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1. Motion parallax and object background separation 

When a visual observer moves forward the projections of the objects in the scene will 

move over the visual image. If an object extends vertically from the ground its image 

will move differently from the immediate background. This difference is called motion 

parallax [1,2]. Much work in automatic visual navigation and obstacle detection has 

been concerned with computing motion fields, or more or less complete 3-D informa- 

tion about the scene [3-5]. These approaches in general assume very unconstrained 

environments and motion. If the environment is constrained, e.g. motion occurs on a 

planar road, then this information can be exploited to give more direct solutions to e.g. 

obstacle detection.[6] 

Fig. 1.1 shows superposed the images from two successive times for an observer trans- 

lating relative a planar road. The arrows show the displacement field, i.e. the transfor- 

mation of the image points between the successive time points. 
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Fig. 1.1 Displacement field from road with predicted and actual position of vertically 
extended object 
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Fig. 1.1 also shows a vertically extended object at time t and t ~. Note that the top 

of the object is displaced quite differently from the immediate road background. This 

effect is illustrated by using the displacement field of the road to displace the object. 

A clear difference between the actual image and the predicted image is observable for 

the object. This fact forms the basis of our approach to object detection. (Fig. 1.2) 

For a camera moving relative a planar surface the image transformation of the surface 

is computed and used to predict the whole image. All points in the image that are not 

on the planar surface wilt then be erroneously predicted. If there is intensity contrast 

at those parts we will get an error in the predicted image intensity. This error then 

indicates locations of vertically extended objects. 
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Fig. 1.2 Block diagram o] proeessing for vertical object detection 

2. Image  transformation for mot ion  relative a planar surface 

With a moving camera each point in the scene will map to a different point in the image 

at different times. The :transformation of the mapped image point over time is deter- 

mined by the motion of the camera and the position of the point in the 3-dimensional 

scene. If the point is on a planar surface the transformation can be computed using 

the camera motion and position of the surface in space. Fig. 2-1 shows the coordinate 

system of the camera and the image plane. A rigid displacement of the camera can be 

decomposed into a translation with components Dx,  Dy, Dz along the coordinates and 

a rotation around an axis passing through the point of projection, which can be decom- 

posed into rotations around the axis of the coordinate system ex ,  eY, ez .  Assuming 

small rotations, a point in the scene with coordinates X, Y, Z is then transformed to the 
point X r, Yr, Z I where: 

Y' = ez  1 - ¢ x  + Dy [2.1] 

Z' --¢Y ex  1 Dz 
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Fig. 2.I Coordinate system of camera and image plane 

If the image plane is located at unit distance from the point of projection the image 

coordinates (x, y) of a point X;Y,  Z under perspective projection are 

X Y 
x = 7  [2.21 

The transformation of the projected image point of a point in the scene with depth Z 

is therefore [7]: 

Xl =: X -- ~)ZY + ¢ Y  "4- D x / Z  yt = Y + ¢ZX -- CX + D y / Z  [2.3] 

1 - ¢ y x  + ¢xY + D z / Z  1 - ¢yx  + ¢xY + D z / Z  

If the point X, ]r, Z is located on a planar surface with equation K x X + K y Y + K z Z  = 1, 
the transformation in the  image plane the becomes: 

x' = (1 + K x D x ) x  + ( K y D x  - Cz)y + ¢ Y  + D x K z  [2.4 - a] 

(1 + K x D z  - ¢y)x  + ( K y D z  + ¢x)y  + K z D z  

y, (1 + K y D y ) y  + ( K x D y  - Cz)x - Cx + D v K z  [2.4 - b] 

= (1 T ~ - : - ¢ Y ~ T ( - I ~ D z z  T C x - ~  + K z D z  

This is a nonlinear transformation of the image coordinates, determined by 9 parameters. 

The actual number of degrees of freedom of the transformation is however just 8, since 

parameters / (  and/9  always occur as products, which means that their absolute values 
are irrelvant. 

3. E s t i m a t i o n  of  p a r a m e t e r s  b y  min imisa t ion  o f  p red ic t ion  e r ro r  

The transformation of the projected image points due to the motion of the camera will 

manifest itself as a transformation of the image intensity I(x, y). If t and t' are the time 

instants before and after the transformation, we shall assume that: 
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v ' ,* ' )  = r ( z ,  v, [3.1] 

where x, y and x', y~ are related according to eq. 2.4. 

I.e. we assume that the transformation of the image intensity is completely determined 

by the geometric transformation of the image points. This is not strictly true in general 

since we neglect factors as changing illumination etc. 

For  points on a planar surface our assumption implies theft the transformation of the 

intensity is determined by the 3 vectors ¢, D and/~" charcterising the camera motion and 

surface orientation respectively. The determination of these pa2ameters can therefore 

be formulated as the problem of minimising the prediction error: 

p ( ~ , / ) , ~ ' )  = ~ [  I ( x ' ( x , y , ¢ , D , I £ ) , y ' ( x , V , ¢ , D , K ) , t '  ) - I ( x , y , t )  ]2 [3.2] 

x ,y  

where the summation is over image coordinates containing the planar surface. 

For the minimisation we use gradient descent, i.e. the values of the parameters are 

adjusted iteratively according to: 

Op(i+l) 

Op(i+l) 
/)(/+1) = D(i) _ #2 0D [3.3] 

Op(i+l) 
R(i+l) = [£(0 _ #s 0[£ 

where i denotes iteration index. The derivatives with respect to the parameter vectors 

are taken componentwise. 

The convergence properties of the gradient descent minimisation depend heavily on 

the structure of the image intensity function I(x ,  y). Assume that we have computed 

approximate values ¢, D,/~( for the parameters. These values transform the point (x, y) 

to the point (x', y') = (x' + 6x', y' + 6y') If the approximate parameter values are close 

enough to the true values, 6x' and ~y~ wilt be small. For the prediction error we then 

have: 

0x , 0 i , ,  [3.5] 

In order to compute well defined vMues of motion and surface orientation parameters 

the prediction error e should be sensitive to small changes in these. From eq.3.5 we 
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see that the size of the image intensity gradient is very important in this respect since 

it directly amplifies any variations in 6x t, 6y r. Preferably image points x, y with high 

intensity gradient should be used in the computation of the prediction error in eq. .  The 

selective use of points with high gradient also reduces the volume of the computations 

involved. For our application we therefore first applied a version of the Canny-Deriche 

edge detector to the image [8;9 ], and used only the edge points. The choice of edge 

detector for this problem is probably not critical. What is needed is just a selection of 

points with high intensity gradient. 

The derivatives of the prediction error P with respect to the parameters were computed 

by systematically varying the parameters. If the difference between the transformed 

coordinates x ~, y~ and the original x, y is small, e.g. by choosing the time interval t r - t  

to be small, these derivatives could be computed more efficiently using the relation 3.5. 

In principle direct methods of determination of the parameters can be used. [10]. 

4. Sequent ia l  e s t ima t ion  us ing  recorded  sequence 

Since t h e  algorithm assumes motion relative a planar surface we first have to select 

points in the image, projected from the road , to be used for parameter estimation. 

Under normal driving conditions, the part of the image immediately in front of the car 

can be assumed to project from the planar road surface. The position of the car realtive 

to the road boundaries can also be considered as relatively stable. The points to be 

used in the algorithm are therefore selected from a rectangular window in the image 

choosen so that points from the road immediately in front of the car are contained in 

the window as shown in fig. 4-1. This window is fixed in time relative to the image. As 

obstacles are detected the window could be made adaptive so that these objects are not 

included in the pixels used for parameter estimation. 

Fig. 4.1 Window for selection of points on planar road surface 
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The  gradient descent algorithm for estimation of parameters  can now be applied to 

succesive image frames in the sequence. If the time between the succesive "frames is 

short enough, we can expect a high correlation in t ime between computed parameter  

values. This can be exploited in the gradient descent algorithm by using parameter  

values computed in the previous frame pair as s tar t  values for the next  pair. For an ideal 

planar road surface there will in fact be a coupling between motion parameters ,  ql, D and 

surface orientat ion ~: , since the change in surface orientation over t ime is determined 

by the motion. This can be introduced as an extra  constraint in the algori thm in order 

to build a t rue spatio-temporal  model of the position and orientat ion of the camera 

relative to the road. At this stage however we did not consider this coupling between 

parameters.  

5. O b j e c t  d e t e c t i o n  u s ing  p r e d i c t i o n  e r r o r  

If the est imated parameters  ¢ , / )  and f&" are correct and the road conforms to the planar 

surface model, the error in the prediction of the image intensity acc. to eq. 3.5 will be 

0. Any errors in the est imated parameter  values or errors in the model will however 

give rise to a non zero prediction error. Any vertically extended object in the scene 

will obviously violate the planar surface model and therebye cause a prediction error. 

The  prediction error is thus an important  variable to be used for deciding whether any 

objects are present in front of the car. 

The effect of a vertically extended object on the prediction error is however highly 

dependent  on its position in the scene. If we consider the ideal case of a camera aligned 

with optical axis parallell to the planar surface, translating in the direction of the optical 

axis only with no rotation, we have for a point in the scene at d e p t h  Z the following 

transformation in the image: 

z '  = z y' - Y [5.1] 
1 + D z / Z  I + D z / Z  

If we choose units so tha t  the height of the camera over the ground,  - 1 / K y  = 1 we 

have for points on the planar  road surface: 

x m =  y m -  Y [5.2] 
1 - D z y  1 - D z y  

A point  in the image with coordinates x, y at height h above the road will be at depth 

Z = - 1  + h/y .  For this point  the difference between the actual coordinates and thoose 

predicted by  the model is: 

h D z x y  y, _ ym = h D z y  2 [5.3] 
x'  - x m = (1 - D z y  - h)(1 - D z y )  (1 - D z y  - h)(1 - D z y )  

Note that  this applies only to points x, y in the image that  project  to the road surface. 

This means that  they are below the horison, i.e. y < 0 and h < t - D z y .  

We see that  the error in the prediction of the coordinates grows monotonically with 

height h above the ground. However it also grows with distance from focus of expansion 

x = 0, y = 0. Objects close to the F.O.E. will therefore give rise to very small errors 

in the coordinates. This is natural  since motion at the F.O.E. is zero, independent  of 
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the objects coordinates in space. If we use scene coordinates X and Z instead of image 

coordinates we get for the coordinate error: 

h D z X  y, _ ym = h(h - 1 )Dz  [5.4] 

x' - x'* = (Z  + D z ) ( Z  + DZ - D z h )  (Z  + D z ) ( Z  + D z  - D z h )  

From this we see that the error scales inversely with depth, i.e. distance in front of the 

camera. It also grows with the distance X to the side of the optical axis, and with D z  

the translatory displacement along the optical axis. 

For small errors in the coordinates we can estimate the error in the predicted image 

intensity by projecting the coordinate errors on the intensity gradient acc. to eq. 3.5 . 

This means that errors in the predicted image intensity will only show up at the edges 

of the vertically extended objects, unlesss the errror in the predicted coordinates are 

large enough. Important to note is also the fact that the orientation of the edges of 

the vertically extended objects influence the size of the error in the predicted image 

intensity. From eq.5.3 we see that 6x', 5y' will be oriented radially out from the focus of 

expansion. For maximum prediction error acc to eq. 3.5 the gradient shouls be parallell 

to this orientation, i.e. the edges should be orhogonal to the lines radiating out from the 

focus of expansion. However we must emphasise that this only applies when coordinate 

errors 5x ~, 5yr are small 

Another cause of prediction error is errors in the estimated parameters. For these 

errors we also have the dependence on the distance from the F.O.E. This is important 

to consider in the evaluation of false alarm detections e.g. 

6. E x p e r i m e n t a l  resul ts  and  conclusions 

The algorithm for sequential model based motion estimation and object detection was 

simulated using a digitised video tape recorded from a camera placed on top of a moving 

car. 100 frames with a frame rate of 25/sec was selected from the video sequence. In this 

sequence the car approaches a roadwork where the right lane of the road is blocked by 

warning signs and fences. In the first frame the car is about 150 m from the roadwork. 

In order to get sufficiently large prediction errors for objects close to the F.O.E. the 

prediction was made 3 frames ahead. Parameters were computed for every frame how- 

ever, i.e. the sequence of frame pairs used were 1-4, 2-5, 3-6, etc. A special problem 

was the initiation of the algorithm. Since only the pixels at the edges from the Canny- 

Deriche edge detector were used in the prediction error computation the convergence 

of the algorithm depended on the initial parameters not beeing too far away from the 

correct values. For the first frame pair therefore, all the pixels in the window were used 

for computation of the prediction error. 

For each frame pair the gradient descent algorithm was iterated 30 ~imes. No complex- 

ity considerations were considered in choosing this number. For more iterations the 

improvement of the prediction was found to be negligible. 

Fig.6.1.a-b shows the unpredicted difference and the prediction error respectively for 

frames 97-100. We see that a clear reduction of the difference image is obtained in 
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the prediction error image for image points projecting from the ground. For verticMly 

extended objects the reduction is significaatly less, depending on verical extent and dis- 

tance from F.O.E. The diagrams in fig 6.1.c-f illustrates this in more detail. The curves 

show the image intensity from the difference and prediction error image respectively. 

The intensity along two different horisontal lines, indicated in fig.6.1.a-b are plotted. 

The first line containing white marking from the road is clearly reduced in the prediction 

error image, while the second containing the vertically extended objects in the roadwork 

shows comparatively less reduction from difference to prediction error image. 

In fig.6.2 is shown with white markings thresholded prediction error images from several 

different times. The images were thresholded at the edge points only and the threshold 

was increased systematically with distance from F.O.E. The threshold was choosen 

so that at most one marking was obtained from the part of the road containing the 

parameter estimation window. This means that the threshold was adapted to any 

errors in the estimated parameters. 

From fig.6.2 we see that as expected the sensitivity of the algorithm increases with 

distance from the F.O.E and height over ground. A very important factor is also the 

intensity contrast of the objects relative background. Some vertically extended objects 

are not over the threshold in every frame. By combining detections from several frames 

the performance should be increased however. In order to do this the detections from 

the different objects have to be grouped and anlysed separately. The main purpose of 

this prediction error based detection can therefore be seen as a preprocessing mechanism 

which directs resources of the system for further processing. 
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Fig. 6.1.a Difference frames 97-100 Fig. 6.1.b Prediction error frames 97-100 
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Fig, 6.1.c Intensity of line 1 in fig. 6.l.a 
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Fig. 6.l.e Intensity of line 2 in fig, 6.l.a 

Fig. 6.l.d Intensity of line 1 in fig. 6,1.b 
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Fig. 6.l.f Intensity of line 2 in fig. 6.l.b 
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