to predict the ideal matrix according to the 

intention of the object to achieve an optimal grabbing 

strategy. They input the object image and intention type 

metadata into the full connection layer of the CNN network, 

which will achieve the ideal rectangular prediction. Corona et 

al.[115] designed a hierarchy model composed of three 

CNNs for the problem of grasping deformable objects such 

as textiles, which can be trained by using synthetic images 

and real images. Through the three steps of object 

recognition, the first grabbing point and the second grabbing 

point, accurate grabbing of the object can be achieved. Gaona 

et al.[116] proposed an estimator-based particle swarm (PS) 

optimization algorithm by a CNN for fast and robust 

reasoning of robot grasping points. The cost function of PS is 

mainly considered from two aspects: first, the CNN divides 

the grabbing features into good features and poor features; 

and second, a magnet mechanism is designed to make 

particles converge to the object center. The algorithm also 

includes a confidence factor to reduce misjudgment between 

the grabbing point and the nongrabbing point. Yamazaki et 

al.[117] proposed a method to detect the grabbing point from 

irregular-shaped knitted fabrics. Combining the grabbing 



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2020.3028740, IEEE Access

 Author Name: Preparation of Papers for IEEE Access (June 2020) 

2 VOLUME XX, 2017 

point detection with the shape classifier, a CNN is used to 

classify the shape and extract the feature vector of the 

detected object shape. Using this feature, the captured points 

are calculated as image coordinates, and the effectiveness of 

this method is proven.  

A reasonable grasping strategy and grasping points are 

the basic requirements for the robot to grasp the target based 

on vision, and they correspond to the nondeformable object 

and the deformable object, respectively. An end-to-end deep 

learning model is constructed based on the CNN algorithm, 

and the images collected by the camera are input into the 

model to realize the reasonable output of the grabbing 

strategy and grabbing points. However, at present, there are 

two main problems. First, the image processing effect is poor 

if the noise is large, so image preprocessing and noise 

reduction are necessary to realize the grabbing strategy. 

Second, it is necessary to manually design reasonable label 

features to make the model achieve better results in the test 

set and practical applications. 

B.  MULTITASK COOPERATIVE OPERATION 

Li et al.[118] established a neural network for object 

recognition, location and attitude detection using the CNN 

algorithm. Pose detection is treated as a classification 

problem in this model, and multiple tasks, such as 

recognition and location are combined at the same level to  
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Figure 2.  Development track of machine vision based on CNNs. (a) LeNet-5[84]. (b) AlexNet-5[22]. (c) GoogLeNet[87]. (d) VGG-16[92]. (e) Faster-

RCNN[94]. (f) ResNet[97]. (g) YOLO[103]. (h) SSD[100]. (i) YOLOv3[119]. (j) RetinaNet[111]. (k) CornerNet[112]. 

achieve good performance in printed circuit board (PCB) 

datasets. Chen et al.[120] introduced the grasp path based 

on CNN to predict multigrasp tasks, mapped the grasp 

candidate options to the grasp path and generated the 

mapping capture, and the deviation between them is taken 

as the estimation error of back-propagation. Experiments 

on the datasets and real scene show that this method can 

improve the detection accuracy and be well extended to the 

occluded objects. 

Complex system engineering is required to realize 

target grabbing based on vision, which involves a series of 

steps, such as recognition, positioning and pose detection, 

that are all in the field of image processing. Therefore, 

building a model based on CNNs to realize the real-time 

processing of multiple tasks and the probability ranking of 

output results is an important research direction. 

C.  OBJECT 3D SHAPE CONSTRUCTION 

Roy et al.[121] used CNN (VGG16) to classify the objects 

grasped by the manipulator into four categories, cylindrical, 

spherical, cubic and conical, and then generated four 

different grasping strategies. This method achieves 93% 

accuracy in real-time object recognition and grasping. Yan 

et al.[122] introduced a deep geometry-aware grasping 

network (DGGN), which divides learning into two steps. 

First, the 3D shape model and scene are generated and 

reconstructed by RGB-D, and then the construct of 

geometry representation is acquisition. Second, the results 

are predicted by learning the geometry perception 

representation within the model. Satish et al.[123] learned 

the deep strategy from the comprehensive training datasets 

of a point cloud and used the analysis algorithm of a 

random noise model to randomly sample, grab and reward 

the domain to explore how the distribution of 

comprehensive training examples affects the speed and 

reliability of the robot learning strategy. A comprehensive 

data sampling distribution is proposed in this paper, which 

combines the grabbing sample from the strategy action set 

and the guide sample from the supervisor with high 

robustness. This method is used to train the robot grasping 

strategy based on a full convolution network architecture, 

which evaluates millions of grasping options in four 

degrees of freedom (three-dimensional position and plane 

direction). The experimental results show that CNN based 

on full convolution grasp quality (FC-GQ-CNNs) has 

better speed and reliability. Liang et al.[124] proposed an 

end-to-end grabbing evaluation model (PointNetGPD) to 

solve the problem of grabbing configuration directly from 

the point cloud map. The model is lightweight and takes 

the original point cloud image as the input, which can 

directly process and evaluate the 3D point cloud image 

inside the grabber. Even if the point cloud is very sparse, it 

can capture the complex geometry of the contact area 

between the grabber and the object. 

Dividing objects into several categories according to 

their general shapes and then generating different grabbing 

strategies based on the category is a good approach, but the 

generality is poor. It is very important to realize the 3D 

j 

k 
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reconstruction of the object based on vision. The RGB-D 

image collected by the depth camera is input into the deep 

learning model to realize 3D reconstruction, which can 

improve the success rate and speed of the capture. 

D.  MOTION PATH 

To solve the problem of dexterous hand grasp force when 

performing tasks, Sun et al.[125] proposed a motion 

reproduction system based on several motion and depth 

data. At the same time, CNN is used to estimate the motion 

instructions of the depth image, and the force data is saved 

to generate the label training datasets. Deng et al.[126] 

proposed a learning framework combining semantic reach-

to-grasp (RTG) with trajectory generation, aiming for the 

successful realization of semantic reach-to-grasp in 

unstructured environments. First, an object detection model 

based on deep learning is used to detect the interested 

objects, and the trained network based on the Bayesian 

search algorithm is used to find the most successful 

grabbing configuration from the object segmentation image. 

Second, a model-based trajectory generation method is 

designed for the robot's arrival motion, which is inspired by 

the theory of the human internal model to generate the 

trajectory satisfying the constraints; the effectiveness of 

this method has been proven. 

Different grasping forces are the key to grasping 

different objects successfully. Associating scene images 

with force data and using the CNN model to complete 

training can improve the adaptability of the robot grasping 

force. The combination of a CNN and the traditional 

machine learning algorithm can realize the sorting of 

several options and output the optimal value. 

E.  REAL-TIME MOTION 

Iván et al.[127] proposed a real-time solution to the 

problem of grasping action in self-centered video. First, 

aiming to address the problem of deciding which object 

will be grabbed and when to trigger the grabbing operation 

from a given classification, this paper determines the 

grabbing area based on the gaze-guided CNN focusing on 

an object. Second, the fixed sequence obtained is noisy 

because of distraction and visual fatigue, and gaze is not 

always reliable for the object of interest. To solve this 

problem, video-level annotation is used to represent the 

object to be grabbed, and a loss function is used in a deep 

CNN. To detect when a person removes an object, the 

prediction ability of long- and short-term memory 

networks is used to analyze gaze and visual dynamics. The 

results show that this method has better performance than 

other methods in real datasets. Farag et al.[128] proposed a 

real-time object detection algorithm based on a selective 

flexible assembly manipulator (SCARA) for robot grasping 

and positioning in industrial assembly lines. The motion of 

a SCARA robot is composed of two parts: target detection 

based on deep learning and position measurement based on 

edge detection.  

Real-time performance is very important for robot 

grasping, and good real-time performance can guide the 

robot to realize the recognition, positioning and grasping of 

dynamic objects. Based on the CNN-AlexNet, the 

researchers used the transfer learning method to establish a 

target detection model, knowledge and statistics 

superimposing network (KSSNet), which achieved a 100% 

success rate in target detection, location and capture. 

The target detection, recognition, location and grasp 

strategy generation involved in robot visual grasping are all 

in the field of image processing, and the CNN has strong 

performance in such a field. Therefore, the CNN is widely 

used in the field of visual grasping and has a good effect. 

As shown in Table 2, from the proposal of the first full-

fledged CNN in 1998 to the RetinaNet network in 2018, 

deep learning has been developing rapidly, and the 

accuracy and speed have greatly improved. At present, 

CNN research is generally based on supervised learning, 

which needs a large number of labeled datasets for model 

training. However, with the continuous development of 

computer vision, it is increasingly difficult to obtain 

valuable labeled datasets, and most of the labeled data are 

calibrated by humans, which greatly increases the 

consistency, difficulty and cost of labeled data acquisition. 

Because of the above reasons, neural networks that do not 

need or rely on labeled data have become a worldwide 

priority research direction. These algorithms need little or 

no labeled data or do not need manually labeled data, 

which greatly reduces the need for human intervention in 

the model training process. 

 

 

 

 

 



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2020.3028740, IEEE Access

 Author Name: Preparation of Papers for IEEE Access (June 2020) 

2 VOLUME XX, 2017 

Table 2 Comprehensive Performance Comparison of Mainstream CNN Models

Year Author Model Datasets Key Points 

1998 
YANN LECUN et 

al.[84] 
LeNet-5 MNIST 

LeNet-5 is one of the earliest CNNs and the origin of a large number of neural network architectures. 
However, it does not perform well on complex issues. 

2012 
Alex Krizhevsky et 

al.[22]. 
AlexNet 

ImageNet 
ILSVRC-2010 

With the development of AlexNet (8-layer neural network), the CNN has become a key research direction 
in computer vision, and the top-5 error rate was reduced to 16.4% for the first time in the 2012 ILSVRC 

competition. 

2014 
Christian Szegedy et 

al.[87] 
GoogLeNet 

ImageNet 
ILSVRC-2014 

GoogLeNet's greatest contribution (22-layer neural network) is to propose the Inception Architecture and 
cancel the full connection layer to decrease the number of parameters and thus reduce the top-5 error rate 

to 6.7% in the 2014 ILSVRC competition. 

2014 
Karen Simonyan et 

al.[92] 
VGGNet 

ImageNet 
ILSVRC-2014 

VGGNet (19-layer neural network) ranked second in the ILSVRC classification task in 2014, with a top-5 
error rate of 7.3%, but it won the first place in the positioning task. 

2015 
Kaiming He et 

al.[97] 
ResNet ImageNet 

ResNet (152-layer neural network) has fewer parameters than VGGNet, but its performance and training 
speed are greatly improved. The ResNet algorithm won the first place in the classification task of the 

ILSVRC competition in 2015, and the top-5 error rate is 3.57%. 

2015 
Shaoqing Ren et 

al.[94] 
Faster-RCNN 

Pascal 
Voc2007+2012 

Region proposal networks are used to generate candidate regions and train an RPN and Fast RCNN to 
share a convolution layer, which greatly improves the detection speed of the network. However, it takes a 
considerable amount of time to generate candidate regions, which also affects the detection performance. 

2016 
Joseph Redmon et 

al.[103] 
YOLOv1 Pascal Voc2007 The YOLO algorithm solves the speed problem in deep learning and has strong generalization ability. 

2016 Wei Liu et al.[100] SSD Pascal Voc2007 
The SSD algorithm is much better than YOLOv1 in accuracy and speed, and SSD directly uses the 

convolution layer in the last layer to extract the detection results of different feature maps. 

2018 
Joseph 

Redmon[119] 
YOLOv3 Pascal Voc2012 

YOLOv3 mainly integrates some good schemes and achieves good results and improves the accuracy 
under the premise of ensuring the speed advantage, especially strengthening the ability of small object 

recognition. 

2018 
Tsung-Yi Lin et 

al.[111] 
RetinaNet MS COCO 

To solve the problem of attention imbalance, RetinaNet proposes a new focal loss function, which adds a 
weight that depends on probability to adjust the cross entropy loss. 

IV. DIFFERENT MACHINE VISION ALGORITHMS 
WITHOUT LABELED DATA 

Supervised learning (especially CNN) has made 

remarkable achievements in the field of vision after nearly 

ten years of rapid development, but it has also attracted 

some criticism. Label data are very important for the 

training of supervised learning, and the label data of 

traditional supervised learning need to be labeled manually, 

which not only leads to the high cost but also appears less 

intelligent. With the rapid increase in artificial intelligence 

applications, especially machine vision, researchers hope to 

achieve model training without a large number of artificial 

annotation datasets. Unsupervised learning can complete 

training based on unlabeled data, so it can realize object 

recognition and grasping very intelligently[129-132]. Self-

supervised learning is a special case of supervised learning 

that does not need a large number of manually labeled 

datasets to realize model training[133-137]. Reinforcement 

learning is learning an optimal policy, which can make the 

agent perform an action according to the current state in a 

specific environment to obtain the maximum return. 

Reinforcement learning was not the focus in the early stage, 

but with Google's successful application in Atari and Go 

games, this branch of machine learning has attracted much 

attention. With the development of deep reinforcement 

learning, researchers have combined it with machine 

vision[138-142] in the hope of removing the need for 

labeled data and artificial means to achieve intelligence. 
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Figure 3.  Comparison between supervised and unsupervised learning. 

A.  UNSUPERVISED LEARNING 

Unsupervised learning is one of the most difficult and 

important problems in machine vision and machine 

learning. Many researchers believe that learning from a 

large amount of unlabeled data can help solve problems 

concerning intelligence and the nature of learning. In 

addition, unsupervised learning has practical application 

value in many fields of computer vision and robot grasping 

because of the low cost and ease of collecting unlabeled 

image datasets. It is easy to see why researchers think 

unsupervised learning is more intelligent through Fig. 3. 

Unsupervised learning can be regarded as a branch of 

traditional machine learning. Dimension reduction and 

clustering are well-known unsupervised learning methods, 

but traditional unsupervised learning is significant in data 

analysis. With the rapid development of deep learning and 

the difficulty of label data acquisition, the combination of 

deep learning and unsupervised learning has gradually 

become a reasonable research direction. Lenz et al.[143] 

designed a system to achieve robot grasping from RGB-D 

images by using deep learning. This method can label data 

without manual work. To quickly select the grabbing 

options, this paper proposes a two-step series deep learning 

network. The first network quickly selects several grabbing 

strategies with high probability, and the second network 

takes the output of the first network as the input and 

calculates the optimal grabbing strategy. Ardon et al.[144] 

proposed a method to detect and extract multiple grabbing 

signals through visual input. This method does not need to 

manually define label data but collects their distribution, 

location and executable grasp label data from 1269 objects 

to obtain their relationship with input. The model not only 

learns to grasp the object but also has better generalization 

ability in different environments based on these datasets. 

Detry et al.[129] designed a new method of object 

recognition and grabbing based on the reduced dimension 

and clustering algorithm and let the model learn from a 

group of grabbing examples to improve the generalization 

ability. Unsupervised learning has the advantage of object 

classification based on multimodal information because it 

does not require label data[130-132]. However, due to the 

inherent defects of vision and the development of sensor 

technology, it has become a hot direction to integrate the 

information of vision, tactile feedback and hearing to help 

the robot achieve accurate recognition and grasping of the 

object. 

Because unsupervised learning does not need labeled 

data, it has good generalization and can extend some 

features of known objects to similar objects to achieve the 

grasping of unknown objects. Alternately, as a pretraining 

method, unsupervised learning plays an important role in 

the success of deep neural networks. 

B.  SELF-SUPERVISED LEARNING 

Self-supervised learning mainly uses pretext tasks to mine 

its own supervision information from large-scale unlabeled 

datasets, and the training of the neural network is based on 

constructed supervision information to learn valuable 

representations of downstream tasks. As shown in Fig. 4, 

the assessment of self-supervised learning ability is mainly 

completed through a pretraining-fine-tuning mode. First, 

the network is trained by pretext from a large number of 

unlabeled datasets (automatic construction of supervision 

information in the data), and the pretraining model is 

obtained. Then, for the new downstream tasks, the 

algorithm adopts a method similar to supervised learning, 

which can obtain parameters through transfer learning and 

then fine-tune them. Thus, the ability of self-supervised 

learning is mainly reflected by the performance of 

downstream tasks. 
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Figure 4.  Process of self-supervised learning. 

Nguyen et al.[133] adopted a self-supervised learning 

method in which the training datasets are automatically 

marked by the model. In this paper, a continuous level 

neural network is proposed to reduce the runtime of the 

grabbing task by eliminating the nonextractable samples 

from the reasoning process, and the network can estimate 

18 grabbing postures and classify 4 objects at the same 

time. The experimental results show that the accuracy of 

the network is 94.8% for grasping posture estimation and 

100% for object classification within 0.65 seconds. Murali 

et al.[134] proposed a new method to accelerate the self-

supervised learning process and mapped visual information 

to a high-level and high-dimensional movement space to 

realize the training strategy of the model. Florence et 

al.[135] used self-supervised correspondence to improve 

the generalization ability and sample efficiency of visually 

driven strategy learning. Yang et al.[137] proposed a 

critical policy form to design a deep learning method for a 

new problem named "grasping the invisible," where a robot 

is tasked with grasping an initially invisible object via a 

sequence of nonprehensile (e.g., pushing) and prehensile 

(e.g., grasping) actions. In this paper, the Bayesian 

algorithm and classifier model are combined, the self-

supervised method is used to train the motion critic and the 

classifier in the interaction between robot and environment, 

and a good success rate is achieved in the experiment. 

Self-supervised learning is a type of unsupervised 

learning that realizes the supervised training through the 

automatic generation of labels. Self-supervised learning not 

only achieves high accuracy and speed in object 

recognition classification and grasping attitude estimation 

but also has good generalization performance. 

C.  REINFORCEMENT LEARNING 

Reinforcement learning has achieved good results in many 

decision-making fields, especially in the game field, which 

has reached or even surpassed the human level. However, 

it is not widely used in the field of machine vision, which 

may be because vision does not seem to directly 

correspond to a decision-making environment or 

interpretable action steps similar to that seen in games. 

Even so, because reinforcement learning does not need 

label data and works similar to human beings, it has 

aroused researchers' enthusiasm to apply it to the visual 

field. Fig. 5 lists several mainstream reinforcement learning 

algorithms and their core structures. From the initial Q-

learning to the recently popular deep reinforcement 

learning, it shows that reinforcement learning is developing 

rapidly. The training process of reinforcement learning 

with little or no human intervention has fascinated many 

researchers. As early as 2014, the Google DeepMind team 

applied deep reinforcement learning to the attention 

mechanism [145]. In 2018, Yu et al.[146] applied deep 

reinforcement learning to image repair and achieved good 

results. James et al.[147] proposed a new benchmark and 

learning environment for challenging robotic learning: 

RLBench, which is designed to accelerate progress in the 

field of visually guided manipulation. The above research 

lays a foundation for the application of deep reinforcement 

learning in machine vision to guide robots in recognizing 

and grasping objects. 

The model-free deep reinforcement learning proposed 

by Zeng et al.[148] found that it was feasible for robots to 

learn some cooperative grasping strategies. By training two 

complete convolution neural networks, the first is from 

vision mapping to action, and the other is used for robot 

grasping. These two networks are jointly trained in the Q-

learning framework, and self-supervised training is 

completely carried out by a trial-and-error method. In the 

trial-and-error method, the successful completion of the 

action can be rewarded, and the learning strategy can 

promote action in this way. Wang et al.[149] proposed a 
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method combining Q-learning and a visual servo to solve 

the grasping problem of wheeled mobile robots and 

realized the robust grasping of robots. Gu et al.[150] 

proposed a new deep reinforcement learning algorithm 

based on deep Q-functions nonstrategy training that can 

adapt to complex 3D operation tasks. 

Breyer et al.[151] proposed an object grabbing 

algorithm based on reinforcement learning. In this paper, 

the image collected by a depth camera is mapped to the 

closed-loop control strategy of motion command, and 

several different methods are compared to ensure the 

rationality of the algorithm. Katyal et al.[152] used deep 

reinforcement learning to make a robot immune to the 

changes of manipulator or environment and achieve 

robustness to changes of the environment without clear 

prior knowledge and fine kinematics knowledge of the 

human arm structure and without careful hand-eye 

calibration. Ghadirzadeh et al.[153], to solve the inherent 

delay in motion perception processes, proposed a data-

based deep predictive policy training (DPPT) framework, 

which maps the observed images to a series of motion 

activation. The system consists of three subnetworks, 

namely, the perception, strategy and behavior superlayer, 

and each task is trained by strategy search reinforcement 

learning. Nguyen et al.[154] compared the performance of 

proprioceptive/kinesthetic input and original visual input in 

the framework of deep reinforcement learning and found 

that the former greatly improved the performance of the 

agent compared with the latter. Beltran-Hernandez et 

al.[155] proposed a reinforcement learning model based on 

a strategy search algorithm, which shows good robustness 

in the generalization from a simple shape object to a 

complex one. Li et al.[156] put forward a type of 

reinforcement learning strategy for the operation and 

grasping of a mobile manipulator to solve the problem of 

human-like mobile robot learning complex grasping action 

in a human environment. This strategy reduces the 

complexity of visual feedback and can deal with the 

changing operation dynamics and uncertain external 

interference. Miljkovic et al.[157] proposed a robot 

intelligent visual servo controller based on reinforcement 

learning, developed two different time difference 

algorithms (Q-learning and SARSA) and combined them 

with a neural network, and then tested them in different 

visual control scenes. Compared with the traditional image-

based visual servo system, the algorithm proposed in this 

paper has better performance for low-cost visual system 

manipulators. 

Bousmalis et al.[158] studied how to extend the 

random simulation environment and region adaptive 

method to the training grabbing system to grab new objects 

from the original monocular RGB image. By using only 

unlabeled real-world data and the grasp generative 

adversarial network (GraspGAN) algorithm in this paper, 

the grabbing performance is similar to that obtained with 

939,777 labeled real-world samples. James et al.[159] 

proposed a method called random to canonical adaptation 

networks (RCANs) to solve the problem of difficult 

acquisition of real label data in the field of robotics, which 

can achieve real-world effects by using nonreal-world data. 

The paper trained a visual-based closed-loop grabbing 

reinforcement learning agent in simulation and then 

transferred it to the real world, achieving very good 

performance and proving the effectiveness of this sim-to-

real method. Hellman et al.[160] proposed a contextual 

multiarmed bandit (C-MAB) reinforcement learning 

algorithm that integrates vision and tactile feedback to 

realize the closure function of a transparent and easily 

deformable zipper bag. Platt[161] took tactile feedback as 

the main information source and combined part of the 

visual information to achieve better performance in the 

experiment of grasping plane objects. Merzic et al.[162] 

used model-free deep reinforcement learning to combine 

vision and tactile feedback to generate a control strategy. 

The results show that tactile feedback can significantly 

improve the grasping robustness of objects with attitude 

uncertainty and complex features. 

Traditional reinforcement learning has the limitation 

of a small action space and sample space, and it is usually 

used in a discrete situation. However, being more complex 

and closer to the actual situation of the task often yields a 

large state space and continuous action space. When the 

input data are images or sound, it often has a high 

dimension, and the traditional reinforcement learning has 

difficulty addressing it. The deep reinforcement learning 

combines the deep learning and reinforcement learning to 

make the two complementary and achieve better 

performance. 
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Figure 5.  Mainstream reinforcement learning algorithms. 

As shown in Table 3, the three types of algorithms do 

not need manually labeled data, which has great 

advantages over the traditional CNN algorithm. The three 

algorithms not only have achieved outstanding results in 

their respective fields but also achieved good performance 

in the fields of vision and robotics. The clustering 

algorithm in unsupervised learning is widely used in the 

field of vision. Through the fusion of the clustering 

algorithm and deep learning, it can realize the accurate 

recognition and classification of the objects and the 

recognition of the robot's running posture and trajectory, 

but it also has the disadvantage of low efficiency. The data 

are easy to obtain, but the labeling cost is high, so 

researchers hope that supervised learning can train a model 

with good generalization performance by using few labeled 

datasets. However, if a good feature expression can be 

obtained, it will be conducive to the fine-tuning of 

downstream tasks and multitask training, which is also the 

core idea of self-supervised learning. Self-supervised 

learning takes unlabeled datasets as input, automatically 

constructs labels through the structure or characteristics of 

the data itself, and then carries out training similar to 

supervised learning. Based on the above advantages, self-

supervised learning has achieved good training effects and 

high-precision target recognition and positioning in the 

field of vision, but it has the problem of label rationality. 

The principle of reinforcement learning makes it not 

dominant in the field of vision and target detection and 

recognition. The integration of reinforcement learning and 

deep learning is the mainstream research direction and has 
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achieved good performance in many decision-making 

fields. The visual perception model based on deep 

reinforcement learning can predict all possible actions in 

the current state when only the original image is input. 

Therefore, deep reinforcement learning has some research 

achievements in the action conditional video prediction 

task. In addition, the deep reinforcement learning based on 

the strategy gradient (e.g., trust region policy optimization 

(TRPO), generalized advantage estimation (GAE), 

stochastic value gradient (SVG), and asynchronous 

advantage actor-critic (A3C)) realizes the behavior control 

of the robot and is verified in the actual application 

scenario. The low sampling efficiency of reinforcement 

learning makes training difficult, and a reasonable reward 

function and network structure need to be designed to 

achieve better results.

Table 3 Analysis of Advantages and Disadvantages of Unlabeled Data Algorithms 

Algorithm Nature Advantages Disadvantages Main Application Field 

Unsupervised 

Learning 

Statistical 

calculation 
No labeled data are required. Inefficiency 

Robot[163-166] 

Computer vision[167-171] 

Data analysis[23, 172, 173] 

Self-supervised 

Learning 

Automatic 

generation of 

label data 

There is no need to label manually. 
It is difficult to obtain appropriate pretext 

tasks. 

Robot[136, 174-178] 

Computer vision[135, 136, 178-181] 

Natural language processing[182, 183] 

Reinforcement 

Learning 

Learning from 

delayed reward 

The task is transformed into a Markov 

decision problem and without labeled 

data. 

The algorithm is difficult to converge and 

needs to set up the reward function and 

network structure. 

Robot[147, 151, 156, 184] 

Computer vision[185-190] 

Game[191-193] 

Autonomous driving[185, 186] 

V. FUSION OF VISUAL AND TACTILE FEEDBACK 

After years of development, object recognition and location 

based on machine vision has achieved great success, which 

lays a solid foundation for research on robot grasping. At 

present, representative object detection algorithms (e.g., 

Faster-RCNN[94], SSD[100], and YOLOv3[119]) can 

quickly identify and locate objects, but relying on precise 

location alone cannot make the manipulator achieve stable 

grasping in complex environments. From the view of 

people's own experience in grasping objects, a series of 

attributes, such as the hardness and quality of objects, are 

needed to ensure the success of grasping. In addition, the 

accuracy of machine vision is greatly affected by the 

surrounding environment. When the robot is applied in a 

variable light source environment, such as life scenes, the 

robustness of machine vision is low[194-198], and it is 

difficult to achieve stable grasping only by machine vision 

when the object can easily deform[199]. To solve these 

problems, researchers in the field of robotics and vision 

consider adding additional tactile sensors to the robot to 

achieve more stable grasping. The research direction is 

mainly divided into single tactile object perception[200-

204] and vision-tactile fusion[205-208] object recognition 

and grabbing. 

A.  TACTILE FEEDBACK 

For human beings, tactile feedback is the second most 

important signal receptor after vision, which plays an 

important role in life. With the development of tactile 

sensor technology[209-213], researchers hope that robots 

can also have the same tactile perception ability as humans 

and further realize intelligence. It is a good idea to apply 

tactile technology to the robot alone, which can avoid the 

fusion of different signals and improve the processing 

speed of the system. As shown in Fig. 6, Sundaram et 

al.[214] proposed a low-cost and high-robustness tactile 

glove, which weaves the array pressure sensor on the 

surface of the flexible glove and then wears it on the hands 

of the experimenter to collect the tactile data of different 

objects. By touching different objects, different pressure 

point cloud images are obtained and introduced into the 

neural network for training to realize object recognition 

and weight estimation without vision. 
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Figure 6.  Tactile sensor schematic 

Rasouli et al.[200] developed a neural morphological 

system for tactile pattern recognition, aiming to address the 

problem of low efficiency and capability of artificial tactile 

sensors. The system achieved 92% classification accuracy 

in a texture recognition task and proved that there is a 

tradeoff between response time and classification accuracy. 

Ward-Cherrier et al.[201] studied the development of the 

gripping platform Gr2, which demonstrated the 

reorientation of the grasped object through active tactile 

manipulation and used a new tactile sensor for tactile 

manipulation. The active tactile manipulation proposed in 

this study is modeless and can be used to study the 

operation principle of a dexterous hand. Bimbo et al.[202] 

proposed a method to locate the grabbed object in the 

robot's hand, which includes calculating the covariance of 

the pressure data of the tactile sensor and the eigen basis 

vector from the main axis. Liu et al.[203] regarded tactile 

data as a time series, used a dynamic time warping method 

to evaluate its difference, and proposed a joint kernel 

sparse coding model to solve the representation and 

classification of tactile data. Bhattacharjee et al.[204] used 

the first two seconds of force, heat, and motion sensing 

data collected by a robot in a real environment to solve the 

impact of the surrounding environment on tactile 

perception when the robot works in a human environment 

(such as a home), and data-driven approaches to the 

problems of various tactile perception performances 

(neighbor, SVM, hidden Markov model, and long short-

term memory) have been characterized. The results show 

the value of multimodel tactile perception and data-driven 

methods for short-term contact tactile perception. 

The research history of machine tactile feedback is 

relatively short and clearly lags behind machine vision. 

This lag is mainly due to the backward hardware 

performance of tactile sensors and the confusion of sensor 

types. Alternately, the lack of research content and 

methods of tactile technology also causes the lag of tactile 

research. With the rapid development of intelligent robots, 

tactile feedback has gradually attracted the attention of 

researchers, and there are many fruitful research 

achievements. At present, the research of tactile technology 

mainly focuses on three areas: 1. Hardware improvement 

of tactile sensors is needed. Through the improvement of 

hardware, the sensitivity of the sensor can be improved, 

and multiple types of data can be collected at the same time 

(e.g., temperature, pressure, friction, etc.). 2. Based on the 

sense of tactile feedback, the precise extraction of object 

features can be achieved, and then the model-free stable 

operation of objects (e.g., grasping, classification, 

recognition, attitude estimation, etc.) can be achieved to 

improve the generalization of the tactile feedback. 3. The 

tactile feedback and deep learning are combined to realize 

the acquisition and training of tactile datasets, and then the 

deep neural network (DNN) realizes the weight perception, 

grasp and classification of objects. Tactile feedback is 

second only to vision in information perception, but its 

research and application are much worse than those of 

vision, mainly due to the poor universality and reliability of 

tactile feedback. The application of tactile technology to 

multisensor sensing systems to realize complementary 

information perception is a reasonable future research 

direction. 

B.  FUSION OF VISION AND TACTILE FEEDBACK 

The integration of vision and tactile feedback helps the 

robot to achieve better grasping, which is also more in line 

with human expectations for the robot. However, the 

research time of robot tactile feedback is relatively short, 

and many types of sensors and multisensor data fusion 

approaches are involved, which leads to the difficulty of 

tactile research, which is scattered and unsystematic. As 

shown in Fig. 7, the object recognition and grabbing 

system based on visual-tactile fusion is generally divided 

into four steps. First, 2D vision processing technology is 

used to determine the object position and boundary area, 

and then 3D vision is used to determine the object's center 

of mass as the starting point of tactile detection. Second, 

tactile exploration is carried out for features and positions 
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(e.g., pits, holes or occluded areas) that are hard to 

determine by vision to further determine the object surface 

features. Third, the information collected by vision and 

tactile feedback is fused to generate accurate 3D point 

cloud images. Fourth, an appropriate grasping strategy is 

generated to guide the robotic arm to complete the object 

grasping based on the visual centroid and tactile features. 
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Figure 7.  Framework of visual-tactile fusion for object recognition 

Calandra et al.[205] studied how robots learn to use 

tactile information for iterative operations to effectively 

adjust their grasping strategy. In this paper, an end-to-end 

action condition model is proposed to learn the grasping 

strategy from the original visual-tactile data. Guo et al.[206] 

proposed a method of vision-tactile combination based on 

deep learning for robot grasping detection, and experiments 

show that tactile data is helpful for deep learning to learn 

better object characteristics of robot grasping detection tasks. 

Li et al.[207] designed a sliding detection algorithm using the 

GelSight tactile sensor and the camera installed on the side of 

the gripper without knowing the physical parameters of the 

object in advance. Using the image sequences collected by 

two sensors, a DNN is trained to classify the grabbed objects 

and evaluate the stability of the grabbing process. Garg et 

al.[208] proposed an adaptive grasping method based on 

tactile and visual feedback. This method combines model-

based partially observable Markov decision process 

(POMDP) planning with simulation learning, which has 

strong robustness under uncertainty, strong generalization 

ability and fast execution ability for multiple objects. Wang 

et al.[215] proposed a new method to solve the problems of 

imprecise visual modeling and low tactile efficiency. 

Through the combination of vision and tactile feedback, as 

well as learning the prior knowledge of common object 

shapes from a large shape database, this method can 

effectively perceive the accurate 3D information of the object. 

Hogan et al.[216] proposed a regrasp control strategy using a 

tactile sensor to adjust the local grasping action. In this paper, 

the local transformation of the actual search tactile value is 

used to determine the regrasp action to improve the quality of 

the grasp. The success rate of vision-tactile fusion is 70% 

higher than that of vision alone. Sun et al.[217] put forward 

two different tactile sequence models according to the 

advantages of vision and tactile feedback, proposed an object 

shape modeling method based on the direction description 

histogram features, and then considered the accuracy of the 

grasping point and the rapid planning of hand kinematics to 

achieve the grasping operation. 

Through the research results of the above papers, it is 

found that the fusion of vision and tactile feedback improves 

the robustness and success rate of robot grasping, indicating 

that the introduction of tactile feedback provides a new 

direction for robot grasping research. The grasping of 

deformable objects has always been a difficult problem, and 

the operation needs to accurately estimate the real-time state 

of the objects. At present, the main research direction is 

machine vision, but the vision is very sensitive to occlusion, 

which is inevitable when the robot moves. Compared with 

vision, tactile feedback has strong robustness, so the addition 

of tactile feedback can solve this problem well. Sanchez et 

al.[199] proposed a modular pipeline that can track the shape 

of deformable objects online by coupling the tactile sensor 

with the deformation model and achieve robust grasping 

through the combination of vision and tactile feedback. Jain 

et al.[218] proposed a simulation-based learning method that 

uses a simulated five-fingered dexterous hand to train the 

deep visual motion strategy of various operation tasks and 

found that using tactile sensitive information can make the 

task with a highly occluded object exhibit faster learning 

speed and better asymptotic performance. Yu et al.[195] 

proposed a framework that fuses vision and tactile feedback 

to estimate the attitude and contact state of objects relative to 

the environment in real-time, aiming to address the 

application of inserting objects picked up by a suction cup 

into a small space. The fusion algorithm based on iSAM (an 

online estimation technology) is adopted in the framework to 

realize the fusion of robot motion measurement, geometric 

contact between object and container, and visual tracking. 

Finally, a data-driven method is proposed to deduce the 

contact information to achieve better grasping and placement. 

Santina et al.[219] proposed a data-driven autonomous 
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grasping mechanism of a humanoid soft hand to improve the 

grasping performance. The nail of the humanoid soft hand is 

equipped with an inertial measurement device to detect the 

contact with objects. In this paper, a classifier is obtained by 

a deep neural network, which takes the visual information of 

the grasped object as input and predicts the grabbing action. 

Hang et al.[220] proposed a unified framework for grasping 

planning and hand grasping adaptation based on visual, 

tactile and proprioception feedback. The main purpose of the 

framework is to solve the problems of object deformation, 

sliding and external interference to achieve grasping. 

Table 4 Comparative analysis of vision and tactile feedback 

 Advantages Disadvantages Future studies 

vision 
Efficient 

Noncontact 
Strong generality 

Low precision 
Poor robustness 

Acquisition of high-resolution 
images to achieve fast image 
processing and then improve 
the accuracy and robustness 

of operation. 

Tactile 
High precision 

No model 
Poor versatility 

inefficiency 

Develop new tactile sensors 
to realize accurate and fast 

perception of various types of 
information. 

Visual-
tactile 
fusion 

Good versatility 
Rich functions and 

applications. 
High accuracy 

It is difficult to 
process multivariate 

data. 
Lack of unified 
framework and 

evaluation indicators. 

Based on the end-to-end deep 
learning model, the 

multivariate data processing is 
realized, and the general 
research framework is 

developed to promote better 
vision and tactile 

development. 

As shown in Table 4, visual and tactile feedback are the 

basic ways for a human or robot to perceive the environment 

or target, and they are the key research fields of scholars 

across the globe. Because of their different principles and 

data structures, they both have advantages and disadvantages 

in perception and recognition, so combining them is a 

reasonable choice. The combination of vision and tactile 

feedback realizes complementary advantages, which can 

achieve more accurate object recognition, real-time state 

estimation, grasp force adjustment, 3D object modeling, 

grasping pose detection and other functions, but the process 

of multivariate data analysis is difficult. At present, the 

mainstream research direction of visual-tactile fusion is to 

realize the direct input of visual-tactile data and the output of 

results via end-to-end deep learning. However, some 

problems remain, such as the lack of a general research 

framework, confusion over methods and challenges related to 

unified evaluations.  

VI. DISCUSSION AND FUTURE DIRECTIONS 

The ultimate goal of researchers is to create machine 

vision and robots that have the same visual recognition and 

grasping ability as human beings; this is an important step 

that must be achieved so that robots can be more widely 

applied—from industry to daily life. Although there has been 

great progress in object recognition, location, grasping speed 

and accuracy, there is still a vast gap that must be crossed, 

with human beings in the face of unstructured life scenes, 

which is an important reason why robots cannot be applied in 

daily life at present. Based on the development status of 

machine vision and the analogy analysis with human vision, 

the following thoughts are put forward regarding the future 

development of robot grasping. 

1. Vision is still the mainstream technology. Due to the 

noncontact and high-efficiency characteristics of vision, it 

has great advantages. With the development of camera 

technology, the collection of environmental and object 

information will be more accurate and robust, which will 

greatly enhance the development of machine vision. 

2. Tactile feedback will become an important part of 

robot grasping systems. Due to the inherent defects of vision, 

it is difficult to generate an appropriate grabbing strategy in 

complex environments according to the characteristics of 

objects collected by vision. Hence, the combination of vision 

and tactile feedback will be an important future development 

direction so that accurate recognition and positioning of the 

object and stable grasping can be achieved. 

3. CNNs will still develop rapidly over a short period of 

time, but they may be replaced in the future. The CNN model 

evolves from a giant to a lightweight network step by step 

and achieves continuously higher accuracy in the process. 

However, it needs a massive amount of labeled data for 

training, which is time consuming. Real artificial intelligence 

(AI) needs the ability to complete few-shot learning. 

4. Reinforcement learning and unsupervised learning 

will develop rapidly. Due to their low dependence on label 

data, the training process is relatively intelligent, which 

meets people's expectations of AI. 

VII. CONCLUSION 

Machine vision and robotics are two research directions that 

serve as inspiration for researchers all over the world. People 

hope to combine these two streams of research to create 

robots that have the same target recognition and grabbing 

ability as humans, which could lead to the partial realization 

of futuristic scenes in movies or science fiction. In this paper, 

the mainstream machine vision technology applied in robots 

is reviewed in detail, including traditional machine learning; 

CNNs, which have achieved good accomplishments in recent 

years; and reinforcement learning, unsupervised learning and 

self-supervised learning, which preclude labeled data 

limitations. In view of the limitations of vision, this paper 

also summarizes the development of tactile feedback in detail. 

This survey provides a detailed reference for the evaluation 

of current research on robot grasping based on machine 

vision and tactile feedback. Future research directions of 

machine vision and robot grasping are also considered. 
 
 
 



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2020.3028740, IEEE Access

 Author Name: Preparation of Papers for IEEE Access (June 2020) 

VOLUME XX, 2017 9 

QIANG BAI received the B.Sc. degree in 2015 
from Zaozhuang University and M.Sc. degree in 
2018 form Guizhou University and Yuan Ze 
University. From 2016.09 to 2017.08, he is joint 
educated in Yuan Ze University and obtained a 
double master's degree. He is currently pursuing 
the Ph.D. degree in school of mechanical 
engineering, Guizhou University, Guiyang, China. 
His research interests are in machine learning, 
robot, grasp, vision and location. 

 
SHAOBO LI was a Professor with the School of 
Mechanical Engineering, Guizhou University 
(GZU), China. He has been the Dean of the 
School of Mechanical Engineering, GZU, since 
2015. He was the Vice Director of the Key 
Laboratory of Advanced Manufacturing 
Technology, Ministry of Education, GZU, from 
2007 to 2015. His research has been supported by 
the National Science Foundation of China (NSFC) 
and the National High-Tech R&D Program (863 

Program). His main research interests include intelligence manufacturing 
and big data. 

 
JING YANG received his B.Sc. degree in 2015 
from Anyang Normal University and he was 
awarded a scholarship from 2018.09 to 2019.09 
by the China Scholarship Council (CSC) under 
the State Scholarship Fund to pursue his study in 
Oklahoma State University as a joint PhD student 
at the Institute for mechatronic engineering and 
joined Professor Guoliang Fan's group. The Ph.D. 
degree from the School of mechanical 
engineering. He has published over 10 papers in 

reputed journals/conferences. Now he is a lecture in Guizhou University. 
His main research interests are machine vision, deep learning and smart 
manufacturing applications. He has also served as a Reviewer for several 
journal such as IEEE ACCESS and  IEEE Transaction on Semiconductor 
Manufacturing. 
 

QISONG  SONG received the B.S. degree in 
mechanical engineering from Harbin University 
of Science and Technology, Harbin, China, in 
2018, He is currently pursuing the M.S. degree in 
mechanical engineering with Guizhou University, 
Guiyang, China. He participated in research in 
mobile robot path planning. 
 
 

 
 
ZHIANG LI received the B.S. degree in 
mechanical engineering from Guizhou University 
in 2018, and continued to stay for further study to 
pursue his master's degree in mechanical 
engineering. He studies trajectory planning and 
machine vision of manipulator. 

 
 
 

 
XINGXING ZHANG is a postgraduate of the 
school of mechanical engineering of Guizhou 
University. In 2018, she received the B.S. degree 
in mechanical engineering from Nanjing Normal 
University. Her research fields are mainly robots, 
tactile sensing, etc. 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2020.3028740, IEEE Access

 Author Name: Preparation of Papers for IEEE Access (June 2020) 

VOLUME XX, 2017 9 

 

References: 
  [1]. Bozhkov, L. and P. Georgieva, Overview of Deep 
Learning Architectures for EEG-based Brain Imaging, in 
2018 International Joint Conference on Neural Networks 
(IJCNN). 2018, IEEE: Rio de Janeiro. p. 1-7. 
  [2]. Shen, X., et al., Spatial-temporal human gesture 
recognition under degraded conditions using three-

dimensional integral imaging：An Overview, in 17th 

Workshop on Information Optics (WIO). 2018, IEEE: 
Québec. p. 13938-13951. 
  [3]. Gite, B., K. Nikhal and F. Palnak, Evaluating 
Facial Expressions in Real Time, in 2017 Intelligent 
Systems Conference (IntelliSys). 2017, IEEE: London. p. 
849-855. 
  [4]. Panchal, P., V.C. Raman and S. Mantri, Plant 
Diseases Detection and Classification using Machine 
Learning Models, in 4th International Conference on 
Computational Systems and Information Technology for 
Sustainable Solution (CSITSS). 2019, IEEE: Bengaluru. p. 
1-6. 
  [5]. Gao, M., et al., RGB-D-Based Object Recognition 
Using Multimodal Convolutional Neural Networks: A 
Survey. IEEE Access, 2019. 7(1): p. 43110-43136. 
  [6]. Wang, H., et al., A Comprehensive Overview of 
Person Re-Identification Approaches. IEEE Access, 2020. 
8(1): p. 45556-45583. 
  [7]. Celebi, M.E., N. Codella and A. Halpern, 
Dermoscopy Image Analysis: Overview and Future 
Directions. IEEE Journal of Biomedical and Health 
Informatics, 2019. 23(2): p. 474-478. 
  [8]. Greenspan, H., B. van Ginneken and R.M. 
Summers, Guest Editorial Deep Learning in Medical 
Imaging: Overview and Future Promise of an Exciting New 
Technique. IEEE Transactions on Medical Imaging, 2016. 
35(5): p. 1153-1159. 
  [9]. Zhao, D., Y. Chen and L. Lv, Deep Reinforcement 
Learning With Visual Attention for Vehicle Classification. 
IEEE Transactions on Cognitive and Developmental 
Systems, 2017. 9(4): p. 356-367. 
 [10]. Zhang, W., et al., Coarse-to-Fine UAV Target 
Tracking With Deep Reinforcement Learning. IEEE 
Transactions on Automation Science and Engineering, 2019. 
16(4): p. 1522-1530. 
 [11]. Hajj, N. and M. Awad, On Biologically Inspired 
Stochastic Reinforcement Deep Learning: A Case Study on 
Visual Surveillance. IEEE Access, 2019. 7(1): p. 108431-
108437. 
 [12]. Yuan, H., D. Li and J. Wu, Efficient Learning of 
Grasp Selection for Five-Finger Dexterous Hand, in The 
7th Annual IEEE International Conference on Cyber 
Technology in Automation, Control and Intelligent Systems. 
2017, IEEE: Hawaii. p. 1101-1106. 
 [13]. Yang, J., et al., Real-Time Recognition Method for 
0.8 cm Darning Needles and KR22 Bearings Based on 
Convolution Neural Networks and Data Increase. applied 

sciences-Basel, 2018. 8(1857): p. 1-18. 
 [14]. YANG, J., et al., Real-Time Tiny Part Defect 
Detection System in Manufacturing Using Deep Learning. 
IEEE Access, 2019. 7(1): p. 89278-89291. 
 [15]. Anna, W., et al., A New Process Industry Fault 
Diagnosis Algorithm Based on Ensemble Improved Binary-
Tree SVM. Chinese Journal of Electronics, 2015. 24(2): p. 
258-262. 
 [16]. Li, J., et al., Multitraining Support Vector Machine 
for Image Retrieval. IEEE Transactions on Image 
Processing, 2006. 15(11): p. 3597-3601. 
 [17]. Pasolli, E., F. Melgani and Y. Bazi, Support 
Vector Machine Active Learning Through Significance 
Space Construction. IEEE Geoscience and Remote Sensing 
Letters, 2011. 8(3): p. 431-435. 
 [18]. Singh, D., D. Roy and C.K. Mohan, DiP-SVM : 
Distribution Preserving Kernel Support Vector Machine for 
Big Data. IEEE Transactions on Big Data, 2017. 3(1): p. 
79-90. 
 [19]. Ruan, J., et al., A Granular GA-SVM Predictor for 
Big Data in Agricultural Cyber-Physical Systems. IEEE 
Transactions on Industrial Informatics, 2019. 15(12): p. 
6510-6521. 
 [20]. HU, X., et al., A Dynamic Rectified Linear 
Activation Units. IEEE ACCESS, 2019. 7(1): p. 180409-
180416. 
 [21]. Zhang, B., et al., Extreme Residual Connected 
Convolution-Based Collaborative Filtering for Document 
Context-Aware Rating Prediction. IEEE Access, 2020. 8(1): 
p. 53604-53613. 
 [22]. Krizhevsky, A., I. Sutskever and G. Hinton, 
ImageNet Classification with Deep Convolutional Neural 
Networks. COMMUNICATIONS OF THE ACM, 2017. 
60(6): p. 84-90. 
 [23]. Xiang, L., et al., TUMK-ELM: A Fast 
Unsupervised Heterogeneous Data Learning Approach. 
IEEE Access, 2018. 6(1): p. 35305-35315. 
 [24]. Usama, M., et al., Unsupervised Machine Learning 
for Networking: Techniques, Applications and Research 
Challenges. IEEE Access, 2019. 7(1): p. 65579-65615. 
 [25]. Zhu, J., et al., Unsupervised Object Class 
Discovery via Saliency-Guided Multiple Class Learning. 
IEEE Transactions on Pattern Analysis and Machine 
Intelligence, 2015. 37(4): p. 862-875. 
 [26]. Liu, C., et al., Self-Supervised Learning for 
Specified Latent Representation. IEEE Transactions on 
Fuzzy Systems, 2020. 28(1): p. 47-59. 
 [27]. Zhao, A., J. Dong and H. Zhou, Self-Supervised 
Learning From Multi-Sensor Data for Sleep Recognition. 
IEEE Access, 2020. 8(1): p. 93907-93921. 
 [28]. AI, W.A. and I.D. Yun, Partial Policy-Based 
Reinforcement Learning for Anatomical Landmark 
Localization in 3D Medical Images. IEEE 
TRANSACTIONS ON MEDICAL IMAGING, 2020. 39(4): 
p. 1245-1255. 
 [29]. Liu, H., et al., Visual–Tactile Fusion for Object 

Recognition. IEEE Transactions on Automation Science 



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2020.3028740, IEEE Access

 Author Name: Preparation of Papers for IEEE Access (June 2020) 

VOLUME XX, 2017 9 

and Engineering, 2017. 14(2): p. 996-1008. 
 [30]. Li, X., et al., Learning cross-modal visual-tactile 
representation using ensembled generative adversarial 
networks. Cognitive Computation and Systems, 2019. 1(2): 
p. 40-44. 
 [31]. Falco, P., et al., A Transfer Learning Approach to 
Cross-Modal Object Recognition: From Visual Observation 
to Robotic Haptic Exploration. IEEE TRANSACTIONS 
ON ROBOTICS, 2019. 35(4): p. 987-998. 
 [32]. Ledezma, F.D. and S. Haddadin, FOP Networks 
for Learning Humanoid Body Schema and Dynamics, in 
18th International Conference on Humanoid Robots 
(Humanoids). 2018, IEEE: Beijing. p. 1-9. 
 [33]. Capolei, M.C., et al., A Cerebellar Internal Models 
Control Architecture for Online Sensorimotor Adaptation 
of a Humanoid Robot Acting in a Dynamic Environment. 
IEEE Robotics and Automation Letters, 2020. 5(1): p. 80-
87. 
 [34]. Keyrouz, F., A NOVEL ROBOTIC SOUND 
LOCALIZATION AND SEPARATION USING NON-
CAUSAL FILTERING AND BAYESIAN FUSION, in 
2016 IEEE INTERNATIONAL WORKSHOP ON 
MACHINE LEARNING FOR SIGNAL PROCESSING. 
2016, IEEE: Italy. p. 1-6. 
 [35]. Sauser, E.L. and A.G. Billard, Biologically 
Inspired Multimodal Integration: Interferences in a Human-
Robot Interaction Game, in 2006 IEEE/RSJ International 
Conference on Intelligent Robots and Systems. 2006, IEEE: 
Beijing. p. 5619-5624. 
 [36]. Toussaint, M. and C. Goerick, Probabilistic 
inference for structured planning in robotics, in 2007 
IEEE/RSJ International Conference on Intelligent Robots 
and Systems. 2007, IEEE: California. p. 3068-3073. 
 [37]. Zhang, Q., Y. Laurence T and Z. Chen, Deep 
Computation Model for Unsupervised Feature Learning on 
Big Data. IEEE Transactions on Services Computing, 2016. 
9(1): p. 161-171. 
 [38]. Wang, W. and M. Zhang, Tensor Deep Learning 
Model for Heterogeneous Data Fusion in Internet of Things. 
IEEE Transactions on Emerging Topics in Computational 
Intelligence, 2020. 4(1): p. 32-41. 
 [39]. Lei, Y., et al., An Intelligent Fault Diagnosis 
Method Using Unsupervised Feature Learning Towards 
Mechanical Big Data. IEEE Transactions On Industrial 
Electronics, 2016. 63(5): p. 3137-3147. 
 [40]. Susto, G.A., et al., Supervised Aggregative Feature 
Extraction for Big Data Time Series Regression. IEEE 
Transactions on Industrial Informatics, 2016. 12(3): p. 
1243-1252. 
 [41]. Yu, N., Z. Li and Z. Yu, Survey on encoding 
schemes for genomic data representation and feature 

learning—from signal processing to machine learning. Big 

Data Mining and Analytics, 2018. 1(3): p. 191-210. 
 [42]. Ye, F., et al., Board-Level Functional Fault 
Diagnosis Using Multikernel Support Vector Machines and 
Incremental Learning. IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, 2014. 

33(2): p. 279-290. 
 [43]. Elizondo, D., The Linear Separability Problem: 
Some Testing Methods. IEEE Transactions on Neural 
Networks, 2006. 17(2): p. 330-344. 
 [44]. Stimpson, A.J. and M.L. Cummings, Assessing 
Intervention Timing in Computer-Based Education Using 
Machine Learning Algorithms. IEEE Access, 2014. 2(1): p. 
78-87. 
 [45]. Butcher, M. and A. Karimi, Linear Parameter-
Varying Iterative Learning Control With Application to a 
Linear Motor System. IEEE/ASME Transactions on 
Mechatronics, 2010. 15(3): p. 412-420. 
 [46]. Hsieh, J., Y. Lin and J. Jeng, Preliminary Study on 
Wilcoxon Learning Machines. IEEE Transactions on 
Neural Networks, 2008. 19(2): p. 201-211. 
 [47]. Song, J., et al., An Efficient Multiobjective Design 
Optimization Method for a PMSLM Based on an Extreme 
Learning Machine. IEEE Transactions on Industrial 
Electronics, 2019. 66(2): p. 1001-1011. 
 [48]. Vanli, N.D., et al., Sequential Nonlinear Learning 
for Distributed Multiagent Systems via Extreme Learning 
Machines. IEEE Transactions on Neural Networks and 
Learning Systems, 2017. 28(3): p. 546-558. 
 [49]. Law, M.H.C. and A.K. Jain, Incremental 
Nonlinear Dimensionality Reduction by Manifold Learning. 
IEEE Transactions on Pattern Analysis and Machine 
Intelligence, 2006. 28(3): p. 377-391. 
 [50]. Liu, H., et al., A Nonlinear Regression Application 
via Machine Learning Techniques for Geomagnetic Data 
Reconstruction Processing. IEEE Transactions on 
Geoscience and Remote Sensing, 2019. 57(1): p. 128-140. 
 [51]. Chen, G., et al., Nonlinear Distortion Mitigation 
by Machine Learning of SVM Classification for PAM-4 
and PAM-8 Modulated Optical Interconnection. Journal of 
Lightwave Technology, 2018. 36(3): p. 650-657. 
 [52]. Gao, K., et al., Deep Induction Network for Small 
Samples Classification of Hyperspectral Images. IEEE 
Journal of Selected Topics in Applied Earth Observations 
and Remote Sensing, 2020. 13: p. 3462-3477. 
 [53]. Zhang, D., et al., Modulated Autocorrelation 
Convolution Networks for Automatic Modulation 
Classification Based on Small Sample Set. IEEE Access, 
2020. 8(1): p. 27097-27105. 
 [54]. Zhou, Q. and X. He, Broad Learning Model Based 
on Enhanced Features Learning. IEEE Access, 2019. 7(1): 
p. 42536-42550. 
 [55]. Xu, J., et al., The Generalization Ability of SVM 
Classification Based on Markov Sampling. IEEE 
Transactions on Cybernetics, 2015. 45(6): p. 1169-1179. 
 [56]. Lu, C., et al., Bagging Linear Sparse Bayesian 
Learning Models for Variable Selection in Cancer 
Diagnosis. IEEE Transactions on Information Technology 
in Biomedicine, 2007. 11(3): p. 338-347. 
 [57]. Luo, A., et al., A Hardware-Efficient Recognition 
Accelerator Using Haar-Like Feature and SVM Classifier. 
IEEE Access, 2019. 7(1): p. 14472-14487. 
 [58]. Trinchero, R., et al., Machine Learning for the 



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2020.3028740, IEEE Access

 Author Name: Preparation of Papers for IEEE Access (June 2020) 

VOLUME XX, 2017 9 

Performance Assessment of High-Speed Links. IEEE 
Transactions on Electromagnetic Compatibility, 2018. 
60(6): p. 1627-1634. 
 [59]. Siddiqui, A.J., A. Mammeri and A. Boukerche, 
Real-Time Vehicle Make and Model Recognition Based on 
a Bag of SURF Features. IEEE Transactions on Intelligent 
Transportation Systems, 2016. 17(11): p. 3205-3219. 
 [60]. Ergene, M.C. and A. Durdu, Robotic Hand 
Grasping of Objects Classified by Using Support Vector 
Machine and Bag of Visual Words, in 2017 International 
Artificial Intelligence and Data Processing Symposium 
(IDAP). 2017, IEEE: Malatya. p. 1-5. 
 [61]. Hu, Y., et al., Development of Sensory-Motor 
Fusion-Based Manipulation and Grasping Control for a 
Robotic Hand-Eye System. IEEE Transactions on Systems, 
Man, and Cybernetics: Systems, 2017. 47(7): p. 1169-1180. 
 [62]. Valente, C.M.O., et al., Intelligent Grasping Using 
Neural Modules, in 1999 IEEE International Conference on 
Systems, Man, and Cybernetics. 1999, IEEE: Tokyo. p. 
780-785. 
 [63]. Hannat, M., et al., A Fast Object Recognition and 
Categorization Technique for Robot Grasping Using the 
Visual Bag of Words, in 2016 5th International Conference 
on Multimedia Computing and Systems (ICMCS). 2016, 
IEEE: Marrakech. p. 173-178. 
 [64]. HARADA, K., et al., Object Placement Planner for 
Robotic Pick and Place Tasks, in IEEE/RSJ International 
Conference on Intelligent Robots and Systems. 2012, IEEE: 
Vilamoura, Algarve, Portugal. p. 980-985. 
 [65]. Verma, N.K., A. Mustafa and A. Salour, Stereo-
Vision based Object Grasping using Robotic Manipulator, 
in 2016 11th International Conference on Industrial and 
Information Systems(ICIIS). 2016, IEEE: India. p. 95-100. 
 [66]. Zhang, J. and L. Shen, Clustering and Recognition 
for Automated Tracking and Grasping of Moving Objects, 
in 2014 IEEE Workshop on Electronics, Computer and 
Applications. 2014, IEEE: Ottawa. p. 222-229. 
 [67]. Kouskouridas, R., A. Amanatiadis and A. 
Gasteratos, Guiding a Robotic Gripper by Visual Feedback 
for Object Manipulation Tasks, in Proceedings of the 2011 
IEEE International Conference on Mechatronics. 2011, 
IEEE: Istanbul. p. 433-438. 
 [68]. Wiesmann, G., S. Schraml and C. Bartolozzi, 
Event-driven Embodied System for Feature Extraction and 
Object Recognition in Robotic Applications, in 2012 IEEE 
Computer Society Conference on Computer Vision and 
Pattern Recognition Workshops. 2012, IEEE: Providence. p. 
76-82. 
 [69]. Skotheim, Ø., et al., A Flexible 3D Object 
Localization System for Industrial Part Handling, in 2012 
IEEE/RSJ International Conference on Intelligent Robots 
and Systems. 2012, IEEE: Portugal. p. 3326-3333. 
 [70]. Budiharto, W., Robust Vision-Based Detection 
and Grasping Object for Manipulator using SIFT Keypoint 
Detector, in Proceedings of the 2014 International 
Conference on Advanced Mechatronic Systems. 2014, 
IEEE: Kumamoto. p. 448-452. 

 [71]. Wang, F., et al., Unscented Particle Filter for 
Online Total Image Jacobian Matrix Estimation in Robot 
Visual Servoing. IEEE Access, 2019. 7(1): p. 92020-92029. 
 [72]. Bekiroglu, Y., et al., A Probabilistic Framework 
for Task-Oriented Grasp Stability Assessment, in 2013 
IEEE International Conference on Robotics and 
Automation (ICRA). 2013, IEEE: Karlsruhe. p. 3040-3047. 
 [73]. Song, H.O., et al., Learning to Detect Visual Grasp 
Affordance. IEEE Transactions on Automation Science and 
Engineering, 2016. 13(2): p. 798-809. 
 [74]. Zhang, Z., et al., CNN and PCA Based Visual 
System of A Wheelchair Manipulator Robot for Automatic 
Drinking, in International Conference on Robotics and 
Biomimetics. 2018, IEEE: Malaysia. p. 1280-1286. 
 [75]. Mattar, E., PCA Learning for Non-Brain Waves-
Controlled Robotic Hand (Prosthesis, in 2014 UKSim-
AMSS 16th International Conference on Computer 
Modelling and Simulation. 2014, IEEE: Cambridge. p. 211-
216. 
 [76]. Ishii, T., R. Nakamura and H. Nakada, Surface 
Object Recognition with CNN and SVM in Landsat 8 
Images, in 14th IAPR International Conference on Machine 
Vision Applications (MVA). 2015, IEEE: Miraikan. p. 341-
344. 
 [77]. Shin, Y. and I. Balasingham, Comparison of 
Hand-craft Feature based SVM and CNN based Deep 
Learning Framework for Automatic Polyp Classification, in 
2017 39th Annual International Conference of the IEEE 
Engineering in Medicine and Biology Society (EMBC). 
2017, IEEE: Seogwipo. p. 3277-3280. 
 [78]. Wibisono, A., et al., Deep Learning and Classic 
Machine Learning Approach for Automatic Bone Age 
Assessment, in 4th Asia-Pacific Conference on Intelligent 
Robot Systems. 2019, IEEE: Nagoya. p. 235-240. 
 [79]. Wang, P., et al., Detection of Unwanted Traffic 
Congestion based on Existing Surveillance System using in 
Freeway via a CNN-architecture TrafficNet, in 2018 13th 
IEEE Conference on Industrial Electronics and 
Applications (ICIEA). 2018, IEEE: Wuhan. p. 1134-1139. 
 [80]. Wang, Y., et al., Image Classification Based on 
transfer Learning of Convolutional neural network, in 
Chinese Control Conference (CCC). 2019, IEEE: 
Guangzhou. p. 7506-7510. 
 [81]. S, S., J.K. B and R. C, SEGMENTATION OF 
ROI IN MEDICAL IMAGES USING CNN- A 
COMPARATIVE STUDY, in TENCON 2019 - 2019 IEEE 
Region 10 Conference (TENCON). 2019, IEEE: Kochi. p. 
767-771. 
 [82]. Jiang, B., et al., Fusion of machine vision 
technology and AlexNet-CNNs deep learning network for 
the detection of postharvest apple pesticide residues. 
Artificial Intelligence in Agriculture, 2019. 1: p. 1-8. 
 [83]. Ibrahim, A., et al., Application of Machine 
Learning to Evaluate Insulator Surface Erosion. IEEE 
Transactions on Instrumentation and Measurement, 2020. 
69(2): p. 314-316. 
 [84]. LECUN, Y., et al., Gradient-Based Learning 



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2020.3028740, IEEE Access

 Author Name: Preparation of Papers for IEEE Access (June 2020) 

VOLUME XX, 2017 9 

Applied to Document Recognition. Proceedings of the 
IEEE, 1998. 86(11): p. 2278-2324. 
 [85]. Zhou, M., et al., Leak Detection and Location 
Based on ISLMD and CNN in a Pipeline. IEEE Access, 
2019. 7(1): p. 30457-30464. 
 [86]. Xu, L., et al., Visual Tracking Based on Siamese 
Network of Fused Score Map. IEEE Access, 2019. 7(1): p. 
151389-151398. 
 [87]. Szegedy, C., et al., Going Deeper with 
Convolutions, in 2015 IEEE Conference on Computer 
Vision and Pattern Recognition. 2015, IEEE: Boston. p. 1-9. 
 [88]. Gao, Q., et al., Dual-Hand Detection for Human–
Robot Interaction by a Parallel Network Based on Hand 
Detection and Body Pose Estimation. IEEE Transactions on 
Industrial Electronics, 2019. 66(12): p. 9663-9672. 
 [89]. Yang, S., et al., A Dilated Inception Network for 
Visual Saliency Prediction. IEEE Transactions on 
Multimedia, 2020. 22(8): p. 2163-2176. 
 [90]. Jin, X., et al., ILGNet: inception modules with 
connected local and global features for efficient image 
aesthetic quality classification using domain adaptation. 
IET Computer Vision, 2019. 13(2): p. 206-212. 
 [91]. Dongyu, W., et al., Object Detection for Soft 
Robotic Manipulation Based on RGB-D Sensors, in WRC 
Symposium on Advanced Robotics and Automation (WRC 
SARA). 2018, IEEE: Beijing. p. 52-58. 
 [92]. Simonyan, K. and A. Zisserman, Very Deep 
Convolutional Networks For Large-Scale Image 
Recognition, in International Conference on Learning 
Representations(ICLR). 2015, the Computational and 
Biological Learning Society: San Diego. p. 1-14. 
 [93]. Guan, W., et al., Edge-Aware Convolution Neural 
Network Based Salient Object Detection. IEEE Signal 
Processing Letters, 2019. 26(1): p. 114-118. 
 [94]. Ren, S., et al., Faster R-CNN: Towards Real-Time 
Object Detection with Region Proposal Networks. IEEE 
Transactions on Pattern Analysis and Machine Intelligence, 
2017. 39(6): p. 1137-1149. 
 [95]. Zhao, Z., et al., Real-time surgical instrument 
detection in robot-assisted surgery using a convolutional 
neural network cascade. Healthcare Technology Letters, 
2019. 6(6): p. 275-279. 
 [96]. Liu, L., et al., Deep-learning and Depth-map based 
Approach for Detection and 3D Localization of Small 
Traffic Signs. IEEE Journal of Selected Topics in Applied 
Earth Observations and Remote Sensing, 2020. 13: p. 2096-
2111. 
 [97]. He, K., et al., Deep Residual Learning for Image 
Recognition, in IEEE Conference on Computer Vision and 
Pattern Recognition(CVPR). 2016, IEEE: Las Vegas. p. 1-
12. 
 [98]. Liao, Y., et al., Dynamic Sign Language 
Recognition Based on Video Sequence With BLSTM-3D 
Residual Networks. IEEE Access, 2019. 7(1): p. 38044-
38054. 
 [99]. Ou, X., et al., Moving Object Detection Method 

via ResNet-18 With Encoder– Decoder Structure in 

Complex Scenes. IEEE Access, 2019. 7(1): p. 108152-
108160. 
[100]. Liu, W., et al., SSD: Single Shot MultiBox 
Detector, in European Conference on Computer 
Vision(ECCV). 2016: Amsterdam. p. 1-17. 
[101]. Li, X., et al., Scale specified single shot multibox 
detector. IET Computer Vision, 2020. 14(2): p. 59-64. 
[102]. Chen, L., Z. Zhang and L. Peng, Fast single shot 
multibox detector and its application on vehicle counting 
system. IET Intelligent Transport Systems, 2018. 12(10): p. 
1406-1413. 
[103]. Redmon, J., et al., You Only Look Once: Unified, 
Real-Time Object Detection, in IEEE Conference on 
Computer Vision and Pattern Recognition (CVPR). 2016, 
IEEE: Las Vegas. p. 779-788. 
[104]. Yu, Y., et al., Real-Time Visual Localization of 
the Picking Points for a Ridge-Planting Strawberry 
Harvesting Robot. IEEE Access, 2020. 8(1): p. 116556-
116568. 
[105]. YANG, L., et al., Vehicle Speed Measurement 
Based on Binocular Stereovision System. IEEE Access, 
2019. 7(1): p. 106628-106641. 
[106]. Kitayama, T., et al., Detection of Grasping 
Position from Video Images Based on SSD, in 18th 
International Conference on Control, Automation and 
Systems (ICCAS 2018). 2018, IEEE: Korea. p. 1472-1475. 
[107]. Chao, Y., X. Chen and N. Xiao, Deep learning-
based grasp-detection method for a five-fingered industrial 
robot hand. IET Computer Vision, 2019. 13(1): p. 61-70. 
[108]. Wu, G., et al., Multi-Object Grasping Detection 
With Hierarchical Feature Fusion. IEEE Access, 2019. 7(1): 
p. 43884-43894. 
[109]. Choi, K., J.K. Suhr and H.G. Jung, Map-
Matching-Based Cascade Landmark Detection and Vehicle 
Localization. IEEE Access, 2019. 7(1): p. 127874-127894. 
[110]. Xu, Y., et al., GraspCNN: Real-Time Grasp 
Detection Using a New Oriented Diameter Circle 
Representation. IEEE Access, 2019. 7(1): p. 159322-
159331. 
[111]. Lin, T.Y., et al., Focal Loss for Dense Object 
Detection. IEEE Trans Pattern Anal Mach Intell, 2020. 
42(2): p. 318-327. 
[112]. Law, H. and J. Deng, CornerNet: Detecting 
Objects as Paired Keypoints. International Journal of 
Computer Vision, 2020. 128(3): p. 642-656. 
[113]. Cheng, H. and M.Q.H. Meng, A Grasp Pose 
Detection Scheme With an End-to-End CNN Regression 
Approach, in Proceedings of the 2018 IEEE International 
Conference on Robotics and Biomimetics. 2018, IEEE: 
Malaysia. p. 544-549. 
[114]. Zunjani, F.H., et al., Intent-based Object Grasping 
by a Robot using Deep Learning, in 8th International 
Advance Computing Conference (IACC). 2018, IEEE: 
India. p. 246-251. 
[115]. Corona, E., et al., Active garment recognition and 
target grasping point detection using deep learning. Pattern 
Recognition, 2018. 74: p. 629-641. 



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2020.3028740, IEEE Access

 Author Name: Preparation of Papers for IEEE Access (June 2020) 

VOLUME XX, 2017 9 

[116]. Gaona, A. and H. Lin, Robotic Grasping 
Estimation by Evolutionary Deep Networks, in 
International Automatic Control Conference (CACS). 2018, 
IEEE: Taoyuan. p. 1-7. 
[117]. Yamazaki, K., Selection of Grasp Points of Cloth 
Product on a Table Based on Shape Classification Feature, 
in Proceedings of the 2017 IEEE International Conference 
on Information and Automation (ICIA). 2017, IEEE: 
Macau SAR. p. 136-141. 
[118]. Haochen, L., et al., CNN-Based Model for Pose 
Detection of Industrial PCB, in 2017 10th International 
Conference on Intelligent Computation Technology and 
Automation. 2017, IEEE: Changsha. p. 390-393. 
[119]. Redmon, J. and A. Farhadi, YOLOv3: An 
Incremental Improvement, in arXiv.org (2018). 2018. p. 1-6. 
[120]. Chen, L., P. Huang and Z. Meng, Convolutional 
multi-grasp detection using grasp path for RGBD images. 
Robotics and Autonomous Systems, 2019. 113: p. 94-103. 
[121]. Roy, R., A. Kumar and M. Mahadevappa, Deep 
learning based object shape identification from EOG 
controlled vision system, in 2018 IEEE SENSORS. 2018, 
IEEE: New Delhi. p. 1-4. 
[122]. Yan, X., et al., Learning 6-DOF Grasping 
Interaction via Deep Geometry-aware 3D Representations, 
in 2018 IEEE International Conference on Robotics and 
Automation (ICRA). 2018, IEEE: Brisbane. p. 3766-3773. 
[123]. Satish, V., J. Mahler and K. Goldberg, On-Policy 
Dataset Synthesis for Learning Robot Grasping Policies 
Using Fully Convolutional Deep Networks. IEEE Robotics 
and Automation Letters, 2019. 4(2): p. 1357-1364. 
[124]. Liang, H., et al., PointNetGPD: Detecting Grasp 
Configurations from Point Sets, in 2019 International 
Conference on Robotics and Automation (ICRA). 2019, 
IEEE: Montreal. p. 3629-3635. 
[125]. Sun, X., et al., Grasping Point Estimation Based 
on Stored Motion and Depth Data in Motion Reproduction 
System, in 2019 IEEE International Conference on 
Mechatronics (ICM). 2019, IEEE: Ilmenau. p. 471-476. 
[126]. Deng, Z., et al., A learning framework for 
semantic reach-to-grasp tasks integrating machine learning 
and optimization. Robotics and Autonomous Systems, 2018. 
108(2018): p. 140-152. 
[127]. González-Díaz, I., et al., Perceptually-guided deep 
neural networks for ego-action prediction: Object grasping. 
Pattern Recognition, 2019. 88: p. 223-235. 
[128]. Farag, M., A.N.A. Ghafar and M.H. ALSIBAI, 
Real-Time Robotic Grasping and Localization Using Deep 
Learning-Based Object Detection Technique, in 2019 IEEE 
International Conference on Automatic Control and 
Intelligent Systems (I2CACIS 2019). 2019, IEEE: Selangor. 
p. 139-144. 
[129]. Detry, R., et al. Generalizing grasps across partly 
similar objects. in 2012 IEEE International Conference on 
Robotics and Automation. 2012. Minnesota: IEEE. 
[130]. Tomoaki, N., N. Takayuki and I. Naoto, 
Multimodal Categorization by Hierarchical Dirichlet 
Process, in 20111EEE/RSJ International Conference on 

Intelligent Robots and Systems. 2011, IEEE: California. p. 
1520-1525. 
[131]. Tomoaki, N., N. Takayuki and I. Naoto, 
Multimodal Object Categorization by a Robot, in 
Proceedings of the 2007 IEEE/RSJ International 
Conference on Intelligent Robots and Systems. 2007, IEEE: 
California. p. 2415-2420. 
[132]. Takayuki, N. and I. Naoto, Object Categorization 
Using Multimodal Information, in TENCON 2006 - 2006 
IEEE Region 10 Conference. 2006, IEEE: Hong Kong. p. 
1-4. 
[133]. Nguyen, V., et al., Visual-Guided Robot Arm 
Using Self-Supervised Deep Convolutional Neural 
Networks, in 15th International Conference on Automation 
Science and Engineering (CASE). 2019, IEEE: Canada. p. 
1415-1420. 
[134]. Murali, A., et al., CASSL: Curriculum Accelerated 
Self-Supervised Learning, in 2018 IEEE International 
Conference on Robotics and Automation (ICRA). 2018, 
IEEE: Brisbane. p. 6453-6460. 
[135]. Florence, P., L. Manuelli and R. Tedrake, Self-
Supervised Correspondence in Visuomotor Policy Learning. 
IEEE Robotics and Automation Letters, 2020. 5(2): p. 492-
499. 
[136]. Yan, M., et al., Self-Supervised Learning of State 
Estimation for Manipulating Deformable Linear Objects. 
IEEE Robotics and Automation Letters, 2020. 5(2): p. 
2372-2379. 
[137]. Yang, Y., H. Liang and C. Choi, A Deep Learning 
Approach to Grasping the Invisible. IEEE Robotics and 
Automation Letters, 2020. 5(2): p. 2232-2239. 
[138]. Zhang, G., H. Li and Odbal, Research on Fuzzy 
Enhanced Learning Model of Multienhanced Signal 
Learning Automata. IEEE TRANSACTIONS ON 
INDUSTRIAL INFORMATICS, 2019. 11(15): p. 5980-
5987. 
[139]. Jeong, S., et al., Developmental learning of 
integrating visual attention shifts and bimanual object 
grasping and manipulation tasks, in 9TH 
INTERNATIONAL CONFERENCE ON 
DEVELOPMENT AND LEARNING. 2010, IEEE: Ann 
Arbor. p. 165-170. 
[140]. Yuan, W., et al., End-to-end nonprehensile 
rearrangement with deep reinforcement learning and 
simulation-to-reality transfer. Robotics and Autonomous 
Systems, 2019. 119: p. 119-134. 
[141]. Terada, K., H. Takeda and Y. Nishida, An 
acquisition of the relation between vision and action using 
self-organizing map and reinforcement learning, in 1998 
Second International Conference. Knowledge-Based 
Intelligent Electronic Systems. 1998, IEEE: Australia. p. 
429-434. 
[142]. Lampe, T. and M. Riedmiller. Acquiring visual 
servoing reaching and grasping skills using neural 
reinforcement learning. in the 2013 International Joint 
Conference on Neural Networks (IJCNN). 2013. Dallas: 
IEEE. 



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2020.3028740, IEEE Access

 Author Name: Preparation of Papers for IEEE Access (June 2020) 

VOLUME XX, 2017 9 

[143]. Lenz, I., H. Lee and A. Saxena, Deep Learning for 
Detecting Robotic Grasps. The International Journal of 
Robotics Research, 2015. 4-5(34): p. 705-724. 
[144]. Ardon, P., et al., Learning Grasp Affordance 
Reasoning Through Semantic Relations. IEEE Robotics and 
Automation Letters, 2019. 4(4): p. 4571-4578. 
[145]. Mnih, V., et al., Recurrent Models of Visual 
Attention. Advances in Neural Information Processing 
Systems, 2014. 3(6): p. 1-9. 
[146]. Yu, K., et al., Crafting a Toolchain for Image 
Restoration by Deep Reinforcement Learning, in 2018 
IEEE/CVF Conference on Computer Vision and Pattern 
Recognition. 2018, IEEE: Salt Lake City. p. 2443-2452. 
[147]. James, S., et al., RLBench: The Robot Learning 
Benchmark & Learning Environment. IEEE Robotics and 
Automation Letters, 2020. 5(2): p. 3019-3026. 
[148]. Zeng, A., et al., Learning Synergies between 
Pushing and Grasping with Self-supervised Deep 
Reinforcement Learning, in 2018 IEEE/RSJ International 
Conference on Intelligent Robots and Systems (IROS). 
2018, IEEE: Madrid. p. 4238-4245. 
[149]. Wang, Y., H. Lang and C.W. de Silva, A Hybrid 
Visual Servo Controller for Robust Grasping by Wheeled 
Mobile Robots. IEEE/ASME TRANSACTIONS ON 
MECHATRONICS, 2010. 15(5): p. 757-769. 
[150]. Gu, S., et al., Deep Reinforcement Learning for 
Robotic Manipulation with Asynchronous Off-Policy 
Updates, in 2017 IEEE International Conference on 
Robotics and Automation (ICRA). 2017, IEEE: Singapore. 
p. 3389-3396. 
[151]. Breyer, M., et al., Comparing Task Simplifications 
to Learn Closed-Loop Object Picking Using Deep 
Reinforcement Learning. IEEE Robotics and Automation 
Letters, 2019. 4(2): p. 1549-1556. 
[152]. Katyal, K., I. Wang and P. Burlina, Leveraging 
Deep Reinforcement Learning for Reaching Robotic Tasks, 
in 2017 IEEE Conference on Computer Vision and Pattern 
Recognition Workshops. 2017, IEEE: Honolulu. p. 490-491. 
[153]. Ghadirzadeh, A., et al., Deep Predictive Policy 
Training using Reinforcement Learning, in 2017 IEEE/RSJ 
International Conference on Intelligent Robots and Systems 
(IROS). 2017, IEEE: Canada. p. 2351-2358. 
[154]. Nguyen, K.N., J. Yoo and Y. Choe, Speeding Up 
Affordance Learning for Tool Use, Using Proprioceptive 
and Kinesthetic Inputs, in 2019 International Joint 
Conference on Neural Networks (IJCNN). 2019, IEEE: 
Hungary. p. 1-8. 
[155]. Beltran-Hernandez, C.C., et al., Learning to Grasp 
with Primitive Shaped Object Policies, in Proceedings of 
the 2019 IEEE/SICE International Symposium on System 
Integration. 2019, IEEE: Paris. p. 468-473. 
[156]. Li, Z., et al., Reinforcement Learning of 
Manipulation and Grasping Using Dynamical Movement 
Primitives for a Humanoidlike Mobile Manipulator. 
IEEE/ASME Transactions on Mechatronics, 2018. 23(1): p. 
121-131. 
[157]. Miljković, Z., et al., Neural network 

Reinforcement Learning for visual control of robot 
manipulators. Expert Systems with Applications, 2013. 
40(5): p. 1721-1736. 
[158]. Bousmalis, K., et al., Using Simulation and 
Domain Adaptation to Improve Efficiency of Deep Robotic 
Grasping, in International Conference on Robotics and 
Automation (ICRA). 2017, IEEE: Brisbane. p. 4243-4250. 
[159]. James, S., et al., Sim-to-Real via Sim-to-Sim: 
Data-efficient Robotic Grasping via Randomized-to-
Canonical Adaptation Networks, in 2019 IEEE/CVF 
Conference on Computer Vision and Pattern Recognition 
(CVPR). 2019, IEEE: California. p. 12619-12629. 
[160]. Hellman, R.B., et al., Functional Contour-
following via Haptic Perception and Reinforcement 
Learning. IEEE Transactions on Haptics, 2018. 11(1): p. 
61-72. 
[161]. Platt, R., Learning grasp strategies composed of 
contact relative motions, in 7th IEEE-RAS International 
Conference on Humanoid Robots. 2007, IEEE: Pittsburgh. 
p. 49-56. 
[162]. Merzic, H., et al., Leveraging Contact Forces for 
Learning to Grasp, in International Conference on Robotics 
and Automation (ICRA). 2018, IEEE: Montreal. p. 3615-
3621. 
[163]. Xing, Y., F. Shen and J. Zhao, Perception 
Evolution Network Based on Cognition Deepening Model

—Adapting to the Emergence of New Sensory Receptor. 

IEEE Transactions on Neural Networks and Learning 
Systems, 2016. 27(3): p. 607-620. 
[164]. Lowry, S. and M.J. Milford, Supervised and 
Unsupervised Linear Learning Techniques for Visual Place 
Recognition in Changing Environments. IEEE 
TRANSACTIONS ON ROBOTICS, 2016. 32(3): p. 600-
613. 
[165]. Nguyen, T., et al., Unsupervised Deep 
Homography: A Fast and Robust Homography Estimation 
Model. IEEE Robotics and Automation Letters, 2018. 3(3): 
p. 2346-2353. 
[166]. Despinoy, F., et al., Unsupervised Trajectory 
Segmentation for Surgical Gesture Recognition in Robotic 
Training. IEEE Transactions on Biomedical Engineering, 
2016. 63(6): p. 1280-1291. 
[167]. Feng, T. and D. Gu, SGANVO: Unsupervised 
Deep Visual Odometry and Depth Estimation With Stacked 
Generative Adversarial Networks. IEEE Robotics and 
Automation Letters, 2019. 4(4): p. 4431-4437. 
[168]. Su, Y., et al., Unsupervised Feature Learning With 
Graph Embedding for View-Based 3D Model Retrieval. 
IEEE Access, 2019. 7(1): p. 95285-95296. 
[169]. Li, Y., et al., Unsupervised Multilayer Feature 
Learning for Satellite Image Scene Classification. IEEE 
Geoscience and Remote Sensing Letters, 2016. 13(2): p. 
157-161. 
[170]. Qiao, H., et al., Biologically Inspired Model for 
Visual Cognition Achieving Unsupervised Episodic and 
Semantic Feature Learning. IEEE Transactions on 
Cybernetics, 2016. 46(10): p. 2335-2347. 



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2020.3028740, IEEE Access

 Author Name: Preparation of Papers for IEEE Access (June 2020) 

VOLUME XX, 2017 9 

[171]. Duffner, S. and C. Garcia, Visual Focus of 
Attention Estimation With Unsupervised Incremental 
Learning. IEEE Transactions on Circuits and Systems for 
Video Technology, 2016. 26(12): p. 2264-2272. 
[172]. Kwon, B.C., et al., Clustervision: Visual 
Supervision of Unsupervised Clustering. IEEE 
TRANSACTIONS ON VISUALIZATION AND 
COMPUTER GRAPHICS, 2018. 24(1): p. 142-151. 
[173]. Li, X., et al., Discriminative and Uncorrelated 
Feature Selection With Constrained Spectral Analysis in 
Unsupervised Learning. IEEE Transactions on Image 
Processing, 2020. 29: p. 2139-2149. 
[174]. Lee, M.A., et al., Making Sense of Vision and 
Touch: Learning Multimodal Representations for Contact-
Rich Tasks. IEEE Transactions on Robotics, 2020. 36(3): p. 
582-596. 
[175]. Wellhausen, L., et al., Where Should I Walk? 
Predicting Terrain Properties From Images Via Self-
Supervised Learning. IEEE Robotics and Automation 
Letters, 2019. 4(2): p. 1509-1516. 
[176]. Shu, X., et al., A Self-Supervised Learning 
Manipulator Grasping Approach Based on Instance 
Segmentation. IEEE Access, 2018. 6(1): p. 65055-65064. 
[177]. Mar, T., V. Tikhanoff and L. Natale, What Can I 
Do With This Tool Self-Supervised Learning of Tool 
Affordances From Their 3-D Geometry. IEEE 
TRANSACTIONS ON AEROSPACE AND 
ELECTRONIC SYSTEMS, 2018. 10(3): p. 595-610. 
[178]. Schmidt, T., R. Newcombe and D. Fox, Self-
Supervised Visual Descriptor Learning for Dense 
Correspondence. IEEE Robotics and Automation Letters, 
2017. 2(2): p. 420-427. 
[179]. Yuan, J. and Y. Wu, Mining Visual Collocation 
Patterns via Self-Supervised Subspace Learning. IEEE 
TRANSACTIONS ON SYSTEMS, MAN, AND 

CYBERNETICS—PART B: CYBERNETICS, 2012. 42(2): 

p. 334-346. 
[180]. Yun, K., J. Park and J. Cho, Robust Human Pose 
Estimation for Rotation via Self-Supervised Learning. IEEE 
Access, 2020. 8(1): p. 32502-32517. 
[181]. Cong, Y., et al., Self-Supervised Online Metric 
Learning With Low Rank Constraint for Scene 
Categorization. IEEE Transactions on Image Processing, 
2013. 22(8): p. 3179-3191. 
[182]. Stefanov, K., J. Beskow and G. Salvi, Self-
Supervised Vision-Based Detection of the Active Speaker 
as Support for Socially Aware Language Acquisition. IEEE 
Transactions on Cognitive and Developmental Systems, 
2020. 12(2): p. 250-259. 
[183]. Gfeller, B., et al., SPICE: Self-Supervised Pitch 
Estimation. IEEE/ACM Transactions on Audio, Speech, 
and Language Processing, 2020. 28: p. 1118-1128. 
[184]. Moussa, M.A., Combining Expert Neural 
Networks Using Reinforcement Feedback for Learning 
Primitive Grasping Behavior. IEEE Transactions on Neural 
Networks, 2004. 15(3): p. 629-638. 
[185]. Shi, H., et al., Adaptive Image-Based Visual 

Servoing With Temporary Loss of the Visual Signal. IEEE 
Transactions on Industrial Informatics, 2019. 15(4): p. 
1956-1965. 
[186]. Sharma, R.S., et al., Robust Hybrid Visual 
Servoing Using Reinforcement Learning and Finite-Time 
Adaptive FOSMC. IEEE Systems Journal, 2019. 13(3): p. 
3467-3478. 
[187]. Breyer, M., et al., Comparing Task Simplifications 
to Learn Closed-Loop Object Picking Using Deep 
Reinforcement Learning. IEEE Robotics and Automation 
Letters, 2019. 4(2): p. 1549-1556. 
[188]. Yun, S., et al., Action-Driven Visual Object 
Tracking With Deep Reinforcement Learning. IEEE 
Transactions on Neural Networks and Learning Systems, 
2018. 29(6): p. 2239-2252. 
[189]. Xie, Y., et al., Correlation Filter Selection for 
Visual Tracking Using Reinforcement Learning. IEEE 
Transactions on Circuits and Systems for Video 
Technology, 2020. 30(1): p. 192-204. 
[190]. Wang, Y., et al., Multitask Learning for Object 
Localization With Deep Reinforcement Learning. IEEE 
Transactions on Cognitive and Developmental Systems, 
2019. 11(4): p. 573-580. 
[191]. Ni, Z. and S. Paul, A Multistage Game in Smart 
Grid Security: A Reinforcement Learning Solution. IEEE 
Transactions on Neural Networks and Learning Systems, 
2019. 30(9): p. 2684-2695. 
[192]. Zeng, Y., et al., A Semi-Markov Decision Model 
With Inverse Reinforcement Learning for Recognizing the 
Destination of a Maneuvering Agent in Real Time Strategy 
Games. IEEE Access, 2020. 8(1): p. 15392-15409. 
[193]. Emigh, M.S., et al., Reinforcement Learning in 
Video Games Using Nearest Neighbor Interpolation and 
Metric Learning. IEEE Transactions on Computational 
Intelligence and AI in Games, 2016. 8(1): p. 56-66. 
[194]. Li, R., et al., Localization and Manipulation of 
Small Parts Using GelSight Tactile Sensing, in 
International Conference on Intelligent Robots and Systems 
(IROS). 2014, IEEE: Chicago. p. 3988-3993. 
[195]. Yu, K. and A. Rodriguez, Realtime State 
Estimation with Tactile and Visual sensing. Application to 
Planar Manipulation, in International Conference on 
Robotics and Automation (ICRA). 2018, IEEE: Brisbane. p. 
7778-7783. 
[196]. Bimbo, J., et al., Object pose estimation and 
tracking by fusing visual and tactile information, in 
International Conference on Multisensor Fusion and 
Integration for Intelligent Systems (MFI). 2012, IEEE: 
Hamburg. p. 65-70. 
[197]. Schuetz, C., et al., Motion planning for redundant 
manipulators in uncertain environments based on tactile 
feedback, in IEEE/RSJ International Conference on 
Intelligent Robots and Systems (IROS). 2015, IEEE: 
Hamburg. p. 6387-6394. 
[198]. Zhang, J., et al., Improving robustness of robotic 
grasping by fusing multi-sensor, in International 
Conference on Multisensor Fusion and Integration for 



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2020.3028740, IEEE Access

 Author Name: Preparation of Papers for IEEE Access (June 2020) 

VOLUME XX, 2017 9 

Intelligent Systems (MFI). 2012, IEEE: Hamburg. p. 126-
131. 
[199]. Sanchez, J., et al., Online Shape Estimation based 
on Tactile Sensing and Deformation Modeling for Robot 
Manipulation, in 2018 IEEE/RSJ International Conference 
on Intelligent Robots and Systems (IROS). 2018, IEEE: 
Madrid. p. 504-511. 
[200]. Rasouli, M., et al., An Extreme Learning Machine-
Based Neuromorphic Tactile Sensing System for Texture 
Recognition. IEEE Transactions on Biomedical Circuits 
and Systems, 2018. 12(2): p. 313-325. 
[201]. Ward-Cherrier, B., N. Rojas and N.F. Lepora, 
Model-Free Precise in-Hand Manipulation with a 3D-
Printed Tactile Gripper. IEEE Robotics and Automation 
Letters, 2017. 2(4): p. 2056-2063. 
[202]. Bimbo, J., et al., In-Hand Object Pose Estimation 
Using Covariance-Based Tactile To Geometry Matching. 
IEEE Robotics and Automation Letters, 2016. 1(1): p. 570-
577. 
[203]. Liu, H., D. Guo and F. Sun, Object Recognition 
Using Tactile Measurements: Kernel Sparse Coding 
Methods. IEEE Transactions on Instrumentation and 
Measurement, 2016. 65(3): p. 656-665. 
[204]. Bhattacharjee, T., et al., Multimodal Tactile 
Perception of Objects in a Real Home. IEEE Robotics and 
Automation Letters, 2018. 3(3): p. 2523-2530. 
[205]. Calandra, R., et al., More Than a Feeling: 
Learning to Grasp and Regrasp Using Vision and Touch. 
IEEE Robotics and Automation Letters, 2018. 3(4): p. 
3300-3307. 
[206]. Guo, D., et al., A hybrid deep architecture for 
robotic grasp detection, in International Conference on 
Robotics and Automation (ICRA). 2017, IEEE: Singapore. 
p. 1609-1614. 
[207]. Li, J., S. Dong and E. Adelson, Slip Detection with 
Combined Tactile and Visual Information, in International 
Conference on Robotics and Automation (ICRA). 2018, 
IEEE: Brisbane. p. 7772-7777. 
[208]. Garg, N.P., D. Hsu and W.S. Lee, Learning To 
Grasp Under Uncertainty Using POMDPs, in 2019 
International Conference on Robotics and Automation 
(ICRA). 2019, IEEE: Montreal. p. 2751-2757. 
[209]. Ward-Cherrier, B., L. Cramphorn and N.F. Lepora, 
Tactile Manipulation With a TacThumb Integrated on the 
Open-Hand M2 Gripper. IEEE Robotics and Automation 
Letters, 2016. 1(1): p. 169-175. 
[210]. Li, C., D. Yan and J. Shen, A Convex Tactile 
Sensor for Isotropic Tissue Elastic Modulus Estimation 
Based on the Plane Contact Model. IEEE Sensors Journal, 
2019. 19(15): p. 6251-6259. 
[211]. Pestell, N., et al., Dual-Modal Tactile Perception 
and Exploration. IEEE Robotics and Automation Letters, 
2018. 3(2): p. 1033-1040. 
[212]. Zheng, W., et al., Bio-Inspired Magnetostrictive 
Tactile Sensor for Surface Material Recognition. IEEE 
Transactions on Magnetics, 2019. 55(7): p. 1-7. 
[213]. Saadatzi, M.N., et al., Modeling and Fabrication of 

Scalable Tactile Sensor Arrays for Flexible Robot Skins. 
IEEE Sensors Journal, 2019. 19(17): p. 7632-7643. 
[214]. Sundaram, S., et al., Learning the signatures of the 
human grasp using a scalable tactile glove. Nature, 2019. 
569(7758): p. 698-702. 
[215]. Wang, S., et al., 3D Shape Perception from 
Monocular Vision, Touch, and Shape Priors, in 
International Conference on Intelligent Robots and Systems 
(IROS). 2018, IEEE: Madrid. p. 1606-1613. 
[216]. Hogan, F.R., et al., Tactile Regrasp: Grasp 
Adjustments via Simulated Tactile Transformations, in 
International Conference on Intelligent Robots and Systems 
(IROS). 2018, IEEE: Madrid. p. 2963-2970. 
[217]. Sun, F., et al., Object Classification and Grasp 
Planning Using Visual and Tactile Sensing. IEEE 
Transactions on Systems, Man, and Cybernetics: Systems, 
2016. 46(7): p. 969-979. 
[218]. Jain, D., et al., Learning Deep Visuomotor Policies 
for Dexterous Hand Manipulation, in 2019 International 
Conference on Robotics and Automation (ICRA). 2019, 
IEEE: Montreal. p. 3636-3643. 
[219]. Santina, C.D., et al., Learning From Humans How 
to Grasp: A Data-Driven Architecture for Autonomous 
Grasping With Anthropomorphic Soft Hands. IEEE 
Robotics and Automation Letters, 2019. 4(2): p. 1533-1540. 
[220]. Hang, K., et al., Hierarchical Fingertip Space: A 
Unified Framework for Grasp Planning and In-Hand Grasp 
Adaptation. IEEE Transactions on Robotics, 2016. 32(4): p. 
960-972. 
 


