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Humans and many other species sense visual information with varying spatial resolution
across the visual field (foveated vision) and deploy eye movements to actively sample
regions of interests in scenes. The advantage of such varying resolution architecture is a
reduced computational, hence metabolic cost. But what are the performance costs of such
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fovea in mammals is oriented through eye and head movements to scrutinize regions of
interest in the visual environment. But why did many species evolve such foveated archi-
tecture for vision? Seeing with high spatial detail everywhere requires greater neuronal
machinery and energy consumption, thus the advantage of a foveated visual system is to
reduce metabolic costs. But does having a foveated visual system incur a price to the per-
formance of the organism in visual tasks? Here, we show using a computer vision object
detection model, that the foveated version of the model can attain similar search perfor-
mance to its non-foveated version that processes the entire visual field with high spatial
detail. The results might help explain the evolution of foveated visual systems with eye
movements as a solution that preserves perceptual performance while resulting in compu-
tational and metabolic savings to the brain.

Introduction

Many species from primates, birds and shrimps [1, 2] have an area of their visual sensory sys-
tem with heightened spatial fidelity and utilize eye and head movements to orient this area
towards objects of interest in scenes. The pervasiveness of sensory systems with varying spatial
resolution for species that heavily rely on vision to sense the world motivates the question
about its advantages. The wide-accepted answer is that visual processing with varying spatial
resolution reduces the brain’s computational cost. For example, for humans, the density of
cones in the fovea is approximately 20 times larger than at 10 degrees into the periphery and
90 times at the far visual periphery [3]. The fovea occupies 0.01% of the retina but utilizes
approximately 8-10% of the neuronal machinery in primary visual cortex [4]. A high spatial
resolution processing system across the entire visual field matching the fovea’s ratio of primary
cortex (V1) neurons per mm of retina would lead to roughly a one thousand increase in the
size of the primary visual cortex. A full high spatial resolution visual system would likely drasti-
cally increase the brain’s computational expenditures and thus the metabolic cost. The ability
of organisms with a heightened area of spatial fidelity (i.e., a fovea) to successfully support per-
ceptual decision making relies critically on the guidance of saccadic eye movements to sample
the visual world. Humans perform approximately three eye movements per second. The brain
uses peripheral processing to extract critical information and guides the eyes across the scene.
Eye movements can be directed to salient regions in a scene as potential locations of interest
and for further processing [5-7]. During search, eye movements are also guided by informa-
tion about the target including basic features including color, size, orientation and shape [8-
11], probabilities of object occurrence, global scene statistics [12, 13], object co-occurrence
[14-16], and knowledge of the detectability of objects across the visual field [17] to successfully
detect objects in cluttered scenes. The brain is also able to acquire information in the visual
periphery to guide eye movements concurrent with analyses of information at the foveal
region [18]. This foveated visual system with guided eye movements reduces the brain’s
computational cost. What is not known are the decision accuracy costs of a foveated architec-
ture relative to a non-foveated high spatial resolution system in ecologically relevant tasks. The
current work aims at answering this question.

There have been many proposals for computational models of search and artificial systems
with foveated visual systems [19-23]. A number of models use an ideal Bayesian observer that
searches for a known target in noise-limited images [17, 24, 25]. Such frameworks typically do
not model the degradation in retinal eccentricity with varying resolution feature extraction
and the approach is limited to synthetic images for which the statistical distribution of the
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noise is known. There are other object detectors that can be applied to real world images but
use the same high resolution representation of the target (template) across the whole visual
field [26, 27]. One group has implemented in hardware a visual sensing approach with two
components: a pre-attentive component providing a fixed field of view (FOV) at low resolu-
tion, and a localized shiftable FOV at high resolution, designed to recognize and interpret
events detected by the pre-attentive system [19, 20]. However, no previous study has imple-
mented a physiologically based foveated visual system and compared its performance for eco-
logically relevant search tasks against a homogeneous high resolution (non-foveated) system
to specifically assess the decision accuracy costs of incorporating a varying resolution system.

The goal of the present work is to investigate the impact on object search performance
of using a foveated visual field with physiologically plausible cortical peripheral pooling and
saccade exploration, and compare it to a visual system with access to high spatial resolution at
all points in the scene [28-30]. We evaluate the accuracy of the models in finding different
objects in real scenes. To allow for a fair evaluation of the performance costs of foveation, both
models (foveated and non-foveated) need to be implemented within a common computational
framework.

Our reasoning is that if a foveated object detection model with eye movements can achieve
similar object detection accuracy as a non-foveated approach, it might suggest a possible rea-
son for the evolution of foveated systems in organisms: achieving successful object detection
while minimizing computational and metabolic costs.

To achieve our goal we incorporate a visual field with varying spatial resolution [31-34]
to contemporary object detection methods extended to use a latent linear discriminant for-
mulation (§“The foveated object detector (FOD)”). There are many possible methods to
implement a foveated visual field in an object detection system. In primates, foveation arises
from various properties of the visual system including varying photoreceptor density across
the retina [35], larger convergence onto ganglion cells with increasing retinal eccentricity
[36, 37], the higher number of neurons per mm? of retina at the visual cortex for foveal areas
and spatial pooling possibly contributing to crowding effects (for a review of contributions,
see Rosenholtz [38]). In this work, we opt to use a recent model [39] which specifies how
responses of elementary sensors are pooled at the layers (V1 and V2) of the human visual
cortex. The model specifies the shapes and sizes of V1, V2 regions which pool responses
from the visual field. This is clearly a simplification of the multi-stage processing in the
human visual system (lower photoreceptor density and higher input convergence at the gan-
glion cells, lower number of V1 neurons with increasing eccentricity) accounting for the
foveated properties of vision. However, such a simplified model seems to capture many
aspects of peripheral processing including some crowding effects [38, 39]. We use a simpli-
fied version (only the V1 layer, see §“Foveated visual field” for details) of this model as the
foveated visual field of our object detector (Fig 1). We call our detector the foveated object
detector (FOD). The FOD computational savings arise from the fewer computations (dot
products) related to the coarser spatial sampling of features (due to spatial pooling) in the
visual periphery.

Importantly, we used the same computer vision object detection framework to develop a
foveated system, and a non-foveated system with homogeneous high spatial resolution across
the visual field. The high spatial resolution system is the default object detection model which
processes all information in the image with the same feature extraction stages and is known as
a sliding window method (SW) in computer vision. The term sliding window refers to a re-
current application of the feature extraction and classifier across the entire image by shifting
spatial windows defining a region of interest.
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Fig 1. The foveated visual field of the proposed object detector. Square blue boxes with white borders at
the center are foveal pooling regions. Around them are peripheral pooling regions which are radially

elongated. The sizes of peripheral regions increase with distance to the fixation point which is at the center of
the fovea. The color within the peripheral regions represent pooling weights.

https://doi.org/10.1371/journal.pcbi.1005743.9001

We compared performances of the models on a standard computer vision image dataset
(PASCAL VOC [40]) allowing for direct evaluation of the impact of a biologically based
foveated visual system on the default non-foveated object detector across 20 different classes of
objects and about 5000 test images.

Results
Overview of the non-foveated object detector

The non-foveated object detector, or the sliding window (SW) object detector (Fig 2), starts by
extracting from the input image a set of image features known as the histogram of oriented
gradients (HoG) [28, 41] (Fig 3) which is a feature descriptor utilized in object detection mod-
els in computer vision. The HoGs refer to a distribution of orientations within small neighbor-
hoods akin to the responses of various cell receptive fields with different orientations. The first
stage is to convolve the image with a 1-D point discrete derivative kernel (i.e., [-1, 0, 1]) in
both of the horizontal and vertical directions. The second stage entails computing the cell his-
tograms. Each pixel within the cell codes a linear response to the various oriented kernels (fil-
ters). The local histograms are normalized relative to the mean of a block (Fig 3). This process
results in a M-by-N-by-D feature map where M is the number of rows, N is the number col-
umns and D is the number of features which is determined by the number of different edge
orientations considered. Next, the feature map is convolved with the object template which
was learned from the training images. The object template is a model of object appearance in
the form of a P-by-K-by-D matrix of feature weights (typically P << M and K << N). The
template is evaluated at all M * N locations on the feature map. Each evaluation is a dot product
between the template weights and the HoG features of the spatial P-by-K region (which corre-
sponds to a bounding box on the image) that is covered by the template. The dot product result
is recorded as the detection score for the corresponding bounding box.

The feature extraction and template evaluation process described above considers only a
single template and a single scale of the input image, to simplify the explanation. However, in
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Fig 2. Flowchart of the non-foveated sliding window (SW) model and the foveated object detector
(FOD). The feature extraction step is common to both models. First, the image is filtered with simple edge
detection filters with different orientations, and gradient magnitude and orientation are estimated at each pixel.
Then, the image is divided into small square boxes on a regular grid. Within each box, total gradient
magnitude per orientation is computed, which results in a histogram. The output is a collection of feature maps
for x, y locations and orientations. For simplicity, only one feature map (H) is shown as input to both models.
Right side: Foveated Object Detector. The FOD has an initial fixation position that determines the pooling
regions of the underlying histogram of gradient features. FOD’s templates are learned through training and
are specific to each retinotopic location. The scores reflecting probability of target presence are used to guide
saccades to the most likely target location. The object probability scores for each location are integrated
across saccades and used for the final perceptual decision.

https://doi.org/10.1371/journal.pcbi.1005743.9002

practice, there is uncertainty about the view-point and scale of the object appearing in the
scene. Thus, the object detector had more than one template per object class, and each of these
templates serves as an appearance model for a distinct view-point of the object (e.g. a bicycle
viewed from the front and from the side). In all our experiments, we used two view-point tem-
plates per object class. In addition, since the scale of the object sought is not known apriori, a
multiscale processing (we used 40 different scales as done in the Deformable Parts Model
(DPM) model [28]) of the input image is required. Finally, all bounding boxes with detection
scores higher than a given threshold are identified as object detections. However, if there are
two bounding boxes that significantly overlap with each other, the one with the lower score is
discarded (non-maxima suppression).
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Fig 3. Histogram of oriented gradients (HoG) of a sample image. Left: input image, right: HoG result.
First, the input image is convolved with two 1-D filters, namely [+ 1 0 —1] and its transpose. The gradient
magnitude and orientation at each pixel are estimated from the convolution results. Then, the image is divided
into small, square bins. In each bin, an orientation histogram is computed, which shows the (relative) total
gradient magnitude per orientation. Finally, the histogram in each bin is normalized by the total “energy” (e.g.
£, norm) of a 2x2 block containing the bin akin to divisive local contrast normalization. This final step is known
as block normalization. On the right, each HoG bin is represented with short, oriented line segments where
brightness encodes the magnitude of the associated orientation. Due to the block normalization, in
homogeneous areas (e.g. top-right) all orientations have high and similar magnitudes. (Image source
statement: the original picture on the left was taken by the first author.)

https://doi.org/10.1371/journal.pcbi.1005743.9g003

Overview of the foveated object detector (FOD)

Feature extraction. The FOD (Fig 2) mimics the process by which humans search for
objects in scenes utilizing eye movements to point the high resolution fovea to points of inter-
est. The FOD gets assigned an initial fixation point on the input image and collects informa-
tion by extracting image features through its foveated visual field. To allow for a fair
comparison of models, we equated the feature extraction of the foveated model to that of the
non-foveated. We used the histogram of oriented gradients (HoG [28, 41]) as image features
and a simplified version of the V1 model [39] to compute pooled features within the visual
field. The HoG features are extracted at full resolution over the whole image, however, after V1
pooling, the features around the fixation point are at fine spatial scale while features away from
the fixation location are at coarser scale. This fine-to-coarse transition is dictated by the pool-
ing region sizes of the visual field (Fig 1). Furthermore, because of the spatial pooling, a given
region of interest has fewer features associated to it as the retinal eccentricity increases. Train-
ing such an object detector entails learning templates at all locations in the visual field. We
refer to each of these templates as a retino-specific classifer. Because the visual field has varying
resolution, the target related features vary depending on where it is located within the visual
field. A mixture of linear templates is trained at selected locations in the visual field using a
latent-support vector machine-like [28, 42] framework. The section “Methods and models”
specifies in detail all aspects of the model and its training. There were a total of around 500-
700 different retino-specific classifiers trained to span the entire visual field. Each retino-spe-
cific classifier resulted in a object detection score reflecting the strength of evidence for the
presence of the searched object at that location.

Eye movement strategies. We assessed performance for two eye movement strategies, the
maximume-a-posteriori (MAP) rule (SEye movement strategy) and a random strategy (RAND)
to demonstrate the importance of the guidance of eye movements. The MAP eye movement
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strategy moves the fovea to the location in the image with the highest posterior probability for
the presence of the searched target. The MAP model has been shown to be consistent with
human eye movements in a variety of visual search tasks [43, 44]. Studies have demonstrated
that in some circumstances human saccade statistics better match an ideal searcher [17] that
makes eye movements to locations that maximize the accuracy of localizing targets, yet in
many circumstances the MAP model approximates the ideal searcher [24, 45] but is computa-
tionally more tractable for objects in real scenes.

New object detector scores are generated for each new fixation point. For each fixation, the
FOD collects evidence through its foveal and peripheral detection templates and integrates the
new evidence into an internal map, which keeps the evidence for target presence at all possible
bounding box locations. Briefly, for a certain bounding box location, different fixations yield
different detection scores arising from different retino-specific classifiers. The final detection
score for that location is the summation of scores obtained through all fixations. The final
scores are converted to posterior probabilities using a sigmoid transformation (see $Integrat-
ing observations across multiple fixations). The posterior probabilities are utilized to program
the next eye movement using the MAP algorithm.

Object detector scores at fixated locations are reduced (inhibition of return) so that the
foveated object detector is encouraged explore new locations and avoid revisits (see Part F in
S1 Text for details and limitations on implementation of inhibition of return.)

Perceptual decision. After multiple eye movements, the FOD integrates, for each spatial
location, information collected at different fixations and computes object detection scores and
associated bounding boxes. All bounding boxes with detection scores higher than a detection
threshold are identified as final object detections. However, if there are two bounding boxes
that significantly overlap (intersection over union greater than 0.5) with each other, the one
with the lower score is discarded. Known as “non-maxima suppression,” this is a common
post-processing step in computer vision object detection.

Evaluation of the effects of foveation on visual search for objects

We compared two models on the PASCAL VOC 2007 detection (comp3) challenge dataset
and protocol [40]. The dataset contains 20 object classes, 5011 training images and 4952 test
images. A training image might contain more than one instance of a specific object class. All
results are obtained by training the classifiers on a different set of images than those utilized
for testing.

Measures of performance. For a given object class, the performance of an object detector
is computed as follows. First, the object detector is run over the testing images and generates a
score for each evaluated location representing the evidence for the object being present at that
location. Associated with each score is also a bounding box which encompasses the area of the
image associated with the score. Scores are compared to a specific detection threshold T. The
bounding boxes with scores above the threshold T are considered the object detector’s predic-
tion about the presence and location of the objects. To evaluate whether the bounding boxes
are considered correct, they are compared against the ground truth bounding boxes surround-
ing the actual objects in the images. The ground truth is obtained by annotation by multiple
humans. A predicted box P is deemed a “true positive” if there is a ground truth box G such
that the intersection area of P and G divided by the union area of P and G is larger than 0.5.
Otherwise, P is deemed a “false positive.”

Next, recall and precision are computed for the specific threshold T. Recall is the hit rate,
the number of true positives divided by the number of all ground truth boxes in the testing set.
Precision is the number of true positives divided by the number of all predicted boxes retrieved
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by the detector (the sum of true positives and false positives). By varying the value of T, we
obtain a recall-precision curve plot (an example is provided in Part A in S1 Text). The area
under this curve is called “average precision”, or AP for short. Recall, precision and AP are the
most common performance measures utilized in the computer vision community for the
object detection problem. The AP can take values in the range [0, 1], however, to show more
precision we use the “percent AP” (which is 100 times the original AP score) throughout the
paper. To report the performance over many object classes, we average their AP scores which
yields the “mean average precision” or “mAP” for short.

Comparison of the FOD with non-foveated SW. As a first control, we compared the per-
formance of our non-foveated (SW) implementation which corresponds to only using high-
resolution foveal templates only, to three other object detection methods (DPM [28], Exam-
plar-SVM [29], LDA-based detection [42]) which also use sliding window for search, and
whose image features (HoG [28, 41]) and recognition models (mixture of linear templates) are
similar to ours. We observed that our SW implementation is performing on par with the com-
pared methods. This suggests that the main result in our paper (the influence of foveation on
object detector performance) cannot be attributed to the implementation of a low-performing
high resolution sliding window approach (SW). The reader is referred to the supplementary
section Part B in S1 Text for details of the results of these comparisons.

We compared the performance of the foveated version of our object detector (FOD) with
its non-foveated (SW) version. We also evaluated the importance of the eye movement strategy
for the FOD by comparing the model with random eye movements vs. the inclusion of the
MAP algorithm. Table 1 shows the percent average precision (AP) scores for FOD with differ-
ent eye movement strategies and different number of fixations. The table also presents the per-
formance of the non-foveated model (SW). The maximum-a-posteriori and random eye
movement strategies are denoted with MAP and RAND, respectively. Because the model accu-
racy results will depend on the initial point of fixation, we ran the models with different initial
points of fixation. The presence of a suffix on a model refers to the location of the initial fixa-
tion: “-C” stands for the center of the input image, i.e. (0.5, 0.5) in normalized image coordi-
nates where the top-left corner is taken as (0, 0) and the bottom-right corner is (1, 1); and “-E”
for the two locations at the left and right edges of the image, 10% of the image width away
from the image border, that is (0.1, 0.5) and (0.9, 0.5). MAP-E and RAND-E results are the per-
formance average of two different versions of the foveated models with initial fixations: one
with initial fixation close to the left edge of the image, the other run close to the right edge of
the image. For the random eye movement, we report the 95% confidence interval for AP over
10 different runs. We ran all systems for a total of 5 fixations. Table 1 shows results for after 1,
3 and 5 fixations. A condition with one fixation is a model that makes decisions based only on
the initial fixation. A model with 3 fixations, executes two eye movements, integrates informa-
tion across the initial fixation and two additional fixations to make a decision about locations
of the searched object. The results show that the FOD using the MAP rule with 5 fixations
(“MAP-C,5” for short) performs nearly as good as the SW detector (a difference of 0.2% in
mean AP).

Fig 4 shows the ratio of mean AP for the FOD with the various eye movement strategies to
that of the non-foveated SW system (relative performance) as a function of fixation. The rela-
tive performance of the MAP-C to non-foveated SW (AP of MAP-C divided by AP of SW) is
98.8% for 5 fixations, 96.5% for 3 fixations and 84.8% for 1 fixation. The FOD with eye move-
ment guidance towards the target (MAP-C,5) achieves or exceeds SW’s performance with only
1 fixation in 4 classes, with 3 fixations in 7 classes, with 5 fixations in 2 classes. For the remain-
ing of 7 classes, FOD needs more than 5 fixations to achieve SW’s performance.
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Table 1. Per class percent average precision (AP), mean average precision (mAP) over all 20 classes and relative computational costs of non-
foveated SW and FOD on the PASCAL VOC 2007 dataset. (Object class abbreviations are as follows. ap: aeroplane, bk: bike, bd: bird, bt:boat, bl: bottle,
bs: bus, cr: car, ct: cat, ch: chair, cw: cow, dt: dining-table, dg: dog, hs: horse, mb: motorbike, pr: person, pt: potted-plant, sh: sheep, sf: sofa, tr: train, tv: tv-
monitor).

ap | bk | bd | bt | bl  bs | cr ct | ch | cw dt | dg hs | mb | pr | pt| sh | sf tr tv | mAP Cost
sw 17.5/286| 9.7/10.4/17.3/29.8|36.7| 79|11.2/21.0/2.3|2.7/30.9|21.1/19.7 3.0| 9.2/ 13.7|235|25.2| 17.1 100

MAP-C |1/17.0|21.1| 49| 9.8 9.3|274|279| 85| 3.7|/128|20|4.3/29.7|19.7/18.2/1.2/10.7 14.0 | 26.2|21.8| 14.5 11.5
3/17.4/27.7/10.1|10.6|10.4 |30.8 | 31.6| 8.4 |10.4 /172 2.1|/3.4/33.3|21.1|18.7|3.4| 7.6|154|26.4/23.5| 16.5 31.2
5/17.0/28.6/10.0|10.7/11.2|31.0 34.0| 83|10.6 /18.2|2.1|3.4/34.2 21.8/19.7 /28| 8.1|15.1/27.8|24.0| 16.9 49.6

MAP-E (1| 16| 71| 41| 56| 91| 87 11.7| 6.0| 3.6|/102|2.0/22 85|/102|/135|1.3| 6.8| 8.0/ 10.6/10.3| 7.1 8.7
3/13.0 246| 99| 9.8/10.7|272|293| 74 /104 164 3.7 2.2/ 30.6|/20.8/16.9/3.3|11.2|13.8/23.0 /241 154 28.1
5/15.1/28.0/ 99/104|11.6/29.9|/33.0| 83|10.6 18.7 2.7 4.1 /33.7/226/18.9|3.1| 7.1|14.7|255|25.2 16.7 46.9
1

82 93 55| 93| 78|122|16.2| 6.1 68| 75(16/25(106| 91| 99|19 | 50| 6.7/11.2/10.0| 7.9 | similarto
+1.4 above

3| 96/130| 32| 96| 9.3|16.9/235| 88| 94| 99 18|32 /16,5123 |122|2.7| 39| 9.3/16.911.7| 10.2

RAND

+0.9
5/10.9|{15.3| 3.8 9.7 96/205|/26.3| 9.3| 95,106 15/3.1/209|13.7|135|2.7 39 /120|189 |124| 114
+1.0
RAND-C | 1 This row is the same with the “MAP-C, 1” above. "
3175204 37/100| 9.3|/286|274|115| 6.7/ 11.8/1.7/3.5/31.7 18.0,154|2.7| 54|152|26.1|15.8| 14.1
+0.5
5/176|214| 52| 99| 9.7/28.1 286 11.4| 96|121|16|35/30.0/179|153|3.7| 6.7|144 /254|159 | 144
+0.7
RAND-E | 1 This row is the same with the “MAP-E, 1” above. "
3/ 9.1/131| 28| 9.7| 94|178|225| 9.0 6.6 10.7/2.3/3.7 /149 12,0/ 14913 39| 24136 |14.1| 97
+0.7
5/10.7|159| 41| 87 95/219|26.0| 82| 9.7/11.6/1.7|43 /176 |/13.7|141|19| 57 48|157|158| 11.1
+1.1

https://doi.org/10.1371/journal.pcbi.1005743.t001

MAP-C performs well (84.8% relative performance) even with 1 fixation. The reason
behind this result is the fact that, on average, bounding boxes in the PASCAL dataset cover a
large portion of the images (average bounding box area normalized by image area is 0.2) and
are located at and around the center [46]. To reduce the effects of these biases about the
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Fig 4. Ratio of mean average precision (AP) scores of FOD systems relative to that of the non-
foveated SW system. Graph shows two eye movement algorithms: maximum aposteriori probability (MAP)
and random (RAND) and two starting points (C: center of the image; E: left or right edge of the image).

https://doi.org/10.1371/journal.pcbi.1005743.9g004
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Fig 5. Area under the recall precision curve (AP scores) achieved by the non-foveated (SW) model
and the foveated object detector with a Maximum a posteriori eye movement strategy and a starting
fixation point to the side of the image (MAP-E). Symbols represent each object class type. Identity
(diagonal) line corresponds to equal performance across models.

https://doi.org/10.1371/journal.pchi.1005743.g005

location of object placement on the results, we assessed the models with an initial fixation
close to the edge of the image (MAP-E). When the initial fixation is closer to the edge of the
image, performance is initially worse than when the initial fixation is at the center of the
image. The difference in performance diminishes achieving similar performance with five fixa-
tions (0.2 difference in mean AP). Fig 5 shows how the distribution of AP scores for different
object classes for MAP-E improves from 1 fixation to 5 fixations.

Importance of the guidance algorithm. To assess the importance of guided saccades
towards the target, we compared performance of the MAP strategy against FOD that guides
eye movements based on a random eye movement generator. Fig 4 allows comparisons of the
relative performance of the MAP FOD and those with a random eye movement strategy. The
performance gap between MAP-C, RAND-C pair and MAP-E, RAND-E pair highlights the
performance costs of a foveated system without an algorithm to guide eye movements.

Computational cost savings. In both non-foveated SW based methods and the FOD, lin-
ear template evaluations, i.e. taking dot-products, is the main computationally costly opera-
tion. We define the computational cost of a method based on the total number of template
evaluations (dot products) it executes (as also done in [47]). A model may have several tem-
plates with different sizes, so instead of counting each template evaluation as 1 operation, we
take into account the dimensionalities of the templates. For example, the cost of evaluating a
(6-cell)x(8-cell) HoG template is counted as 48 operations.

In order to compute the computational cost of a model, we run it on a subset of the test
image set and count the total number of operations (as described above) actually performed.
Note that, in order to compute a detection score, the FOD first performs a feature pooling
(based on the location of the component in the visual field) and then a linear template evalua-
tion. Since these are both linear operations, we combine them into the evaluation of a single
template. This means that the costs of feature pooling and template evaluation are included in
the evaluation of this single template.

The last column of Table 1 gives the computational costs of the non-foveated SW method
and the FOD. For the FOD the computational cost is reported as a function of different num-
ber of fixations. For ease of comparison, we normalized the costs so that the non-foveated SW
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Table 2. Per class percent average precision (AP), mean average precision (mAP) over all 20 classes and relative computational costs of FOD-DPM
and DPM on the PASCAL VOC 2007 dataset. (Object class abbreviations are as follows. ap: aeroplane, bk: bike, bd: bird, bt:boat, bl: bottle, bs: bus, cr: car,
ct: cat, ch: chair, cw: cow, dt: dining-table, dg: dog, hs: horse, mb: motorbike, pr: person, pt: potted-plant, sh: sheep, sf: sofa, tr: train, tv: tv-monitor).

ap | bk | bd bt bl bs cr ct ch | cw | dt dg | hs | mb | pr pt sh sf tr tv | mAP | Cost

SW-DPM 33.2|60.3 10.2 | 16.1 | 27.3 | 54.3 | 58.2 | 23.0 | 20.0 | 24.1 | 26.7 | 12.7 | 58.1 | 48.2 | 43.2 | 12.0 | 21.1 | 36.1 | 46.0 | 43.5 | 33.7 | 100
FOD-DPM | 1 |31.0|37.1 | 10.0 | 14.3 | 129 | 47.1 | 46.7 | 28.0 9.3 |15.5|26.2 | 10.7 | 56.0 | 39.7 | 29.4 | 9.8 | 155 27.6 |43.4 | 215 26.6 | 0.46
5 /323 500| 9.8/152 21.8|50.0 63.0 259 |17.1 205 254 | 9.7/614|446 380 9.2|19.7 30.1 431|321 31.0 | 1.84

9 |332|56.6| 99 156|253 |54.6 653 |253|19.8 22.0|24.9| 9.4 609 |50.8|41.7 | 10.0 | 20.4 | 34.9 | 44.3 | 37.3 | 33.1 | 3.09

13 | 33.4 | 59.9 |10.0 | 15.7 | 27.2 | 54.8 | 65.7 | 25.0 | 20.5 | 22.0 | 24.8 | 9.2 | 62.0 | 51.9 | 44.5 | 10.2 | 20.9 | 36.8 | 46.2 | 40.9 | 34.1 | 4.16

https://doi.org/10.1371/journal.pcbi.1005743.t1002

method performs 100 operations in total. The results show that FOD is computationally more
efficient. FOD achieves almost the same accuracy performance—98.8% of the non-foveated
SW’s average-precision score—at 49.6% of the computational cost of the non-foveated SW
model. Typically, in computer vision, complexity of algorithms are specified in terms of the
input image size. The computational complexity of the non-foveated model, in this sense, can
be expressed easily. However, this is not the case for the FOD whose computational complexity
does not depend on image size but on a number of factors including the scaling factor of pool-
ing regions and the number of required fixations. For this reason, we compare the computa-
tional costs of the FOD and the non-foveated SW models in terms of the total number of
actual dot-product operations performed in template evaluations.

Using richer object detection models at the fovea to increase performance. The FOD
uses linear classifiers to detect objects. Here we evaluate the effects of using richer and more
expensive classifiers but restricted only to the fovea. After each fixation, the FOD evaluated a
full Deformable Parts Model (DPM) detector [28] only at foveal locations that score above a
threshold which is determined on the training set to achieve high recall rate (95%). The DPM
is a computer vision object detector that models not only the overall appearance of the object
(via what they call the root filter) but also its parts. We refer to the new foveated object detector
that uses DPM at its fovea as the “FOD-DPM”.

Table 2 and Fig 6 present the performance results of this approach and compares it to the
non-foveated (sliding window) DPM model which we call the SW-DPM, for short. FOD-DPM
achieves a similar average performance to that of SW-DPM (98.2% relative performance, 0.6
AP gap) using 9 fixations and exceeds DPM’s performance starting from 11 fixations. On
some classes (e.g. bus, car, horse), FOD-DPM exceeds SW-DPM’s performance probably due
to lesser number of evaluations and reduced false positives; on other cases (e.g. bike, dog, tv)
FOD-DPM underperforms probably due to low recall rate of the FOD detector for these clas-
ses. Fig 7 shows AP scores of FOD-DPM and SW-DPM for each object class to demonstrate
the improvement from 1 to 9 fixations.

Computational savings of FOD-DPM. We compare the computational complexities of
FOD-DPM and SW-DPM by their total number of operations as defined above. For a given
object class, DPM model has 3 root filters and 8 6x6 part filters. It is straightforward to calcu-
late the number of operations performed by SW-DPM as it uses the sliding window method.
For FOD-DPM, the total number of operations is calculated by adding: 1) FOD’s operations
and 2) SW-DPM’s operations at each high-scoring foveal detection bounding box b, one DPM
root filter (with the most similar shape as b) and 8 parts evaluated at all locations within the
boundaries of this root filter. Cost of feature extraction is not included as the two methods use
the same feature extraction code. We report the computational costs of FOD-DPM and
SW-DPM in the last column of Table 2. The costs are normalized so that SW-DPM’s cost is
100 operations. Results show that FOD-DPM drastically reduces the cost from 100 to 3.09 for
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Fig 6. FOD-DPM’s performance (mean AP over all 20 classes) as a function of number of fixations.
FOD-DPM achieves SW-DPM'’s performance at 11 fixations and exceeds it with more fixations.

https://doi.org/10.1371/journal.pcbi.1005743.9006

9 fixations. Assuming both methods are implemented equally efficiently, this would translate
to an approximately 32x speed-up. These results demonstrate the effectiveness of our foveated
object detector in guiding the visual search. In the FOD-DPM implementation, the visual
periphery has, in addition to the greater spatial pooling, much simpler processing relative to
the fovea. The fovea has a subsequent parts processing that the periphery lacks. This is essential
to account for much of the additional cost savings of the FOD-DPM vs. the simpler FOD
model (compare the last columns of Tables 1 and 2). A qualitative difference in computations
at the fovea and periphery is consistent with recent findings utilizing brief dichoptic presenta-
tion of visual stimuli and proposing more top-down processing at the fovea [48].

Finally, Fig 8 shows sample detections by the FOD. We illustrate the trained bicycle, person
and car models on an image outside of the PASCAL dataset. The models were assigned the
same initial fixation location and we ran them for 3 fixations. Results show that the each
model fixates at different locations, and these locations are attracted towards instances of the
target objects being searched.
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Fig 7. Per class AP scores achieved by FOD-DPM and non-foveated SW-DPM.
https://doi.org/10.1371/journal.pcbi.1005743.g007
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Fig 8. Fixation locations and bounding box predictions of the FOD for three different object classes
(person, car and bicycle) but for the same image and initial point of fixation. Top-left: original image
(source: https://www.flickr.com/photos/kristoffer-trolle/27882648666/ with Creative Commons license.), top-
right: person detection, bottom-left: car detections, bottom-right: bicycle detection. Yellow dots show fixation
points, numbers in yellow fonts indicate the sequence of fixations and the bounding boxes are the final
detections.

https://doi.org/10.1371/journal.pcbi.1005743.9008

Evaluation of the effect of foveation on saliency

Our previous sections suggest that a computationally less costly foveated system can achieve
similar performance accuracy finding an object in real scenes as a system with homogeneous
high spatial resolution. Research has shown that visual areas in the brain also rapidly compute
bottom-up information in terms of salient regions defined by contrast, edges and color [5-7].
These salient regions serve to identify potential locations in scenes for further computation.
The impact of a foveated visual system in such saliency computations is not known. Here, we
evaluate whether identifying the most salient region in an image, an important component

of bottom-up attention useful to identify potential regions of a scene for further scrutiny, is
affected by the process of foveation. Or in the contrary, can a foveated system with eye move-
ments identify the same salient regions with less computation than a non-foveated system?

We implemented a simple model of saliency that followed conceptually the model proposed
by Li [6, 49, 50]. Such saliency model involves two computational aspects of saliency, namely iso-
orientation suppression and contour enhancement, and also their dynamics. Here we only imple-
mented the iso-orientation suppression aspect by using a simple center-surround operation.

The current simplified implementation of the saliency model first extracts features by
convolving Gabor receptive fields (4 scales and 8 orientations) with the input image. Each cell
pools (sums) Gabor responses per orientation, within its receptive field. Then, a center sur-
round computation is implemented by subtracting each cell’s response by the pooled response
of the neighboring cells at that same orientation (iso-orientation suppression). The spatial dis-
tribution of responses after the suppressions were considered the saliency map and the highest
value the top saliency score. We implemented two versions of this saliency model, a non-
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Fig 9. Performance comparison of the foveated saliency model versus the non-foveated saliency
model. We ran both models for the simple task of identifying the topmost salient location, on 100 natural
images randomly selected from the PASCAL VOC 2007 dataset. The blue curve plots the average distance
(in degrees) between the topmost salient locations, S1 and S2, found by the foveated and the non-foveated
model, respectively, on the same image. Note that this location is unique and fixed for the non-foveated model
while it changes for the foveated model as the model explores the image, i.e. makes more and more fixations.
The red curve plots the average number of iso-orientation suppression operations of the foveated model
relative to that of the non-foveated model. Again, the number of such operations for the non-foveated model is
fixed but it changes for the foveated model with the number of fixations. Foveated model finds the same
topmost salient location as the non-foveated model, after 16 fixations. Notably, after 8 fixations, the distance
between S1 and S2 becomes less than 1 degree. The foveated model achieves this level of accuracy by doing
42% less iso-orientation suppression operations than the non-foveated model.

https://doi.org/10.1371/journal.pcbi.1005743.9g009

foveated version consisting of only foveal cells and a foveated version that uses the simplified
Freeman-Simoncelli model as its visual field (The same visual field that is used by the FOD.)
(SFoveated visual field). The non-foveated saliency model processes all locations of the input
image with the same (high) resolution and each Gabor receptive field was suppressed by pool-
ing the Gabors with the same orientation at eight neighboring locations. The foveated model
processes the input image with varying resolution. The foveal center surround suppression
consisted of subtracting from a cell’s receptive field response the pooled activity across eight
(nearest) surrounding cells of the same orientation. However, the peripheral center surround
was implemented by subtracting the pooled responses across four nearest neighboring cells.
The foveated saliency model makes eye movements based on the saliency values computed at
the peripheral cells. It executes a saccade to the location with the maximum saliency value.
After saccade execution, the saliency values around foveation (a 2-degree radius area around
each fixation point) is inhibited (inhibition of return). This prevents the model from getting
caught at a maximally salient location and not executing additional eye movements. After n
fixations, the model integrates saliency values for each location across fixations and selects the
top saliency location.

We compared decisions of the non-foveated and foveated saliency models in terms of their
agreement in selecting the top salient location within the image. We compared the computa-
tional costs of the two models in terms of their associated total number of center-surround
operations. Fig 9 shows the distance in degrees between the top salient location from the non-
foveated saliency model (blue line) and that of the foveated saliency model. The comparison is
plotted as a function of increasing number of fixations for the foveated saliency model. In red
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we show the fraction of the number of center surround operations of the foveated saliency
model relative to the non-foveated model. This is shown as a function of number of fixations.
The results show that the foveated model can generate a similar prediction for the most salient
region as the non-foveated model but with a significantly less number of center-surround
operations. Mathematical details of the foveated saliency model can be found in the supple-
mentary section Part E in S1 Text.

Discussion
The benefits of a foveated visual system

The objective of our current work was to evaluate within a common framework the accuracy
costs and computational savings of a foveated visual system relative to a full high resolution
system. We evaluated an object detection paradigm over 20 object classes from a standard
object detection dataset. Our results show that with five exploratory fixations, the foveated
method achieves nearly the same performance as the non-foveated (high resolution SW)
method (Fig 5). The foveated achieved such accuracy with 49.6% of the sliding window meth-
od’s computational cost. Using a richer model (such as the Deformable Parts Model, DPM
[28]) that selects potential locations for further object part processing, the foveated version of
the model was able to match and even outperform the non-foveated SW-DPM while achieving
computational savings (at less then 4.16% of the SW-DPM’s computational cost). In addition,
Fig 4 highlights the importance of guided eye movements in re-orienting the fovea to regions
of interest in the scene. Eliminating the guidance diminishes the model’s ability to correctly
detect the object with additional fixations. Together the results suggest that a foveated visual
system with guided eye movements provide computational savings while preserving an organ-
ism’s ability to successfully det