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Abstract 

In this paper we describe a trainable object detector and its instantiations for detecting faces 

and cars at any size, location, and pose. To cope with variation in object orientation, the detector 

uses multiple classifiers, each spanning a different range of orientation.  Each of these classifiers 

determines whether the object is present at a specified size within a fixed-size image window.   

To find the object at any location and size, these classifiers scan the image exhaustively.   

Each classifier is based on the statistics of localized parts.  Each part is a transform from a 

subset of wavelet coefficients to a discrete set of values.  Such parts are designed to capture 

various combinations of locality in space, frequency, and orientation.  In building each classifier, 

we gathered the class-conditional statistics of these part values from representative samples of 

object and non-object images.  We trained each classifier to minimize classification error on the 

training set by using Adaboost with Confidence-Weighted Predictions (Shapire and Singer, 

1999).  In detection, each classifier computes the part values within the image window and looks 

up their associated class-conditional probabilities.  The classifier then makes a decision by 

applying a likelihood ratio test. For efficiency, the classifier evaluates this likelihood ratio in 

stages.  At each stage, the classifier compares the partial likelihood ratio to a threshold and 

makes a decision about whether to cease evaluation  labeling the input as non-object — or to 

continue further evaluation.  The detector orders these stages of evaluation from a low-resolution 
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to a high-resolution search of the image.  Our trainable object detector achieves reliable and 

efficient detection of human faces and passenger cars with out-of-plane rotation.   

1 Introduction 

Object detection is a big part of people’s lives.  We, as human beings, constantly “detect” 

various objects such as people, buildings, and automobiles. Yet it remains a mystery how we 

detect objects accurately and with little apparent effort.   Comprehensive explanations have 

defied psychologists and physiologists for more than a century.  

Our goal in this research is not to understand how humans perceive, but to create computer 

methods for automatic object detection.  Automated object detection has many potential uses 

including image retrieval.  Digital image collections have grown dramatically in recent years.  

Corbis estimates it has more than 67 million images in its collection.  The Associated Press 

collects and archives an estimated 1,000 photographs a day.  Currently, the usability of these 

collections is limited by a lack of effective retrieval methods.  To find a specific image in such a 

collection, people must search using text-based captions and primitive image features such as 

color and texture.   Automatic object detection could be used to extract more information from 

these images and help label and categorize them.   Improved search methods will make these 

databases accessible to wider groups of users, such as law enforcement agencies, medical 

practitioners, graphic and multimedia designers, and artists.  Automatic object detection could 

also be useful in photography. As camera technology changes from film to digital capture, 

cameras will become part optics and part computer.   Such a camera could automatically focus, 

color balance, and zoom on a specified object of interest, say, a human face.  Also, detectors of a 

specific object have specialized uses: face detectors for face identification and car detectors for 

monitoring traffic.     

1.1 Challenges in Object Detection 

Automatic object detection is a difficult undertaking.  In over 30 years of research in 

computer vision, progress has been limited.  The main challenge is the amount of variation in 

visual appearance. An object detector must cope with both the variation within the object 
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category and with the diversity of visual imagery that exists in the world at large. For example, 

cars vary in size, shape, coloring, and in small details such as the headlights, grille, and tires. The 

lighting, surrounding scenery, and an object’s pose affect its appearance.  A car detection 

algorithm must also distinguish cars from all other visual patterns that may occur in the world, 

such as similar looking rectangular objects.   

1.2 Object Detection using Classifiers 

Our method for object detection factors out variation in the pose of the object. Our object 

detector uses a set of classifiers, each of which determines whether the object is present at a 

specific pose in a fixed-size rectangular image window. For faces, the detector uses classifiers 

for three discrete poses: front, left profile, and right profile.  Taking advantage of facial 

symmetry, we only needed to train classifiers for the frontal and right profile viewpoints shown 

in Figure 1a, and we built a left profile detector by reflecting the right profile detector.  For cars, 

we use 15 discrete viewpoints, and by exploiting symmetry again, we only trained classifiers for 

the eight viewpoints as shown in Figure 1b.  These classifiers tolerate a small range of variation 

in object orientation, size, and alignment within the image window.   

To perform detection, we scan each classifier over the original image and a series of resized 

versions of the original image, as illustrated in Figure 2, where the rectangular blocks indicate 

successive applications of the classifier.  This exhaustive scanning operation makes it possible to 

find the object over variation in location and size, and can be done with surprising efficiency, as 

we will describe later in Section 4. Often, the same entity is detected by more than one view-

based detector, such as the woman in the foreground of the image in Figure 3. To determine the 

final detection outcome the detector combines the results from various viewpoint classifiers  by 

using simple arbitration heuristics, in the case of Figure 3, selecting the frontal viewpoint. 

1.3 Parts-Based Representation for Classifier 

The central research issue is how to design a basic classifier that can cope with variation in 

appearance.  One hypothetical method is to build the classifier as a table, enumerating the most 

probable classification for every combination of input variables:  
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Table 1: Ideal but infeasible classifier 

(1,1) (1,2) . . . (20,20) Classification 

0 0 . . . 0 Non-object 

0 0 . . . 1 Non-object 

. . . . . . . . . . . . . . . 

35 45 . . . 28 Object 

. . . . . . . . . . . . . . . 

255 255 . . . 255 Non-object 

Such a table would give the smallest average classification error, assuming we could label each 

input appropriately.  Obviously, this table is not possible in practice.  Even a classifier over a 

20x20 input window requires 256
400

 = 10
964

 entries! Classifier design, therefore, must take 

advantage of the constraints of the visual world in order to obtain a much more compact 

representation.   

In choosing a representation for the classifier, we can differentiate between two types of 

approaches: global and parts-based. Global representations, like an ideal table, try to model the 

joint behavior of all input variables.  Computational and storage limitations, however, do not 

allow for a fully general function of the input variables.  As a practical solution, global models 

must use limited functional forms of the input variables, such as linear, quadratic, or third order.  

Alternatively, global models may reduce the dimensionality of the input space using certain 

transforms or a reduction in the number of input variables.  A higher-order model or even a non-

parametric method can then describe the joint behavior of this reduced set of variables.  

In the parts-based approach, the input variables are grouped into sets, where the relationships 

within each set are more accurately modeled than those across sets. We refer to each such set as 

a part.  For example, parts of a face, such as the eyes, nose, and mouth, can be considered as 

parts and modeled separately.  However, it should be emphasized that parts need not have a 

natural meaning to us (such as a nose or an eye), but could be defined as a group of pixels, or 

transform variables, that satisfy certain mathematical properties.  In addition, these parts do not 

have to be composed from disjoint groups of variables; a variable can be re-used in multiple 

parts.  In this paper, we denote parts with italics to refer to this more general meaning. 

This parts-based approach is based on an implicit assumption that for a given object, each 

pixel is statistically related with some pixels more than others.  Under this assumption, a global 
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model does not make good use of modeling resources, as it makes no distinction whether a 

combination of pixels is useful or irrelevant.  A quadratic filter, for example, represents 

correlation within each pair of pixels; the majority of these pairs may have negligible statistical 

dependency.  A parts-based approach, in contrast, can select each part to represent a small group 

of variables that are known to be statistically dependent.  Such an approach avoids devoting 

representational resources to weak relationships and instead allocates richer models to the 

stronger relationships. 

The parts-based assumption becomes more pronounced if statistical dependency is measured 

among transformed variables that decorrelate the imagery rather than among the original pixels.  

By decorrelation, statistical dependency will be concentrated in small sets of variables.  We 

chose a wavelet basis as a transform for decorrelation because it tends to work well on imagery 

of natural scenes (Field, 1999).  In particular, we chose a 5/3 linear phase wavelet filterbank 

(Strang and Nguyen, 1997). 

  Experiments support the validity of the parts-based assumption.  We measured statistical 

dependency among 5/3 linear phase wavelet coefficients for several viewpoints of faces and cars.  

For each viewpoint, we collected the joint probability distribution for each pair of wavelet 

coefficients by using a large set of geometrically aligned images of the object.  By quantizing 

each coefficient to 5 discrete levels, we represented each distribution as a histogram with 25 

(5x5) bins.  These distributions allowed us to compute the mutual information for each wavelet 

coefficient pair. Mutual information measures the strength of the statistical dependence between 

the two variables.  Figure 4 illustrates some of the results of this experiment for frontal faces.  

Each “image” graphically represents the mutual information values between one chosen 

coefficient (indicated by an arrow) and all the other coefficients in the wavelet transform.    The 

brightness at each location indicates the mutual information between the chosen coefficient and 

coefficient at that location.  Notice that each coefficient is statistically related only with a 

relatively small number of the other coefficients (Naturally, since a variable has the strongest 

mutual information with itself, the location of the chosen coefficient is the brightest point.)  This 

phenomenon of limited statistical dependency is typical for faces and cars.     
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1.4 Properties of Classifier 

We used a combination of the following eight design choices to develop a parts-based 

classifier.   

• Decomposition into parts 

Given input variables, such as wavelet coefficients, we form a set of parts, each consisting of 

a group of variables that are statistically dependent.  We then treat these parts as statistically 

independent. With this assumption, our classifier takes the following form as a likelihood ratio 

test; that is, it decides that the object is present if the left side is greater than λ:  

(1) 
∏

r

nonpartP

partP
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rr
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( >−object

object λ
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where  partr is a discrete-valued variable obtained as a function of a chosen group of wavelet 

coefficients within the classification window, Pr(partr |object) represents the probability 

distribution over the discrete range of partr conditioned on the presence of the object, and 

similarly, Pr(partr |non-object) is conditioned on the absence of the object. 

Strictly speaking, the assumption of statistical independence of the parts is not true. Yet, we 

still obtained accurate classification results; possible interpretation of this will be discussed in 

Section 2.4. 

•  Probabilistic representation of parts 

Usually, parts are thought of as being binary-valued and deterministic.  For example, an eye 

can either be present or absent.  However, in Equation (1), we designed each  partr, to take a 

range of values. In our face and care examples, the range was approximately 10
4
.  Our classifier 

represents these values as probabilistic quantities rather than deterministic quantities; that is, 

Pr(partr |non-object) and Pr(partr | object) associate probabilities to each value of partr.  
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•  Parts with locality in space, frequency, and orientation  

Our classifier uses a variety of parts to embody various combinations of locality in space, 

frequency, and orientation.  Some parts represent small regions over high frequencies, other 

parts represent large regions over low frequencies, and still other parts are specialized in 

horizontal and vertical information.  These choices are designed to capture common statistical 

dependencies in appearance of an object.  The wavelet representation allowed us to directly 

design parts with these locality properties. 

•  Maximalist collection of parts  

Our classifier represents parts from all areas across the entire extent of the object.  This 

representation could be considered maximalist in contrast to a minimalist one that relies on a few 

features (e.g., eyes, nose, mouth).  More information, if used properly, will always improve the 

detection result.  In particular, we have found that parts with even seemingly indistinct cues such 

as uniform areas are indeed discriminative.     

•  Geometric arrangement of parts 

It should be noted that the geometrical relationships of the parts are implicit in Equation (1).  

Each part is defined as a function of a specific group of wavelet coefficients.  All wavelet 

coefficients are represented with respect to a common coordinate frame affixed to the image 

window to be classified.  Therefore, this representation captures geometry by placing all parts in 

a common coordinate system.  In the next section, this geometric representation will become 

more explicit by an equivalent representation of Equation (1) in terms of “local operators. ”  This 

representation allows for a flexible configuration of parts in the object unlike a single template 

that implies a rigid configuration. 

•  Tables for part statistics  

 Our classifier represents each set of statistical distributions, Pr(partr |non-object) and Pr(partr 

| object), using tables.  This representation is possible because we have chosen each part to have 

a discrete range of values.  Retrieval of probability values thus involves only a lookup into a 
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table representing the likelihood ratio Pr(partr | object) / Pr(partr | non-object).  We can estimate 

these probability distributions by simply counting the occurrences of each part value over a large 

set of training images.  A table avoids assumptions about the distributional structure of part 

statistics (e.g., Gaussian), while retaining good properties for estimation, including satisfaction of 

the Cramer-Rao lower bound, closed form solution, and no bias. 

•  AdaBoost to weight training examples 

To build the overall classifier, we could separately estimate Pr(partr |non-object) and Pr(partr 

| object), and plug them into the likelihood ratio test, Equation (1).  This approach would give the 

best possible performance (with this functional form) if our training data is truly representative.  

However, the fact that we have only a finite set of training examples will limit the estimation 

accuracy, particularly for the non-object class.  This limitation can be partially overcome by 

training the classifier to explicitly minimize classification error on the training set.  We chose to 

use a unique training method involving Adaboost with Confidence Weighted Predictions 

(Shapire and Singer, 1999) that guarantees to minimize an upper bound on the classification 

error on the training set.  This method also has the natural interpretation of re-weighting of the 

training examples.  This method allowed us to count weighted occurrences of each part value, 

and thereby retain the advantage of estimating each distribution as a table.  

•  Coarse-to-fine search evaluation strategy 

We use several strategies to make detection computationally efficient.  In Figure 2, it may 

appear that the classifier completely re-evaluates each window.  However, overlapping windows 

share much information that does not need to be re-computed. The classifier computes the 

wavelet transform and the part values once, at most, for the entire image scale.  We also avoid 

repeating computations over successive octaves in the search across scale.  It is not necessary to 

re-compute the entire wavelet transform, nor parts that are computationally equivalent at 

multiple octaves.  The classifier also does not need to evaluate the complete likelihood ratio to 

make a decision in most cases.  A partial evaluation of the likelihood ratio is often sufficient to 

rule out the presence of an object.  The classifier orders the evaluation of the likelihood ratio 

from parts in coarse resolution to parts in the fine resolution.  First, the detector evaluates the 
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image at a coarse resolution, reduced by a factor of 8 in both directions; that is, evaluation sites 

are spaced 8 pixels apart in the original image.  Then the resolution is reduced by a factor of 4.  

Such progressive evaluation techniques enabled us to achieve significant computational savings 

and implement a relatively efficient algorithm with little penalty in accuracy. 

1.5 Overview of Classifier 

Let us overview how our classifier based on Equation (1) works.  The description here is 

primarily for illustrative purposes, and more details can be found in Section 2. 

The classification algorithm involves three steps, as shown in Figure 5.  In the first step, N 

local operators, fk(x,y), k = 1, , N, evaluate the image window. The resulting measurements are 

discrete-valued. Each output at each location represents a separate part and the conglomerate of 

the outputs from all N operators, each sampled at all locations, represent the entire set of parts.  

Rewriting Equation (1) in terms of local operators gives: 

(2) ∏ ∏∏ −− =
r k yx

objectnonyxyxfP

objectyxyxfP

objectnonpartP

objectpartP

kk

kk

rr

rr

,
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where each partr corresponds to a unique combination of k, x, and y. 

The classifier then retrieves two probabilities associated with each operator output fk(x,y).  It 

obtains these probabilities from two pre-computed probability distributions for each operator, 

Pk(fk(x,y), x, y | object) and Pk(fk(x,y), x, y | non-object).  Pk(fk(x,y), x, y | object) represents the 

statistical knowledge of the object appearance. Figure 5 illustrates a case that the probability of 

output value #5710 from operator “1” at position (0, 0) on the object is 0.53.  The other 

probability distribution, Pk(fk(x,y), x, y | non-object), describes the visual world other than the 

object.   

Note that each of these distributions is a joint function of operator value fk and operator 

position (x, y) within the classification window.  This joint representation explicitly models the 

geometric configuration of the parts.  Recall, also, that each operator takes on a discrete value, 

allowing us to represent each probability distribution as a table. 
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Next, the classifier makes a decision by computing a likelihood ratio test as in Equation (2).  

It multiplies all the probabilities retrieved from Pk(fk(x,y), x, y | object) in the numerator and 

divides by the product of the probabilities from Pk(fk(x,y), x, y | non-object).  It then compares the 

resulting value to a threshold.  If the value is greater than the threshold, it decides that the object 

is present in the window; otherwise, it decides it is not present. 

1.6 Related Work 

The idea of using statistical independence assumptions in probabilistic modeling problems has 

a long history in the literature of pattern recognition, beginning possibly with Lewis (1959) and 

Chow and Liu (1966).  In computer vision, several researchers have used a parts-like 

decomposition with an explicit statistical independence assumption.  Recent representative work 

includes Burl, et al. (1996, 1998), Geman and Flueret (2001), and Amit (2000), who use binary 

or deterministic representations of the parts.   Schiele and Crowley (1996, 2000) use a 

probabilistic representation where probability is estimated over the response to Gaussian 

derivative filters.  However, there is no notion of geometry in Schiele and Crowley’s 

representation. They only represent the probability distribution of local operator output, whereas 

our classifier represents probability as a joint function of local operator output and operator 

position.   

Various parts-based methods differ from each other in whether the parts are represented in a 

rigid or flexible configuration like ours.  Lades, et al. (1993) and Wiskott, et al. (1997) allow for 

flexibility through a flexible graph.  Burl, et al (1996, 1998) allow for flexibility through 

Gaussian models of part position.  Prior parts-based methods are confined to features that are 

local in the spatial sense.  We extend the idea of “parts” by considering a more general concept 

that includes locality in frequency and orientation. 

Using tables to represent probability distributions is not uncommon. Swain and Ballard (1991) 

have used them for object recognition by color, and Schiele and Crowley (1996, 2000) for 

representing the quantized output of Gaussian derivatives.  However, our classifier design is 

distinctive in that we use multi-dimensional tables that jointly represent local operator output 

with operator position. 
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Much object detection work uses a coarse-to-fine search heuristic to reduce computational 

time (Rowley, et al., 1998) (Geman and Flueret, 2001) (Romdhani, et al., 2001) (Viola and 

Jones, 2001).  Such methods first evaluate the entire original image at coarse resolution and then 

selectively evaluate the image at higher resolution based on the outcome of the lower-resolution 

evaluations.  Our coarse-to-fine strategy takes natural advantage of a wavelet-base multi-

resolution image representation.  

2 Derivation of Functional Form of Classifier 

Based on the design choices we have made in the previous section, we will derive the actual 

functional form of our classification algorithm and examine implications of its underlying 

assumptions.  The final form that we will obtain at the end of this section will be: 

 

(3) 
∏∏ >−
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where [v] denotes the rounded integer value of v, and  M = 4 or 8.  The derivation of equation 

(3) consists of the following series of transformations and approximations to the ideal, but 

infeasible, classifier we introduced in Section 1.3: 

• Two generalizations to the ideal classifier form 

• Wavelet transform of input pixels 

• Three approximations: 

o Statistical independence of parts 

o Quantization of part value 

o Coarse quantization of part position 
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The derivation gives a complete record of all the modeling assumptions used in the design of 

the classifier.  The performance of the classifier then directly depends on these assumptions and 

the accuracy of the statistics gathered for object and non-objects. Explicit knowledge of these 

assumptions also helps us decide how to collect statistics for the classifier.   

2.1 Ideal Form of Classifier 

We introduced the hypothetical ideal classifier as a large table in Section 1.3. This classifier 

would be ideal in several ways.  First, it is based on a full representation of the input:  the 

classifier is based on a joint function of the entire raw input, not a selected or filtered portion of 

it.  No information is lost from or added to the input.  Second, this table minimizes the 

probability of classification error, assuming each entry in the table is labeled with the most 

probable classification.  Finally, the table concisely represents the output by simply listing each 

input’s classification and nothing extraneous, such as probability values.  Of course, such a table 

is not feasible.  It is not possible to enumerate every possible input in a table. Although not 

feasible, it provides a useful point of comparison with any feasible classifier, in particular the 

final functional form of our classifier Equation (3).  

2.2 Generalizations to the Functional Form of Ideal Classifier 

There are several differences between the ideal classifier and the final functional form of our 

classifier in Equation (3).  Our classifier represents object and non-object properties separately, 

whereas the ideal table does not separate them.  The left side of Equation (3) outputs a 

continuous number, whereas the ideal classifier directly outputs a classification, object or non-

object.  To transform the ideal table into Equation (3), we must first make the table more general.  

This generalization has important implications for the training of the probability distributions in 

Equation (3). 

Our first transformation is to generalize the output of the table from a binary value (object, 

non-object) to a posterior probability, P(object | image): 
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Table 2: Ideal classifier using posterior probabilities 

(1,1) (1,2) . . . (20,20) P(object | image) 

0 0 . . . 0 0.000001 

0 0 . . . 1 0.000003 

. . . . . . . . . . . . . . . 

35 45 . . . 28 0.87521 

. . . . . . . . . . . . . . . 

255 255 . . . 255 0.00004 

 

To re-derive the ideal classification table from the posterior probability, we can apply Bayes’ 

decision rule: If the probability is greater than 0.5, the classifier decides that the object is present 

in the image.  

To generalize the classification function further, we use Bayes’ theorem to re-write the Bayes’ 

decision rule in an equivalent form as a likelihood ratio test: 

 

(4) )(

)(

objectP

objectnonP −=λ
)|(

)|(

objectnonimageP

objectimageP

− >    

If the likelihood ratio (left side) is greater than the threshold on the right side, the classifier 

decides the object is present.  With this expansion, the classification table would include two 

entries for each input image window: 

Table 3: Ideal classifier using separate models for object and non-object 

probabilities 

(1,1) (1,2) . . . (20,20) P(Image | Object), 

P(Image | Non-object) 

0 0 . . . 0 0.00000013, 0.013 

0 0 . . . 1 0.00000032, 0.014 

. . . . . . . . . . . . . . . 

35 45 . . . 28 0.0092, 0.00045 

. . . . . . . . . . . . . . . 

255 255 . . . 255 0.00007, 0.03 

Writing Bayes’ decision rule as a likelihood ratio test has several advantages.  It is easier to 

collect statistics separately for the two class-conditional probability functions, P(image | object) 

and P(image | non-object), since they are based on separate sets of images, than it is to directly 
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estimate the posterior probability function, P(object | image).  In this form, we also factor out the 

contributions of the prior probabilities, P(object) and P(non-object), and combine them in a 

single threshold, λ.  This threshold controls the sensitivity of the classifier. 

Several disadvantages arise when using a decision rule based on class-conditional 

probabilities.  They come mostly from practical limitations in the number of available training 

examples. First, by estimating P(image | object) and P(image | non-object) separately, we may 

be estimating more parameters than necessary in a direct classification function, such as a 

posterior probability function, and as a result, our estimation errors for the model parameters 

could be greater than those in a more tightly constrained classification function.  Second, it is 

difficult to obtain a truly representative set of training images, particularly for the non-object 

class. Statistical estimates based on these limited sets will not be as accurate and classification 

accuracy will suffer. In Section 3.4, we will explain how the technique of AdaBoost with 

Confidence Weighted Predictions (Shapire and Singer, 1999) partially compensates for such 

deficiency by weighting the training samples such that the resulting classifier minimizes 

classification error on the training set. 

2.3 Wavelet Transform of Image Window 

The classifier performs a wavelet transform on the input window using a linear phase 5/3 

perfect reconstruction filter bank (Strang and Nguyen, 1997).  This wavelet transform is fully 

invertible, and thus this transform has no consequences in terms of information content. Yet it 

has two advantages.  First, the wavelet transform partially decorrelates natural imagery, so 

smaller subsets of variables will capture greater statistical dependency within the image.  

Second, the wavelet transform makes it convenient to design parts with locality in frequency and 

orientation, as well as locality in space.  The multi-resolution nature of wavelets also allows us to 

efficiently search the image in a coarse-to-fine manner. 

2.4 Three Approximations to the Generalized Ideal Form of the 
Classifier 

We make three approximations to the generalized ideal form of the classifier, Equation (4): 

statistical independence of parts, quantization of local operator outputs, and reduced resolution 
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in parts position representation.  We also describe the design of the local operators whose 

outputs form the parts.  

2.4.1 Statistical Independence of Parts 

Our most significant approximation is to decompose the image window into parts that are 

treated as statistically independent. As illustrated in Figure 5, various local operators are 

evaluated at all possible positions within the image window, and each part corresponds to a local 

operator output. However, Figure 5 is a simplified illustration.  These operators actually sample a 

fixed arrangement of wavelet coefficients, instead of directly sampling the input pixels. Thus, 

each part represents a different, but not necessarily disjoint, subset of wavelet coefficients. An 

operator translates by moving its arrangement of wavelet coefficients as a block in steps of one 

wavelet coefficient. 

The local operators sample the wavelet transform in many ways.  For example, as shown in 

Figure 6, one operator samples a block of wavelet coefficients within one wavelet subband. 

Another operator combines two blocks from two different subbands. In the next subsection we 

describe all the types of local operators our classifier uses. 

Under the assumption of parts independence, the form of classifier, Equation (4), now 

becomes: 

(5) 
∏∏ >−
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where fk(x,y) is the k
th

 operator output at position (x,y). 

This assumption of statistical independence greatly reduces the complexity of the classifier. 

We believe this is a reasonable assumption because for faces, cars, and many other objects, a 

given coefficient on the object is strongly statistically dependent only on a few other coefficients 

and is weakly related with the rest.  We hope to capture the stronger dependencies by appropriate 

choices of parts and pay a limited penalty by neglecting the weaker dependencies among the 

coefficients.   
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We can gain another perspective on this simplification by taking the logarithm of Equation (5) 

making the classifier a sum of log probabilities: 

(6) 
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In this form, we can interpret the classifier as a linear discriminator: 

λlog),(),(
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where wk(x,y) is a vector concatenating the log likelihood values corresponding to each value of 

operator k at position (x,y) and ak(x,y) selects the appropriate log likelihood value from this 

vector, given by the computed value of operator k, by assigning ‘1’ to one of its elements and ‘0’ 

to the remaining elements.  

We can also view Equation (5) as a modification of the naïve Bayes classifier.  The naïve 

Bayes classifier models all variables as statistically independent, whereas our approach models 

groups of variables as statistically independent.  Domingos and Pazzani (1997) have 

demonstrated that the naïve Bayes classifier performs surprisingly well in a number of 

classification problems, even when there is significant statistical dependency among the 

independently modeled components.  Although there is not a full theoretical understanding of 

why this is true, Domingos and Pazzani show that the classifier is optimal for conjunctions and 

disjunctions and other problems in which statistical independence does not necessarily hold.  
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2.4.2 Design of Local Operators   

At this point in the derivation, the central question we face is how to design local operators.  

Our goal is to design local operators that capture common statistical dependencies.  We 

emphasize the notion of common for two reasons.  First, we seek to represent statistical 

dependencies that exist both for the object (e.g., face) and in the rest of the world (e.g., non-

face).  Second, since the local operators are each scanned over the full extent of the input 

window, we need local operators that are not just specialized to one site but useful at all sites on 

the object. 

Our approach is to make educated guesses about the types of statistical dependency we might 

encounter.  We would expect statistical dependencies are stronger in localized regions, and that 

as pixels are farther apart, dependency decreases.  We therefore emphasize locality in position 

when designing local operators.  In particular, we want operators to be capable of capturing the 

statistical dependencies that exist in small, highly detailed structures, such as the eyes, nose, and 

mouth on a human face or the headlights and grille on a car.  However, statistical dependency 

can exist over large regions as well.  In these larger regions, the dependencies usually involve 

lower-frequency attributes.  For example, on a face we would expect that the eye sockets would 

be darker than the forehead and cheeks.  To represent dependencies over both small and large 

regions, we combine spatial locality with locality in frequency.  Some operators represent large 

areas at coarse resolution (localized coefficients in the upper levels of the wavelet transform) and 

others represent smaller areas at high resolution (localized coefficients in the lower levels of the 

transform).  Locality in orientation is another factor we need to combine in operator design.  

Since the physical world tends to be continuous, we would expect horizontal edges to co-occur 

with other horizontal edges.  Similarly, we would expect vertical edges to co-occur with other 

vertical edges. 

We have defined 17 local operators that comprise various combinations of locality in space, 

frequency, and/or orientation.  Each operator consists of a moving arrangement of wavelet 

coefficients. As an operator scans across the image window, this arrangement moves as a block.  
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The operators are divided into four categories
2
 by the composition of their arrangements of 

wavelet coefficients: intra-subband, inter-orientation, inter-frequency, and combined inter-

frequency/inter-orientation arrangement.  They are illustrated in Figure 7.  See Appendix for a 

description of the notation we use for describing the components of the wavelet transform.  

The first six operators out of 17 are intra-subband operators, Opb(level, orientation).  These 

operators sample a contiguous block of coefficients within one subband specified by the (level, 

orientation) combination.  Such operators capture features that are jointly localized in space, 

frequency, and orientation:   

Table 4: Intra-subband operators, 

Opb(level, orientation) 

Operator Level Orientation 

1 1 LH 

2 1 HL 

3 2 LH 

4 2 HL 

5 3 LH 

6 3 HL 

 

The next four operators are of type inter-orientation, Opo(level, orientation1, orientation2).  

These operators combine coefficients from two subbands of different orientation but within the 

same level (frequency) in the transform.  These capture features that have both horizontal and 

vertical components but are otherwise localized in space and frequency.   

Table 5: Inter-orientation operators 

Opo(level, orientation1, orientation2) 

Operator Orientations Level 

7 LL (horizontal),  

LL (vertical) 

1 

8 LH, HL 1 

9 LH, HL 2 

10 LH, HL 3 

 

                                                 
2 These relationships (intra-subband, inter-subband, inter-frequency) were initially defined in Cosman, et. al. (1996) 
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The next six operators are inter-frequency operators, Opf(level1, level2, orientation).  These 

jointly sample from two subbands of the same orientation but different levels (or frequencies).  

They capture features that have broad frequency content, such as edges.   

Table 6: Inter-frequency subbands 

Opf(level1, level2, orientation) 

Operator levels orientation 

11 1 LL (horizontal), 1 LH 

12 1, 2 LH 

13 2, 3 LH 

14 1 LL (vertical), 1 HL 

15 1, 2 HL 

16 2, 3 HL 

 

Finally the last operator combines coefficients across multiple subbands in both orientation 

and frequency, Opof(level1, level2, orientation1, orientation2).  The operator, called a combined 

inter-orientation / inter-frequency operator, is useful for features that combine horizontal and 

vertical information and information across frequency. 

Table 7: Inter-orientation operators 

Opof(level1, level2, 

orientation1,orientation2) 

Operator Level1 Level2 Orientation1 Orientation2 

17 1 2 LH HL 

 

2.4.3 Quantization of Local Operator Output 

The output of each operator is a discrete value of finite range representing the combination of 

wavelet coefficients.  In this section we explain why we choose a discrete representation and 

describe how we quantize each subset of wavelet coefficients to a discrete value.  Our classifier 

uses a discrete representation of operator output because it permits us to represent the statistics of 

operator output using a table.   

There are alternative statistical representations to a table-based representation.  The most 

flexible ones are non-parametric ones, such as nearest-neighbor, Parzen windows, and other 
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kernel-density models.  These models, however, have a high computational cost for probability 

retrieval.  Probability retrieval, for a given input, involves a large computation requiring 

comparison of the input to every example in the entire training data.  Another alternative would 

be to use a flexible parametric distribution, such as a mixture model or a multi-layer perceptron 

(artificial neural network).  Each of these has flexibility to model multi-modal distributions and 

acts as a universal approximator as its resource size (i.e., hidden units or nodes) increases.  

However, there are no closed form solutions for fitting these models to a set of training 

examples; their parameters must be estimated by iterative procedures, such as gradient descent 

(backpropagation) and E-M.  These parameter estimates could become trapped in local minima 

and become sub-optimal.  Also, it is questionable whether such models are appropriate for the 

task of detection.  For example, a multi-layer perceptron forms decision boundaries that are 

combinations of hyperplanes to a first approximation.  It is not clear whether such decision 

boundaries will be good for separating two or more classes in a high dimensional space (Gori 

and Scarselli, 1998) (Kung, 1993). 

Table representation of a probability distribution is almost as flexible as various non-

parametric methods.  Tables have the advantage of being able to retrieve probabilities directly by 

one table look-up rather than a computation over the entire set of training data.  Estimation of a 

table is relatively straightforward.  We simply build a histogram by counting how often each 

value occurs in the training data.  This process involves just one pass through the training 

images.  The resulting estimates are statistically optimal - maximum likelihood, no bias, 

consistent, and efficient, satisfying the Cramer-Rao lower bound.  The main drawback of a table 

is that we can only represent probability over a limited range of discrete values; the amount of 

training data and the size of memory impose limitations on the size of the probability table.  To 

get reasonably accurate estimates for our tables, we limited ourselves to approximately 10,000 

discrete values per operator. This limitation restricts the number of wavelet coefficients each 

operator samples and the resolution at which the operator quantizes its subset of coefficients. 

Our compromise is to quantize the output of each operator to 3
8
 discrete values.  We do so by 

having each operator sample the arrangements of 8 coefficients and quantize each coefficient to 

three levels.  Note that the quantization threshold may differ from operator to operator, so 
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different operators may sample the same coefficient but quantize it differently.  The 3-level 

quantization is fairly coarse but still retains the information content of the image. Figure 8 shows 

several pairs of original and reconstructed images where the reconstruction is done by an inverse 

wavelet transform of the quantized wavelet values.  Objects in the reconstructed images are still 

easily identifiable as faces and cars. 

2.4.4 Reduced Resolution in Part Position 

Our last approximation reduces resolution in representing part position (x, y).  Instead of 

representing Pk(fk (x,y),x,y | object) and Pk(fk(x,y),x,y | non-object) at each position (x, y) in the 

original resolution, we reduce resolution by a factor of M.  A given position (x, y) is represented 

at reduced resolution by ([x/M], [y/M]) where [v] denotes the rounded integer of v.  This 

approximation reduces the size of each probability table by a factor of M
2
.  With this 

simplification, the final form of the classifier is (repeat of (3)): 
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As the reduction, we use either M=4 or 8 depending on the part; for level 3 and 2 operators, 

we reduce M=4 (a factor of table reduction = 16), and for level 1 parts, M=8 (a factor of table 

reduction = 64). We found that reducing the resolution does not drastically compromise the 

geometric representation of the classifier.  Interestingly, the resolution reduction seems to 

implicitly accommodate small variations in the arrangement of parts as an unintended but 

positive side effect.  
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3 Collecting Statistics 

This section describes how we gathered the statistics that go into each set of tables Pk(fk(x,y), 

[x/M], [y/M] | object) and Pk(fk(x,y), [x/M], [y/M] | non-object) where k = 1 . . . 17 in Equation 

(7).  We estimate each of these tables by using a large set of labeled and pre-processed training 

images. For the probabilities tables conditioned on the object, Pk(fk(x,y), [x/M], [y/M] | object), 

we use images of the object, and for Pk(fk(x,y), [x/M], [y/M] | non-object), images that do not 

contain the object.  Preparing the training set for the “object” class is relatively straightforward, 

but preparing the training set for the “non-object” class requires some consideration.  We will 

discuss both a basic training algorithm by which we estimated each table separately and an 

alternative training procedure that minimizes a classification error criterion using AdaBoost with 

Confidence Weighted Predictions (Shapire and Singer, 1999).    

3.1 Pre-Processing Images of the Object  

Each training image is geometrically normalized and aligned, corrected for lighting, and 

perturbed to create many synthetic variations. 

3.1.1 Size Normalization and Spatial Alignment 

To standardize training images, we aligned all the images with respect to a prototype using 

pre-defined, hand-labeled landmark points on the object.  For example, for frontal faces, we used 

the locations of the eyes, the bridge of the nose, and the center and sides of the mouth.  Using 

these landmark points, we applied the translation, scaling, and rotation (Arun, et al., 1987) that 

brought each image into alignment with the prototype.   

3.1.2 Intensity Normalization 

We normalized the image intensity as well.  This normalization procedure is object-

dependent.   

For faces, we normalized the left and right sides of each training image separately, by scaling 

all the intensity values with specified correction factors, αleft and α right: 
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For a local operator that uses inputs from both sides of the face, we normalize the entire sample 

using the value of α of the center pixel.  In training, we chose these correction factors by hand 

for each training example by visually comparing them to a group of prototypes.   

When the face detector searches for a face, the classifier evaluates both sides of each 

candidate window over a set of 5 discrete values for α.  For each side, the classifier compares the 

responses (sum of the log likelihoods) for each value of α and chooses the largest response.  It 

then sums the two chosen responses to obtain the total log likelihood for the candidate.  

For cars we did not normalize the training images in intensity, because cars differ greatly in 

color, making normalization difficult to compute. 

3.1.3 Creating Synthetic Variants of Training Images 

We generated additional training data by artificially creating variations to the original training 

images. The purpose in doing so was to increase the accuracy of our probability estimates. 

For each image, we generated between 1,600 and 6,400 synthetic variations through small, 

controlled variations in position (both by positional perturbation and overcomplete evaluation of 

the wavelet transform), orientation, size, aspect ratio, background scenery, lighting intensity, and 

frequency content.  We applied these variations after we first aligned the image geometrically 

and corrected for the lighting as described above. For substitution of different background 

scenery, we segmented the objects from the background in many of the training images.  We 

segmented these images either by hand and by automatic methods when possible.  Also, we 

modified frequency content by using various low-pass filters.     
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3.2 Non-Object Images 

We collected non-object images from various photography collections
3
 and from the World 

Wide Web, particularly the Washington University archive
4
.  We tried to get a balance of indoor, 

outdoor, urban, industrial, and rural scenes.  We used more than 2,000 such non-object images. 

To select non-object samples, we used the bootstrapping technique
5
.  The goal of 

bootstrapping is to select non-object training examples that resemble the object.  By doing so, the 

training data will emphasize the distinctions between the object and non-object classes and 

performance will be improved.  Bootstrapping is a two-stage process.  We first trained a 

preliminary detector using non-object image windows drawn randomly from the non-object 

image collection.  We then ran this preliminary detector over the entire collection of non-object 

images, selecting additional non-object training examples where the detector gave a high 

response.  For some detectors we repeated this process several times, gathering more and more 

non-object samples.  We then used the combined set of samples for training the final detector.  

3.3 Training Method (I) - Probabilistic Approximation  

The most direct way to build our classifier was to separately estimate each of its constituent 

probability distributions, Pk(fk(x,y), [x / M], [y / M] | object) and Pk(fk(x,y), [x / M], [y / M] | non-

object).  To estimate these distributions, we simply counted how often each value of local 

operator output value occurs at each position in the appropriate set of training examples.  For a 

local operator, k, this process involves building a histogram, Hk(i, j, f) over a combination of 

operator output values, f, and positions, i and j:   

Initialize all bins in histogram, Hk(i, j, f), to zero 

For all training images, Ip 

 For each local operator, fk,  k = 1 . . N 

                                                 
3 John Krumm and Henry Rowley each provided image collections. 

 
4 http://www.wuarchive.wustl.edu 

 
5 Introduced by Sung and Poggio (1998) for image classification and also used by Rowley, et al. (1998). 
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  For each position, (x, y) 

   i    [x / M] 

   j    [y / M] 

   f    fk(x, y, Ip) 

   Hk(i, j, f)     Hk(i, j, f) + 1 

Occasionally a bin in the histogram may receive zero count.  Since it may not be desirable to 

actually assign zero probability, we simply added one to each bin in the histogram: 

     Hk(i, j, f)     Hk(i, j, f) + 1                for all k, i, j, f 

 

3.4 Training Method (II) - Minimization of Classification Error using 
AdaBoost  

Training class-conditional distributions separately, as described above, will give the best 

possible performance (with this functional form) if our training data is truly representative.  

However, a finite set of training data will have limitations, particularly in representing the non-

object class.  To achieve better results, we can explicitly train our classifier to minimize 

classification error over the training set. For this purpose, we use the algorithm of AdaBoost with 

Confidence Weighted Predictions, a modification of standard AdaBoost (Freund and Shapire, 

1997).  This modification of standard AdaBoost allows for the base classifier to output a 

continuous value, proportional to confidence, rather than a binary classification as in the standard 

formulation.   

AdaBoost, in general, works by sequentially training multiple instances h1(x),  h2(x),  …, hT(x) 

of a base classifier h(x).  In our case, the base classifier takes the following form (modified from 

equation (8)): 
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Where the input to our classifier is an image window denoted by I. 

 Each classifier, ht(x), is trained by assigning different weights to the training examples.  For the 

first classifier, h1(x), all training examples are given equal weight.  For the subsequent classifiers 

ht(x), t > 1, the algorithm assigns more weight to training examples that have been incorrectly 

classified by the previous classifier, ht-1(x) and, conversely, less weight to training examples that 

were correctly classified. AdaBoost then takes a weighted sum of these classifiers as the final 

classifier H(x):  

(10) 
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(11)  

 

Both the standard AdaBoost algorithm and the AdaBoost with Confidence Weighted 

Predictions algorithm determine each αt as a function of the accuracy of ht(x) on the training 

data, but differ in how they do this.  In n AdaBoost with Confidence Weighted, αt can be 

determined by a binary search that minimizes a function of the margin.
 6

  Both algorithms 

guarantee that the final classifier satisfies a bound on the classification error on the training set.  

With such a bound the classification error can be driven toward zero after a few iterations, and 

thereafter the margin between the two classes can be increased. 

In practice, for each ht(x), we estimate the distributions Pk(fk(x,y), [x / M], [y / M] | object) and 

Pk(fk(x,y), [x / M], [y / M] | non-object) by Training Method (I), but instead of incrementing each 

histogram bin by 1, we increment by the weight assigned to the training example. We scale and 

round the training image weights to integers for this purpose.   

                                                 
6 See Shapire and Singer (1999) for a complete description of the algorithm. 
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A disadvantage of Adaboost is the increased computational cost of applying all instances of 

the classifier in the sum of Equation (11).  However, in our case, this sum of classifiers does not 

actually increase the complexity of our overall classifier, Equation (10).  Since our classifier is 

linear, the linear sum in Equation (11) actually reduces to the complexity of the base classifier. 

We can see this by directly substituting Equation (10) in Equation (11), giving:  
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And by changing the order of the summations, 
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Adaboost assigns appropriate weights for individual training images. Intuitively, it is not 

optimal to give all the training images equal weight, particularly among the non-object class.  

Some of the non-object examples are more important than others for determining the decision 

boundary.  This re-weighting of the training examples is analogous to the way support vector 

machines identify the training examples that directly affect the placement of the decision 

boundary (Cortes and Vapnik, 1995). 

One of the issues in using AdaBoost is when to stop the iteration.  It is not well understood if 

AdaBoost is susceptible to overfitting as the number of iterations increase.  Our approach was to 

monitor the performance of the classifier using a cross-validation image set and to stop the 

algorithm when performance seemed to stop improving. 
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4 Implementation and Efficient Processing for Detection 

Our strategy for implementing a fast detector was to re-use multi-resolution information 

wherever possible and to use a coarse-to-fine search strategy together with various other 

heuristics to prune out unpromising object candidates. 

4.1 Exhaustive Search 

 Each classifier is specialized for a specific orientation, size, alignment, and intensity of the 

object within an image window.  Detecting an object at any position in an image requires 

exhaustively scanning the classifier in position, size, and intensity, as illustrated in Figure 2.  

In searching across scale, the detector searches in 4 scales per octave, that is, in scale 

increments of 2
1/4

 in both x and y dimensions.  We chose an integer root of 2 so we could reuse 

information at each octave in this search through scale.   

Given an input image, it is ideal to perform intensity correction for each candidate.  However, 

doing so would require the classifiers to re-compute all subsequent operations separately for each 

candidate.  We can reduce computation cost by sharing computation among the candidates. Our 

normalization, therefore, pre-computes the operator values for 5 discrete levels of intensity 

correction, α (see Section 3.1.2).  For each candidate, the classifier then evaluates the sum of the 

log likelihood for each half of the candidate at each of these five different intensity corrections, 

and for each half, selects the α value giving the largest sum of log likelihood. 

The detector repeats this exhaustive search for each view-based classifier and combines their 

results.  If there are multiple detections at the same or adjacent locations and/or scales, the 

detector chooses the strongest detection.  

4.2 Coarse-to-Fine Evaluation Strategy  

 Let us consider the computation process within one resized image in the search across scale 

illustrated in Figure 2. We organize this process so that as much computation as possible is 

shared among overlapping candidate windows.  First, rather than computing the wavelet 

transform separately for each image window, the detector computes it once for the entire image.  
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Since the wavelet transform is not shift invariant, we computes an overcomplete transform for 

each level of the wavelet transform by expanding the (even, even) phase from the previous level.  

We also computes local operator output for each value of intensity correction, α, at every 

candidate location.  The detector classifies each candidate by accessing the appropriate local 

operator values and retrieving and summing their log likelihoods according to Equation (8).   

In practice, however, the detector rarely needs to evaluate the entire log likelihood ratio.  

Since the left side of Equation (8) is a summation, the classifier can examine its value after any 

partial evaluation and rule out the presence of the object if the value is not high enough.  We 

apply this strategy after each local operator is applied.  We set these thresholds conservatively in 

order to avoid discarding actual object candidates while quickly removing many of the non-

object candidates.  The detector orders the local operators, evaluating first the coarse resolution 

ones (those involving coefficients from the top level of the wavelet transform). That is, in the 

first stages of evaluation, the detector evaluates the image over a coarse grid in which candidate 

windows are spaced 8 pixels apart.  The remaining stages reduce resolution by a factor of 4.  

Through this strategy we found that we could reduce our computational requirements by 1 to 2 

orders of magnitude with little loss in accuracy. 

The candidate windows whose likelihood ratio exceeds the final threshold are initially marked 

as detections.  Each real object in the image tends to produce a cluster of detections.  Figure 9 

shows the raw output from Equation (8) (before thresholding) over 4 scales.  The value shown at 

each pixel corresponds to the log likelihood sum associated with the window centered at that 

position.  The responses to one face form a cluster of detections across position and scale.  We 

now merge these detections using the following strategy. We determine the detection that has the 

highest response in the entire image and it classifies it as “object.”  The detector then discards all 

detections within a radius of the object and within one half to twice the object size.  The detector 

then continues to search among the remaining detections, finds the one with the next-highest 

response, and continues this process until all the candidates have either been classified as 

“object” or discarded. 
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4.3 Re-using Wavelet Transform in Search Across Scale 

In searching for the object across scale, the detector iteratively searches resized versions of 

the input image where the image is reduced in size by a factor of 2
1/4

 in each dimension.  This 

scaling process continues until the scaled image is smaller than the window set as an input for 

the classifier.  Recomputing the entire wavelet transform is not necessary for obtaining the 

wavelet transform for each successive scale.  This is illustrated in Figure 10.  All 3 levels of the 

wavelet transform must to be computed for each of the first 4 scales, which comprise the first 

octave of the search across scale.  After these first 4 scales, our detector re-uses portions of the 

wavelet transform computed at previous scales.  In particular, we obtain the wavelet transform at 

scale i from the wavelet transform at scale i-4 by shifting it by one level; that is, level 1 becomes 

level 2, and level 2 becomes level 3.  Therefore, only level 1 has to be recomputed at scale i.   

4.4 Color Heuristics 

The detector we have described is designed for gray-scale images.  When color images are 

available, color pre-processing is sometimes useful for pruning out unpromising candidates.  

This pre-processor uses 8x8x8 probability tables (8 levels of quantization for each color band) to 

represent the color distribution of skin-color and non-skin color in RGB space and combines 

them into a likelihood ratio test for evaluating each candidate location.  This pre-processing 

improves performance speed by a factor of 2 to 4, and discarded a few candidates that would 

have otherwise been false detections.  However, a disadvantage of using color is that the detector 

removes many actual faces if the images are poorly color balanced. 

4.5 Performance Time 

Using the full set of heuristics described above, one classifier can evaluate a 240x256 image 

over a full range of scalings in 5 seconds, on average, using a Pentium II at 450MHz. 

5 Face Detection 

In this section we describe specific design choices that comprise our face detector and discuss 

its accuracy on several sets of test images. Our face detector is available on-line at 
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http://www.vasc.ri.cmu.edu/cgi-bin/demos/findface.cgi and it allows internet users to submit 

their own images and see the detection results.   

5.1 Local Operators, Training images, and Training 

The face detector uses the 17 local operators described in Section 2.4.1. 

We gathered a large number of face images for training from a number of sources: FERET
7
, 

NIST mug shot database
8
, Harvard’s face database

9
, and CMU’s face collection

10
.  We also used 

many images we collected from the World Wide Web.  Overall, we gathered about 2,000 images 

of frontal faces and 2,000 images of profile faces.  We normalized the two sides of the face in the 

training images to compensate for situations in which the face was illuminated unevenly. 

We trained the face classifiers using Training Method II (the AdaBoost method) described in 

Section 3.4. 

5.2 Results in Face Detection 

Table 8 compares the performance of our face detector with that reported by Rowley (1999) 

for the task of both frontal and profile face detection using of images selected from proprietary 

images Kodak provided to Carnegie Mellon University.  The test set consists of 17 images with 

46 faces, of which 36 are in profile view (between 3/4 view and full profile view).  These images 

contain some of the typical problems of amateur photographs including poor lighting, contrast, 

or focus. 

                                                 
7 Provided by Jonathon Phillips. 

 
8 See http://www.nist.gov/srd/nistsd18.htm. 

 
9 Provided by Woodward Yang. 

 
10 Collected by Henry Rowley, Shumeet Baluja, Henry Schneiderman, and Takeo Kanade. 
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Table 8: Face Detection results on Kodak Test Set 

(Rowley, 1999)  Schneiderman and Kanade (using AdaBoost) 

Detection False 

Detections 
γ Detection 

(all faces) 

Detection 

(profiles only) 

False 

Detections 

58.7% 1347 0.5 80.4% 86.1% 105 

41.3% 617 1.0 70.0% 69.4% 7 

32.6% 136 1.5 63.0% 61.1% 1 

 

Each row of Table 8 shows the result by a different setting of γ, which determines λ for each 

classifier as follows: 

γλ

γλ

profileprofileprofile

frontfrontfront

ed

ed

+=

+=
 

where the d’s and e’s were tuned by hand. 

To further evaluate accuracy on faces with out-of-plane rotation we collected a larger test set 

consisting of 208 images with 441 faces that vary in pose from full frontal to side view.  This test 

set is available on-line at http://www.ri.cmu.edu/projects/project_419.html. Of these images, 

approximately 347 are profiles (between 3/4 view and full profile view). We gathered these 

images from a variety of sites on the World Wide Web, mainly news sites such as Yahoo! and 

the New York Times.  Most of these images were unconstrained in terms of content, background 

scenery, and lighting, but were taken by professional photographers and are generally of better 

quality than the Kodak images in terms of composition, contrast, and focus.  Table 9 shows the 

performance at different values of γ controlling the sensitivity of the detectors.  The table also 

compares the performance of the detectors trained with AdaBoost and without AdaBoost.  Figure 

11 shows some typical results on this image set when our detector was trained with AdaBoost 

and used γ = 1.0.  
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Table 9: Face Detection Results on Schneiderman & Kanade Test Set 

With AdaBoost Without AdaBoost 

γ Detections 

(all faces) 

Detection 

(profiles) 

False 

Detections 

Detection 

(all faces) 

False 

Detections 

0.0 92.7% 92.8% 700 82% 137 

1.5 85.5% 86.4% 91 74% 27 

2.5 75.2% 78.6% 12 60% 3 

 

The distinguishing characteristic of our face detector is that it works for both frontal and out-

of-plane rotational views.  To date, several researchers (Rowley, et al., 1998) (Sung and Poggio, 

1998) (Osuna, et al., 1998) (Roth, et al., 1999) (Viola and Jones, 2001) have had success 

developing algorithms that work for frontal views of faces, but none, to our knowledge, have had 

success with profile (side) views except Rowley (1999) which we compare our algorithm to in 

Table 8. 

Profile-view faces are more difficult to detect than frontal views for several reasons.  The 

salient features on the face (eyes, nose, and mouth) are not as prominent when viewed from the 

side as they are when viewed frontally.  Also, for frontal views, these features are interior to the 

object, whereas on a profile, many of the features form the silhouette with respect to the 

background.  Since the background can be almost any visual pattern, a profile detector must 

accommodate much more variation in the appearance of these features than a frontal detector 

needs to accommodate for interior features. 

Table 10 compares the accuracy of our detectors with those of other researchers on the 

MIT/CMU test set of frontal face images combining test images from Sung and Poggio (1998) 

and Rowley, et al. (1998).   
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Table 10: Frontal Face Detection on Sung & Poggio and Rowley & Baluja & 

Kanade Combined Test Set
11

  

 Detection 

Rate 

False 

Detections 

Schneiderman and Kanade
*
 (eigenvector) 94.4% 

(95.8%) 

65 

(Roth, et. al., 1999)*  (94.8%) 78 

Schneiderman and Kanade (wavelet)*  90.2% 

(91.8%) 

110 

(Rowley, et. al., 1998)  86.0% 31 

(Viola and Jones, 2001)  93.7% 167 

 

In these experiments, we noticed some differences in performance between the detector 

described in this paper and an improved version of the detector we described in Schneiderman 

and Kanade (1998).  Both detectors use similar probabilistic structures, but the detector in 

Schneiderman and Kanade (1998) uses local operators based on localized eigenimages rather 

than wavelet coefficients.  The wavelet-based detector described in this paper performs much 

better for profile-view faces.  However, the localized eigenimage-based detector in 

Schneiderman and Kanade (1998) seems to be slightly more accurate on frontal faces. 

6 Car Detection 

We also trained a detector for finding passenger cars in an image. 

6.1 Local Operators, Training Images, and Training 

We used 13 of the 17 operators described in Section 2.4.1by excluded the four operators that 

involved the level 1 LL subband.  We excluded these operators because they represent average 

intensities over large areas.  Since cars come in all colors and intensities, we expected these 

coefficients not to be informative. 

                                                 
11 At least 10 additional human faces are not labeled in the ground truth for this test set.  We report our results in two 

ways.  The figures not in parentheses indicate results on just the 483 labeled faces.  Any additional detected faces 

were counted neither as detections nor false detections.  To be consistent with Roth, et al. (1999), we also indicate, 

in parentheses, the ratio between the total number of faces found by computer (labeled and unlabeled) divided by the 

number labeled by hand (483). 
* Indicates the detection results on 125 images with ground truth of 483 labeled faces.  The original MIT/CMU test 

set included 5 additional images of line-drawn faces.   
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We collected car images with our own camera and from the World Wide Web, mostly from 

car sales and car enthusiast sites.  The latter sites provided many photographs of older cars.  We 

gathered between 250 and 500 images per viewpoint with a total of over 2,000 images. 

The car detector used Training Method (I) described in Section 3.3. 

6.2 Results in Car Detection 

To test the accuracy of the car detector, we collected, separately from the training set, a set of 

104 images that contain 213 cars, spanning a wide variety of models, sizes, orientations, 

background scenery, lighting conditions and some partial occlusions.  We gathered these images 

using several cameras and from sites on the World Wide Web.  This image set is publicly 

available at http://vasc.ri.cmu.edu/idb/html/car/index.html.  Table 11 displays our performance. 

Table 11: Car Detection Results 

γ Detections Misses False 

Detections 

1.05 177 (83%) 36 (17%) 7 

1.0 183 (86%) 30 (14%) 10 

0.9 197 (92%) 16 (8%) 71 

The sensitivity of the detectors is controlled by γ which linearly scales the detection thresholds.  

Figure 12 shows some typical results on this image set, evaluated at γ = 1.0.           

7 Analysis of Positional Response of Classifier 

Since the classifier uses parts across the full extent of the object, it is worth analyzing which 

some parts or areas tended to be most influential.  For example, are the eyes, nose, and mouth 

regions really the most important areas to detect faces?  To study the behavior of the classifier, 

we computed the amount of contribution at each pixel (x, y) to the total log likelihood, Equation 

(8).  In other words, C(x,y) is the partial sum of the total log likelihood due to the parts centered 

at (x, y). 
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Figure 13 shows C(x, y) as a color overlay on a continuum from red to green, with green 

indicating positive values and red indicating negative values.  

It is interesting to notice that no particular region in a face seemed to be consistently more 

influential than the others, and the regions of particular positive influence were not sharply 

localized but tend to be spread out.  Occluded areas usually contributed a negative influence. 

Also, characteristics that were uncommon in the training set, such as the mottled beard on the 

man in the lower right corner of Figure 13b, gave negative response. 

We performed a similar analysis for car detection.  Figure 14 shows the influence of the parts 

as a function of position on the car. The areas of positive and negative response seem to vary 

somewhat from example to example, but the window posts, the grille, tires, and silhouette often 

gave positive response, and the background and reflections of the surrounding scenery on the 

shiny surfaces often gave negative responses.   

8 Conclusion 

We have described an algorithm for object detection using a set of viewpoint specific 

classifiers each of which is trainable using a large set of sample images.  Each classifier forms a 

log likelihood ratio as the product of the log likelihoods of a large set of parts.  Each part 

represents various local properties in space, frequency, and orientation.   

This algorithm is generic and easily adaptable to new objects with little re-programming.  We 

demonstrated its use for detecting faces and passenger cars.  The same algorithm was also trained 

to detect doorknobs for indoor robot navigation (Figure 15). 

Our goal is to develop a system that detects and recognizes of many kinds of objects in 

photographs and video including everyday office objects, text captions in video, and various 
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structures in biomedical imagery.   

9 Appendix: Wavelet Transform 

A wavelet transform is computed by passing an image through a cascade of filter bank stages.  

Figure 16 shows one such stage.  This stage filters the image in the vertical direction using the 

filter pair given by c(y) and d(y).  c(y) and d(y) are finite extent filters where c(y) is low-pass and 

d(y) is high-pass.  These filter outputs are down-sampled by a factor of 2 in the vertical direction.  

The resulting outputs are filtered in the horizontal direction by an identical pairs of filters 

oriented horizontally, c(x) and d(x), and then down-sampled by a factor of 2 horizontally. The 

result is a decomposition of the image into 4 subbands denoted by LL, LH, HL, HH.  Each of 

these represents information from a different orientation.  LH represents vertical information 

(low-pass filtering in horizontal direction, high-pass filtering in vertical direction), HL represents 

horizontal information (low-pass filtering in vertical direction, high-pass filtering in horizontal 

direction), HH represents diagonal information (high-pass filtering in both directions), and LL 

(low-pass filtering in both directions) represents the original image at a lower resolution.  Figure 

17 shows the common representation for these subbands in an image form.  These four subbands 

could be thought of as one frequency band or one level in a wavelet transform.  To expand the 

decomposition in frequency, we can iterate on the LL band; that is, we decompose the LL band 

as we decomposed the original image by passing it through another stage identical to the first.  If 

the filter pair is chosen properly, the original image can be reconstructed from its transform with 

no loss of information.  Such filter banks are called perfect reconstruction filter banks.  Several 

books describe their design (Strang and Nguyen, 1997) (Vetterli and Kovacevic, 1995). 
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(a)  For faces, classifiers are trained on 2 viewpoints  

(b) For cars, classifiers are trained on 8 viewpoints  

Figure 1. Multiple classifiers are built to deal with 

appearance changes due to pose.



(a) Search in position
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.

(b) Search in scale

Figure 2: Detection by scanning classifier across image in both 

(a) position and (b) scale
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Figure 3: Combining the results from multiple view-based detectors



Figure 4: Pair-wise mutual information between a chosen coefficient

location and all other locations in the wavelet transform for frontal faces

Chosen coefficient Chosen coefficientChosen coefficient



f1(0, 0) = #5710

f1(0, 1) = #3214

fN(n, m) = #723

P1( #5710, 0, 0 | obj) = 0.53

P1( #5710, 0, 0 | non-obj) = 0.56

P1( #3214, 0, 1 | obj) = 0.57

P1( #3214, 0, 1 | non-obj) = 0.48

PN( #723, n, m | obj) = 0.83

PN( #723, n, m | non-obj) = 0.19

0.53 * 0.57 * . . . * 0.83

> λ
0.56 * 0.48 * . . . * 0.19

Figure 5: Classification Algorithm Overview.  N local operators evaluate the image 

window at nxm locations.  Class-conditional probabilities are retrieved for each 

output and combined in a likelihood ratio test.
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f1(x=4,y=5)= 009811

Figure 6: We may define many operators, each of which samples a certain 

arrangement of wavelet coefficients.  In this figure, operator “1” samples a block of 

coefficients from within one subband and operator “2” combines spatially 

registered blocks form two subbands.
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f2(x=7,y=7)= 008842



Intra-subband Inter-orientation Inter-frequency Inter-frequency/

Inter-orientation

Figure 7: Different Local Operator Types



Figure 8: Images reconstructed by inverse wavelet transform.  All

wavelet coeffients in LH and HL bands were quantized to three 

levels per coefficient



Figure 9: Four consecutive scales and the corresponding output before 

thresholding from the detector



Figure 10: Re-using the wavelet transform at successive scalings
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Figure 11: Face Detection Results



Figure 12: Car Detection Results



Figure 13a: Positional response of the classifier.  Green areas are “face-like” and red areas 

are not “face-like.”



Figure 13b: Positional decomposition of classifier response to particular 

profile faces.  Green areas are “face-like” and red areas are not “face-like.”



Figure 14: Positional decomposition of classifier response to particular 

cars.  Green areas are “car-like” and red areas are not “car-like.”



Figure 15: Doorknob Detection Results
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Figure 16. One stage in a filter-bank wavelet decomposition
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Figure 17.  Representation of a one-level and two level

wavelet transform
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