

To appear in International Journal of
Computer Vision, 2002.

Object Detection Using the Statistics of Parts

Henry Schneiderman and Takeo Kanade1

Robotics Institute

Carnegie Mellon University

Pittsburgh, PA 15213

Abstract

In this paper we describe a trainable object detector and its instantiations for detecting faces

and cars at any size, location, and pose. To cope with variation in object orientation, the detector

uses multiple classifiers, each spanning a different range of orientation. Each of these classifiers

determines whether the object is present at a specified size within a fixed-size image window.

To find the object at any location and size, these classifiers scan the image exhaustively.

Each classifier is based on the statistics of localized parts. Each part is a transform from a

subset of wavelet coefficients to a discrete set of values. Such parts are designed to capture

various combinations of locality in space, frequency, and orientation. In building each classifier,

we gathered the class-conditional statistics of these part values from representative samples of

object and non-object images. We trained each classifier to minimize classification error on the

training set by using Adaboost with Confidence-Weighted Predictions (Shapire and Singer,

1999). In detection, each classifier computes the part values within the image window and looks

up their associated class-conditional probabilities. The classifier then makes a decision by

applying a likelihood ratio test. For efficiency, the classifier evaluates this likelihood ratio in

stages. At each stage, the classifier compares the partial likelihood ratio to a threshold and

makes a decision about whether to cease evaluation labeling the input as non-object — or to

continue further evaluation. The detector orders these stages of evaluation from a low-resolution

Page 1

1 This work was supported in part by the Advanced Research and Development Activity (ARDA) under contract

number MDA904-00-C-2109.

to a high-resolution search of the image. Our trainable object detector achieves reliable and

efficient detection of human faces and passenger cars with out-of-plane rotation.

1 Introduction

Object detection is a big part of people’s lives. We, as human beings, constantly “detect”

various objects such as people, buildings, and automobiles. Yet it remains a mystery how we

detect objects accurately and with little apparent effort. Comprehensive explanations have

defied psychologists and physiologists for more than a century.

Our goal in this research is not to understand how humans perceive, but to create computer

methods for automatic object detection. Automated object detection has many potential uses

including image retrieval. Digital image collections have grown dramatically in recent years.

Corbis estimates it has more than 67 million images in its collection. The Associated Press

collects and archives an estimated 1,000 photographs a day. Currently, the usability of these

collections is limited by a lack of effective retrieval methods. To find a specific image in such a

collection, people must search using text-based captions and primitive image features such as

color and texture. Automatic object detection could be used to extract more information from

these images and help label and categorize them. Improved search methods will make these

databases accessible to wider groups of users, such as law enforcement agencies, medical

practitioners, graphic and multimedia designers, and artists. Automatic object detection could

also be useful in photography. As camera technology changes from film to digital capture,

cameras will become part optics and part computer. Such a camera could automatically focus,

color balance, and zoom on a specified object of interest, say, a human face. Also, detectors of a

specific object have specialized uses: face detectors for face identification and car detectors for

monitoring traffic.

1.1 Challenges in Object Detection

Automatic object detection is a difficult undertaking. In over 30 years of research in

computer vision, progress has been limited. The main challenge is the amount of variation in

visual appearance. An object detector must cope with both the variation within the object

Page 2

category and with the diversity of visual imagery that exists in the world at large. For example,

cars vary in size, shape, coloring, and in small details such as the headlights, grille, and tires. The

lighting, surrounding scenery, and an object’s pose affect its appearance. A car detection

algorithm must also distinguish cars from all other visual patterns that may occur in the world,

such as similar looking rectangular objects.

1.2 Object Detection using Classifiers

Our method for object detection factors out variation in the pose of the object. Our object

detector uses a set of classifiers, each of which determines whether the object is present at a

specific pose in a fixed-size rectangular image window. For faces, the detector uses classifiers

for three discrete poses: front, left profile, and right profile. Taking advantage of facial

symmetry, we only needed to train classifiers for the frontal and right profile viewpoints shown

in Figure 1a, and we built a left profile detector by reflecting the right profile detector. For cars,

we use 15 discrete viewpoints, and by exploiting symmetry again, we only trained classifiers for

the eight viewpoints as shown in Figure 1b. These classifiers tolerate a small range of variation

in object orientation, size, and alignment within the image window.

To perform detection, we scan each classifier over the original image and a series of resized

versions of the original image, as illustrated in Figure 2, where the rectangular blocks indicate

successive applications of the classifier. This exhaustive scanning operation makes it possible to

find the object over variation in location and size, and can be done with surprising efficiency, as

we will describe later in Section 4. Often, the same entity is detected by more than one view-

based detector, such as the woman in the foreground of the image in Figure 3. To determine the

final detection outcome the detector combines the results from various viewpoint classifiers by

using simple arbitration heuristics, in the case of Figure 3, selecting the frontal viewpoint.

1.3 Parts-Based Representation for Classifier

The central research issue is how to design a basic classifier that can cope with variation in

appearance. One hypothetical method is to build the classifier as a table, enumerating the most

probable classification for every combination of input variables:

Page 3

Table 1: Ideal but infeasible classifier

(1,1) (1,2) . . . (20,20) Classification

0 0 . . . 0 Non-object

0 0 . . . 1 Non-object

.

35 45 . . . 28 Object

.

255 255 . . . 255 Non-object

Such a table would give the smallest average classification error, assuming we could label each

input appropriately. Obviously, this table is not possible in practice. Even a classifier over a

20x20 input window requires 256
400

 = 10
964

 entries! Classifier design, therefore, must take

advantage of the constraints of the visual world in order to obtain a much more compact

representation.

In choosing a representation for the classifier, we can differentiate between two types of

approaches: global and parts-based. Global representations, like an ideal table, try to model the

joint behavior of all input variables. Computational and storage limitations, however, do not

allow for a fully general function of the input variables. As a practical solution, global models

must use limited functional forms of the input variables, such as linear, quadratic, or third order.

Alternatively, global models may reduce the dimensionality of the input space using certain

transforms or a reduction in the number of input variables. A higher-order model or even a non-

parametric method can then describe the joint behavior of this reduced set of variables.

In the parts-based approach, the input variables are grouped into sets, where the relationships

within each set are more accurately modeled than those across sets. We refer to each such set as

a part. For example, parts of a face, such as the eyes, nose, and mouth, can be considered as

parts and modeled separately. However, it should be emphasized that parts need not have a

natural meaning to us (such as a nose or an eye), but could be defined as a group of pixels, or

transform variables, that satisfy certain mathematical properties. In addition, these parts do not

have to be composed from disjoint groups of variables; a variable can be re-used in multiple

parts. In this paper, we denote parts with italics to refer to this more general meaning.

This parts-based approach is based on an implicit assumption that for a given object, each

pixel is statistically related with some pixels more than others. Under this assumption, a global

Page 4

model does not make good use of modeling resources, as it makes no distinction whether a

combination of pixels is useful or irrelevant. A quadratic filter, for example, represents

correlation within each pair of pixels; the majority of these pairs may have negligible statistical

dependency. A parts-based approach, in contrast, can select each part to represent a small group

of variables that are known to be statistically dependent. Such an approach avoids devoting

representational resources to weak relationships and instead allocates richer models to the

stronger relationships.

The parts-based assumption becomes more pronounced if statistical dependency is measured

among transformed variables that decorrelate the imagery rather than among the original pixels.

By decorrelation, statistical dependency will be concentrated in small sets of variables. We

chose a wavelet basis as a transform for decorrelation because it tends to work well on imagery

of natural scenes (Field, 1999). In particular, we chose a 5/3 linear phase wavelet filterbank

(Strang and Nguyen, 1997).

 Experiments support the validity of the parts-based assumption. We measured statistical

dependency among 5/3 linear phase wavelet coefficients for several viewpoints of faces and cars.

For each viewpoint, we collected the joint probability distribution for each pair of wavelet

coefficients by using a large set of geometrically aligned images of the object. By quantizing

each coefficient to 5 discrete levels, we represented each distribution as a histogram with 25

(5x5) bins. These distributions allowed us to compute the mutual information for each wavelet

coefficient pair. Mutual information measures the strength of the statistical dependence between

the two variables. Figure 4 illustrates some of the results of this experiment for frontal faces.

Each “image” graphically represents the mutual information values between one chosen

coefficient (indicated by an arrow) and all the other coefficients in the wavelet transform. The

brightness at each location indicates the mutual information between the chosen coefficient and

coefficient at that location. Notice that each coefficient is statistically related only with a

relatively small number of the other coefficients (Naturally, since a variable has the strongest

mutual information with itself, the location of the chosen coefficient is the brightest point.) This

phenomenon of limited statistical dependency is typical for faces and cars.

Page 5

1.4 Properties of Classifier

We used a combination of the following eight design choices to develop a parts-based

classifier.

• Decomposition into parts

Given input variables, such as wavelet coefficients, we form a set of parts, each consisting of

a group of variables that are statistically dependent. We then treat these parts as statistically

independent. With this assumption, our classifier takes the following form as a likelihood ratio

test; that is, it decides that the object is present if the left side is greater than λ:

(1)
∏

r

nonpartP

partP

rr

rr

|(

(>−object

object λ
)

)|

where partr is a discrete-valued variable obtained as a function of a chosen group of wavelet

coefficients within the classification window, Pr(partr |object) represents the probability

distribution over the discrete range of partr conditioned on the presence of the object, and

similarly, Pr(partr |non-object) is conditioned on the absence of the object.

Strictly speaking, the assumption of statistical independence of the parts is not true. Yet, we

still obtained accurate classification results; possible interpretation of this will be discussed in

Section 2.4.

• Probabilistic representation of parts

Usually, parts are thought of as being binary-valued and deterministic. For example, an eye

can either be present or absent. However, in Equation (1), we designed each partr, to take a

range of values. In our face and care examples, the range was approximately 10
4
. Our classifier

represents these values as probabilistic quantities rather than deterministic quantities; that is,

Pr(partr |non-object) and Pr(partr | object) associate probabilities to each value of partr.

Page 6

• Parts with locality in space, frequency, and orientation

Our classifier uses a variety of parts to embody various combinations of locality in space,

frequency, and orientation. Some parts represent small regions over high frequencies, other

parts represent large regions over low frequencies, and still other parts are specialized in

horizontal and vertical information. These choices are designed to capture common statistical

dependencies in appearance of an object. The wavelet representation allowed us to directly

design parts with these locality properties.

• Maximalist collection of parts

Our classifier represents parts from all areas across the entire extent of the object. This

representation could be considered maximalist in contrast to a minimalist one that relies on a few

features (e.g., eyes, nose, mouth). More information, if used properly, will always improve the

detection result. In particular, we have found that parts with even seemingly indistinct cues such

as uniform areas are indeed discriminative.

• Geometric arrangement of parts

It should be noted that the geometrical relationships of the parts are implicit in Equation (1).

Each part is defined as a function of a specific group of wavelet coefficients. All wavelet

coefficients are represented with respect to a common coordinate frame affixed to the image

window to be classified. Therefore, this representation captures geometry by placing all parts in

a common coordinate system. In the next section, this geometric representation will become

more explicit by an equivalent representation of Equation (1) in terms of “local operators. ” This

representation allows for a flexible configuration of parts in the object unlike a single template

that implies a rigid configuration.

• Tables for part statistics

 Our classifier represents each set of statistical distributions, Pr(partr |non-object) and Pr(partr

| object), using tables. This representation is possible because we have chosen each part to have

a discrete range of values. Retrieval of probability values thus involves only a lookup into a

Page 7

table representing the likelihood ratio Pr(partr | object) / Pr(partr | non-object). We can estimate

these probability distributions by simply counting the occurrences of each part value over a large

set of training images. A table avoids assumptions about the distributional structure of part

statistics (e.g., Gaussian), while retaining good properties for estimation, including satisfaction of

the Cramer-Rao lower bound, closed form solution, and no bias.

• AdaBoost to weight training examples

To build the overall classifier, we could separately estimate Pr(partr |non-object) and Pr(partr

| object), and plug them into the likelihood ratio test, Equation (1). This approach would give the

best possible performance (with this functional form) if our training data is truly representative.

However, the fact that we have only a finite set of training examples will limit the estimation

accuracy, particularly for the non-object class. This limitation can be partially overcome by

training the classifier to explicitly minimize classification error on the training set. We chose to

use a unique training method involving Adaboost with Confidence Weighted Predictions

(Shapire and Singer, 1999) that guarantees to minimize an upper bound on the classification

error on the training set. This method also has the natural interpretation of re-weighting of the

training examples. This method allowed us to count weighted occurrences of each part value,

and thereby retain the advantage of estimating each distribution as a table.

• Coarse-to-fine search evaluation strategy

We use several strategies to make detection computationally efficient. In Figure 2, it may

appear that the classifier completely re-evaluates each window. However, overlapping windows

share much information that does not need to be re-computed. The classifier computes the

wavelet transform and the part values once, at most, for the entire image scale. We also avoid

repeating computations over successive octaves in the search across scale. It is not necessary to

re-compute the entire wavelet transform, nor parts that are computationally equivalent at

multiple octaves. The classifier also does not need to evaluate the complete likelihood ratio to

make a decision in most cases. A partial evaluation of the likelihood ratio is often sufficient to

rule out the presence of an object. The classifier orders the evaluation of the likelihood ratio

from parts in coarse resolution to parts in the fine resolution. First, the detector evaluates the

Page 8

image at a coarse resolution, reduced by a factor of 8 in both directions; that is, evaluation sites

are spaced 8 pixels apart in the original image. Then the resolution is reduced by a factor of 4.

Such progressive evaluation techniques enabled us to achieve significant computational savings

and implement a relatively efficient algorithm with little penalty in accuracy.

1.5 Overview of Classifier

Let us overview how our classifier based on Equation (1) works. The description here is

primarily for illustrative purposes, and more details can be found in Section 2.

The classification algorithm involves three steps, as shown in Figure 5. In the first step, N

local operators, fk(x,y), k = 1, , N, evaluate the image window. The resulting measurements are

discrete-valued. Each output at each location represents a separate part and the conglomerate of

the outputs from all N operators, each sampled at all locations, represent the entire set of parts.

Rewriting Equation (1) in terms of local operators gives:

(2) ∏ ∏∏ −− =
r k yx

objectnonyxyxfP

objectyxyxfP

objectnonpartP

objectpartP

kk

kk

rr

rr

,

)|,),,((

)|,),,((

)|(

)|(

where each partr corresponds to a unique combination of k, x, and y.

The classifier then retrieves two probabilities associated with each operator output fk(x,y). It

obtains these probabilities from two pre-computed probability distributions for each operator,

Pk(fk(x,y), x, y | object) and Pk(fk(x,y), x, y | non-object). Pk(fk(x,y), x, y | object) represents the

statistical knowledge of the object appearance. Figure 5 illustrates a case that the probability of

output value #5710 from operator “1” at position (0, 0) on the object is 0.53. The other

probability distribution, Pk(fk(x,y), x, y | non-object), describes the visual world other than the

object.

Note that each of these distributions is a joint function of operator value fk and operator

position (x, y) within the classification window. This joint representation explicitly models the

geometric configuration of the parts. Recall, also, that each operator takes on a discrete value,

allowing us to represent each probability distribution as a table.

Page 9

Next, the classifier makes a decision by computing a likelihood ratio test as in Equation (2).

It multiplies all the probabilities retrieved from Pk(fk(x,y), x, y | object) in the numerator and

divides by the product of the probabilities from Pk(fk(x,y), x, y | non-object). It then compares the

resulting value to a threshold. If the value is greater than the threshold, it decides that the object

is present in the window; otherwise, it decides it is not present.

1.6 Related Work

The idea of using statistical independence assumptions in probabilistic modeling problems has

a long history in the literature of pattern recognition, beginning possibly with Lewis (1959) and

Chow and Liu (1966). In computer vision, several researchers have used a parts-like

decomposition with an explicit statistical independence assumption. Recent representative work

includes Burl, et al. (1996, 1998), Geman and Flueret (2001), and Amit (2000), who use binary

or deterministic representations of the parts. Schiele and Crowley (1996, 2000) use a

probabilistic representation where probability is estimated over the response to Gaussian

derivative filters. However, there is no notion of geometry in Schiele and Crowley’s

representation. They only represent the probability distribution of local operator output, whereas

our classifier represents probability as a joint function of local operator output and operator

position.

Various parts-based methods differ from each other in whether the parts are represented in a

rigid or flexible configuration like ours. Lades, et al. (1993) and Wiskott, et al. (1997) allow for

flexibility through a flexible graph. Burl, et al (1996, 1998) allow for flexibility through

Gaussian models of part position. Prior parts-based methods are confined to features that are

local in the spatial sense. We extend the idea of “parts” by considering a more general concept

that includes locality in frequency and orientation.

Using tables to represent probability distributions is not uncommon. Swain and Ballard (1991)

have used them for object recognition by color, and Schiele and Crowley (1996, 2000) for

representing the quantized output of Gaussian derivatives. However, our classifier design is

distinctive in that we use multi-dimensional tables that jointly represent local operator output

with operator position.

Page 10

Much object detection work uses a coarse-to-fine search heuristic to reduce computational

time (Rowley, et al., 1998) (Geman and Flueret, 2001) (Romdhani, et al., 2001) (Viola and

Jones, 2001). Such methods first evaluate the entire original image at coarse resolution and then

selectively evaluate the image at higher resolution based on the outcome of the lower-resolution

evaluations. Our coarse-to-fine strategy takes natural advantage of a wavelet-base multi-

resolution image representation.

2 Derivation of Functional Form of Classifier

Based on the design choices we have made in the previous section, we will derive the actual

functional form of our classification algorithm and examine implications of its underlying

assumptions. The final form that we will obtain at the end of this section will be:

(3)
∏∏ >−

k yx

objectnonMyMxyxfP

objectMyMxyxfP

kk

kk λ
,

)|]/[],/[),,((

)|]/[],/[),,((

where [v] denotes the rounded integer value of v, and M = 4 or 8. The derivation of equation

(3) consists of the following series of transformations and approximations to the ideal, but

infeasible, classifier we introduced in Section 1.3:

• Two generalizations to the ideal classifier form

• Wavelet transform of input pixels

• Three approximations:

o Statistical independence of parts

o Quantization of part value

o Coarse quantization of part position

Page 11

The derivation gives a complete record of all the modeling assumptions used in the design of

the classifier. The performance of the classifier then directly depends on these assumptions and

the accuracy of the statistics gathered for object and non-objects. Explicit knowledge of these

assumptions also helps us decide how to collect statistics for the classifier.

2.1 Ideal Form of Classifier

We introduced the hypothetical ideal classifier as a large table in Section 1.3. This classifier

would be ideal in several ways. First, it is based on a full representation of the input: the

classifier is based on a joint function of the entire raw input, not a selected or filtered portion of

it. No information is lost from or added to the input. Second, this table minimizes the

probability of classification error, assuming each entry in the table is labeled with the most

probable classification. Finally, the table concisely represents the output by simply listing each

input’s classification and nothing extraneous, such as probability values. Of course, such a table

is not feasible. It is not possible to enumerate every possible input in a table. Although not

feasible, it provides a useful point of comparison with any feasible classifier, in particular the

final functional form of our classifier Equation (3).

2.2 Generalizations to the Functional Form of Ideal Classifier

There are several differences between the ideal classifier and the final functional form of our

classifier in Equation (3). Our classifier represents object and non-object properties separately,

whereas the ideal table does not separate them. The left side of Equation (3) outputs a

continuous number, whereas the ideal classifier directly outputs a classification, object or non-

object. To transform the ideal table into Equation (3), we must first make the table more general.

This generalization has important implications for the training of the probability distributions in

Equation (3).

Our first transformation is to generalize the output of the table from a binary value (object,

non-object) to a posterior probability, P(object | image):

Page 12

Table 2: Ideal classifier using posterior probabilities

(1,1) (1,2) . . . (20,20) P(object | image)

0 0 . . . 0 0.000001

0 0 . . . 1 0.000003

.

35 45 . . . 28 0.87521

.

255 255 . . . 255 0.00004

To re-derive the ideal classification table from the posterior probability, we can apply Bayes’

decision rule: If the probability is greater than 0.5, the classifier decides that the object is present

in the image.

To generalize the classification function further, we use Bayes’ theorem to re-write the Bayes’

decision rule in an equivalent form as a likelihood ratio test:

(4))(

)(

objectP

objectnonP −=λ
)|(

)|(

objectnonimageP

objectimageP

− >

If the likelihood ratio (left side) is greater than the threshold on the right side, the classifier

decides the object is present. With this expansion, the classification table would include two

entries for each input image window:

Table 3: Ideal classifier using separate models for object and non-object

probabilities

(1,1) (1,2) . . . (20,20) P(Image | Object),

P(Image | Non-object)

0 0 . . . 0 0.00000013, 0.013

0 0 . . . 1 0.00000032, 0.014

.

35 45 . . . 28 0.0092, 0.00045

.

255 255 . . . 255 0.00007, 0.03

Writing Bayes’ decision rule as a likelihood ratio test has several advantages. It is easier to

collect statistics separately for the two class-conditional probability functions, P(image | object)

and P(image | non-object), since they are based on separate sets of images, than it is to directly

Page 13

estimate the posterior probability function, P(object | image). In this form, we also factor out the

contributions of the prior probabilities, P(object) and P(non-object), and combine them in a

single threshold, λ. This threshold controls the sensitivity of the classifier.

Several disadvantages arise when using a decision rule based on class-conditional

probabilities. They come mostly from practical limitations in the number of available training

examples. First, by estimating P(image | object) and P(image | non-object) separately, we may

be estimating more parameters than necessary in a direct classification function, such as a

posterior probability function, and as a result, our estimation errors for the model parameters

could be greater than those in a more tightly constrained classification function. Second, it is

difficult to obtain a truly representative set of training images, particularly for the non-object

class. Statistical estimates based on these limited sets will not be as accurate and classification

accuracy will suffer. In Section 3.4, we will explain how the technique of AdaBoost with

Confidence Weighted Predictions (Shapire and Singer, 1999) partially compensates for such

deficiency by weighting the training samples such that the resulting classifier minimizes

classification error on the training set.

2.3 Wavelet Transform of Image Window

The classifier performs a wavelet transform on the input window using a linear phase 5/3

perfect reconstruction filter bank (Strang and Nguyen, 1997). This wavelet transform is fully

invertible, and thus this transform has no consequences in terms of information content. Yet it

has two advantages. First, the wavelet transform partially decorrelates natural imagery, so

smaller subsets of variables will capture greater statistical dependency within the image.

Second, the wavelet transform makes it convenient to design parts with locality in frequency and

orientation, as well as locality in space. The multi-resolution nature of wavelets also allows us to

efficiently search the image in a coarse-to-fine manner.

2.4 Three Approximations to the Generalized Ideal Form of the
Classifier

We make three approximations to the generalized ideal form of the classifier, Equation (4):

statistical independence of parts, quantization of local operator outputs, and reduced resolution

Page 14

in parts position representation. We also describe the design of the local operators whose

outputs form the parts.

2.4.1 Statistical Independence of Parts

Our most significant approximation is to decompose the image window into parts that are

treated as statistically independent. As illustrated in Figure 5, various local operators are

evaluated at all possible positions within the image window, and each part corresponds to a local

operator output. However, Figure 5 is a simplified illustration. These operators actually sample a

fixed arrangement of wavelet coefficients, instead of directly sampling the input pixels. Thus,

each part represents a different, but not necessarily disjoint, subset of wavelet coefficients. An

operator translates by moving its arrangement of wavelet coefficients as a block in steps of one

wavelet coefficient.

The local operators sample the wavelet transform in many ways. For example, as shown in

Figure 6, one operator samples a block of wavelet coefficients within one wavelet subband.

Another operator combines two blocks from two different subbands. In the next subsection we

describe all the types of local operators our classifier uses.

Under the assumption of parts independence, the form of classifier, Equation (4), now

becomes:

(5)
∏∏ >−

k yx

objectnonyxyxfP

objectyxyxfP

kk

kk λ
,

)|,),,((

)|,),,((

where fk(x,y) is the k
th

 operator output at position (x,y).

This assumption of statistical independence greatly reduces the complexity of the classifier.

We believe this is a reasonable assumption because for faces, cars, and many other objects, a

given coefficient on the object is strongly statistically dependent only on a few other coefficients

and is weakly related with the rest. We hope to capture the stronger dependencies by appropriate

choices of parts and pay a limited penalty by neglecting the weaker dependencies among the

coefficients.

Page 15

We can gain another perspective on this simplification by taking the logarithm of Equation (5)

making the classifier a sum of log probabilities:

(6)

λlog)log(
)|,),,((

)|,),,((>−objectnonyxyxfP

objectyxyxfP

kk

kk

,

∑∑
k yx

In this form, we can interpret the classifier as a linear discriminator:

λlog),(),(
,

>∑∑ yxayxw k

t

k yx

k

where wk(x,y) is a vector concatenating the log likelihood values corresponding to each value of

operator k at position (x,y) and ak(x,y) selects the appropriate log likelihood value from this

vector, given by the computed value of operator k, by assigning ‘1’ to one of its elements and ‘0’

to the remaining elements.

We can also view Equation (5) as a modification of the naïve Bayes classifier. The naïve

Bayes classifier models all variables as statistically independent, whereas our approach models

groups of variables as statistically independent. Domingos and Pazzani (1997) have

demonstrated that the naïve Bayes classifier performs surprisingly well in a number of

classification problems, even when there is significant statistical dependency among the

independently modeled components. Although there is not a full theoretical understanding of

why this is true, Domingos and Pazzani show that the classifier is optimal for conjunctions and

disjunctions and other problems in which statistical independence does not necessarily hold.

Page 16

2.4.2 Design of Local Operators

At this point in the derivation, the central question we face is how to design local operators.

Our goal is to design local operators that capture common statistical dependencies. We

emphasize the notion of common for two reasons. First, we seek to represent statistical

dependencies that exist both for the object (e.g., face) and in the rest of the world (e.g., non-

face). Second, since the local operators are each scanned over the full extent of the input

window, we need local operators that are not just specialized to one site but useful at all sites on

the object.

Our approach is to make educated guesses about the types of statistical dependency we might

encounter. We would expect statistical dependencies are stronger in localized regions, and that

as pixels are farther apart, dependency decreases. We therefore emphasize locality in position

when designing local operators. In particular, we want operators to be capable of capturing the

statistical dependencies that exist in small, highly detailed structures, such as the eyes, nose, and

mouth on a human face or the headlights and grille on a car. However, statistical dependency

can exist over large regions as well. In these larger regions, the dependencies usually involve

lower-frequency attributes. For example, on a face we would expect that the eye sockets would

be darker than the forehead and cheeks. To represent dependencies over both small and large

regions, we combine spatial locality with locality in frequency. Some operators represent large

areas at coarse resolution (localized coefficients in the upper levels of the wavelet transform) and

others represent smaller areas at high resolution (localized coefficients in the lower levels of the

transform). Locality in orientation is another factor we need to combine in operator design.

Since the physical world tends to be continuous, we would expect horizontal edges to co-occur

with other horizontal edges. Similarly, we would expect vertical edges to co-occur with other

vertical edges.

We have defined 17 local operators that comprise various combinations of locality in space,

frequency, and/or orientation. Each operator consists of a moving arrangement of wavelet

coefficients. As an operator scans across the image window, this arrangement moves as a block.

Page 17

The operators are divided into four categories
2
 by the composition of their arrangements of

wavelet coefficients: intra-subband, inter-orientation, inter-frequency, and combined inter-

frequency/inter-orientation arrangement. They are illustrated in Figure 7. See Appendix for a

description of the notation we use for describing the components of the wavelet transform.

The first six operators out of 17 are intra-subband operators, Opb(level, orientation). These

operators sample a contiguous block of coefficients within one subband specified by the (level,

orientation) combination. Such operators capture features that are jointly localized in space,

frequency, and orientation:

Table 4: Intra-subband operators,

Opb(level, orientation)

Operator Level Orientation

1 1 LH

2 1 HL

3 2 LH

4 2 HL

5 3 LH

6 3 HL

The next four operators are of type inter-orientation, Opo(level, orientation1, orientation2).

These operators combine coefficients from two subbands of different orientation but within the

same level (frequency) in the transform. These capture features that have both horizontal and

vertical components but are otherwise localized in space and frequency.

Table 5: Inter-orientation operators

Opo(level, orientation1, orientation2)

Operator Orientations Level

7 LL (horizontal),

LL (vertical)

1

8 LH, HL 1

9 LH, HL 2

10 LH, HL 3

2 These relationships (intra-subband, inter-subband, inter-frequency) were initially defined in Cosman, et. al. (1996)

Page 18

The next six operators are inter-frequency operators, Opf(level1, level2, orientation). These

jointly sample from two subbands of the same orientation but different levels (or frequencies).

They capture features that have broad frequency content, such as edges.

Table 6: Inter-frequency subbands

Opf(level1, level2, orientation)

Operator levels orientation

11 1 LL (horizontal), 1 LH

12 1, 2 LH

13 2, 3 LH

14 1 LL (vertical), 1 HL

15 1, 2 HL

16 2, 3 HL

Finally the last operator combines coefficients across multiple subbands in both orientation

and frequency, Opof(level1, level2, orientation1, orientation2). The operator, called a combined

inter-orientation / inter-frequency operator, is useful for features that combine horizontal and

vertical information and information across frequency.

Table 7: Inter-orientation operators

Opof(level1, level2,

orientation1,orientation2)

Operator Level1 Level2 Orientation1 Orientation2

17 1 2 LH HL

2.4.3 Quantization of Local Operator Output

The output of each operator is a discrete value of finite range representing the combination of

wavelet coefficients. In this section we explain why we choose a discrete representation and

describe how we quantize each subset of wavelet coefficients to a discrete value. Our classifier

uses a discrete representation of operator output because it permits us to represent the statistics of

operator output using a table.

There are alternative statistical representations to a table-based representation. The most

flexible ones are non-parametric ones, such as nearest-neighbor, Parzen windows, and other

Page 19

kernel-density models. These models, however, have a high computational cost for probability

retrieval. Probability retrieval, for a given input, involves a large computation requiring

comparison of the input to every example in the entire training data. Another alternative would

be to use a flexible parametric distribution, such as a mixture model or a multi-layer perceptron

(artificial neural network). Each of these has flexibility to model multi-modal distributions and

acts as a universal approximator as its resource size (i.e., hidden units or nodes) increases.

However, there are no closed form solutions for fitting these models to a set of training

examples; their parameters must be estimated by iterative procedures, such as gradient descent

(backpropagation) and E-M. These parameter estimates could become trapped in local minima

and become sub-optimal. Also, it is questionable whether such models are appropriate for the

task of detection. For example, a multi-layer perceptron forms decision boundaries that are

combinations of hyperplanes to a first approximation. It is not clear whether such decision

boundaries will be good for separating two or more classes in a high dimensional space (Gori

and Scarselli, 1998) (Kung, 1993).

Table representation of a probability distribution is almost as flexible as various non-

parametric methods. Tables have the advantage of being able to retrieve probabilities directly by

one table look-up rather than a computation over the entire set of training data. Estimation of a

table is relatively straightforward. We simply build a histogram by counting how often each

value occurs in the training data. This process involves just one pass through the training

images. The resulting estimates are statistically optimal - maximum likelihood, no bias,

consistent, and efficient, satisfying the Cramer-Rao lower bound. The main drawback of a table

is that we can only represent probability over a limited range of discrete values; the amount of

training data and the size of memory impose limitations on the size of the probability table. To

get reasonably accurate estimates for our tables, we limited ourselves to approximately 10,000

discrete values per operator. This limitation restricts the number of wavelet coefficients each

operator samples and the resolution at which the operator quantizes its subset of coefficients.

Our compromise is to quantize the output of each operator to 3
8
 discrete values. We do so by

having each operator sample the arrangements of 8 coefficients and quantize each coefficient to

three levels. Note that the quantization threshold may differ from operator to operator, so

Page 20

different operators may sample the same coefficient but quantize it differently. The 3-level

quantization is fairly coarse but still retains the information content of the image. Figure 8 shows

several pairs of original and reconstructed images where the reconstruction is done by an inverse

wavelet transform of the quantized wavelet values. Objects in the reconstructed images are still

easily identifiable as faces and cars.

2.4.4 Reduced Resolution in Part Position

Our last approximation reduces resolution in representing part position (x, y). Instead of

representing Pk(fk (x,y),x,y | object) and Pk(fk(x,y),x,y | non-object) at each position (x, y) in the

original resolution, we reduce resolution by a factor of M. A given position (x, y) is represented

at reduced resolution by ([x/M], [y/M]) where [v] denotes the rounded integer of v. This

approximation reduces the size of each probability table by a factor of M
2
. With this

simplification, the final form of the classifier is (repeat of (3)):

(7)
∏∏

k yx

P

,

>−objectnonMyMxyxf

objectMyMxyxfP

kk

kk λ
)|]/[],/[),,((

)|]/[],/[),,((

Or alternatively, in terms of log likelihood functions:

(8)

)|]/[],/[),,((

)|]/[],/[),,((

,

log])/[],/[),,((

log])/[],/[),,((

objectnonMyMxyxfP

objectMyMxyxfP

kk

k yx

kk

k

kMyMxyxfL

MyMxyxfL

−=

>∑∑ λ

.

As the reduction, we use either M=4 or 8 depending on the part; for level 3 and 2 operators,

we reduce M=4 (a factor of table reduction = 16), and for level 1 parts, M=8 (a factor of table

reduction = 64). We found that reducing the resolution does not drastically compromise the

geometric representation of the classifier. Interestingly, the resolution reduction seems to

implicitly accommodate small variations in the arrangement of parts as an unintended but

positive side effect.

Page 21

3 Collecting Statistics

This section describes how we gathered the statistics that go into each set of tables Pk(fk(x,y),

[x/M], [y/M] | object) and Pk(fk(x,y), [x/M], [y/M] | non-object) where k = 1 . . . 17 in Equation

(7). We estimate each of these tables by using a large set of labeled and pre-processed training

images. For the probabilities tables conditioned on the object, Pk(fk(x,y), [x/M], [y/M] | object),

we use images of the object, and for Pk(fk(x,y), [x/M], [y/M] | non-object), images that do not

contain the object. Preparing the training set for the “object” class is relatively straightforward,

but preparing the training set for the “non-object” class requires some consideration. We will

discuss both a basic training algorithm by which we estimated each table separately and an

alternative training procedure that minimizes a classification error criterion using AdaBoost with

Confidence Weighted Predictions (Shapire and Singer, 1999).

3.1 Pre-Processing Images of the Object

Each training image is geometrically normalized and aligned, corrected for lighting, and

perturbed to create many synthetic variations.

3.1.1 Size Normalization and Spatial Alignment

To standardize training images, we aligned all the images with respect to a prototype using

pre-defined, hand-labeled landmark points on the object. For example, for frontal faces, we used

the locations of the eyes, the bridge of the nose, and the center and sides of the mouth. Using

these landmark points, we applied the translation, scaling, and rotation (Arun, et al., 1987) that

brought each image into alignment with the prototype.

3.1.2 Intensity Normalization

We normalized the image intensity as well. This normalization procedure is object-

dependent.

For faces, we normalized the left and right sides of each training image separately, by scaling

all the intensity values with specified correction factors, αleft and α right:

Page 22

),(),('

),(),('

yxIyxI

yxIyxI

right

left

α

α

=

=

(9)

For a local operator that uses inputs from both sides of the face, we normalize the entire sample

using the value of α of the center pixel. In training, we chose these correction factors by hand

for each training example by visually comparing them to a group of prototypes.

When the face detector searches for a face, the classifier evaluates both sides of each

candidate window over a set of 5 discrete values for α. For each side, the classifier compares the

responses (sum of the log likelihoods) for each value of α and chooses the largest response. It

then sums the two chosen responses to obtain the total log likelihood for the candidate.

For cars we did not normalize the training images in intensity, because cars differ greatly in

color, making normalization difficult to compute.

3.1.3 Creating Synthetic Variants of Training Images

We generated additional training data by artificially creating variations to the original training

images. The purpose in doing so was to increase the accuracy of our probability estimates.

For each image, we generated between 1,600 and 6,400 synthetic variations through small,

controlled variations in position (both by positional perturbation and overcomplete evaluation of

the wavelet transform), orientation, size, aspect ratio, background scenery, lighting intensity, and

frequency content. We applied these variations after we first aligned the image geometrically

and corrected for the lighting as described above. For substitution of different background

scenery, we segmented the objects from the background in many of the training images. We

segmented these images either by hand and by automatic methods when possible. Also, we

modified frequency content by using various low-pass filters.

Page 23

3.2 Non-Object Images

We collected non-object images from various photography collections
3
 and from the World

Wide Web, particularly the Washington University archive
4
. We tried to get a balance of indoor,

outdoor, urban, industrial, and rural scenes. We used more than 2,000 such non-object images.

To select non-object samples, we used the bootstrapping technique
5
. The goal of

bootstrapping is to select non-object training examples that resemble the object. By doing so, the

training data will emphasize the distinctions between the object and non-object classes and

performance will be improved. Bootstrapping is a two-stage process. We first trained a

preliminary detector using non-object image windows drawn randomly from the non-object

image collection. We then ran this preliminary detector over the entire collection of non-object

images, selecting additional non-object training examples where the detector gave a high

response. For some detectors we repeated this process several times, gathering more and more

non-object samples. We then used the combined set of samples for training the final detector.

3.3 Training Method (I) - Probabilistic Approximation

The most direct way to build our classifier was to separately estimate each of its constituent

probability distributions, Pk(fk(x,y), [x / M], [y / M] | object) and Pk(fk(x,y), [x / M], [y / M] | non-

object). To estimate these distributions, we simply counted how often each value of local

operator output value occurs at each position in the appropriate set of training examples. For a

local operator, k, this process involves building a histogram, Hk(i, j, f) over a combination of

operator output values, f, and positions, i and j:

Initialize all bins in histogram, Hk(i, j, f), to zero

For all training images, Ip

 For each local operator, fk, k = 1 . . N

3 John Krumm and Henry Rowley each provided image collections.

4 http://www.wuarchive.wustl.edu

5 Introduced by Sung and Poggio (1998) for image classification and also used by Rowley, et al. (1998).

Page 24

 For each position, (x, y)

 i [x / M]

 j [y / M]

 f fk(x, y, Ip)

 Hk(i, j, f) Hk(i, j, f) + 1

Occasionally a bin in the histogram may receive zero count. Since it may not be desirable to

actually assign zero probability, we simply added one to each bin in the histogram:

 Hk(i, j, f) Hk(i, j, f) + 1 for all k, i, j, f

3.4 Training Method (II) - Minimization of Classification Error using
AdaBoost

Training class-conditional distributions separately, as described above, will give the best

possible performance (with this functional form) if our training data is truly representative.

However, a finite set of training data will have limitations, particularly in representing the non-

object class. To achieve better results, we can explicitly train our classifier to minimize

classification error over the training set. For this purpose, we use the algorithm of AdaBoost with

Confidence Weighted Predictions, a modification of standard AdaBoost (Freund and Shapire,

1997). This modification of standard AdaBoost allows for the base classifier to output a

continuous value, proportional to confidence, rather than a binary classification as in the standard

formulation.

AdaBoost, in general, works by sequentially training multiple instances h1(x), h2(x), …, hT(x)

of a base classifier h(x). In our case, the base classifier takes the following form (modified from

equation (8)):

Page 25

Where the input to our classifier is an image window denoted by I.

 Each classifier, ht(x), is trained by assigning different weights to the training examples. For the

first classifier, h1(x), all training examples are given equal weight. For the subsequent classifiers

ht(x), t > 1, the algorithm assigns more weight to training examples that have been incorrectly

classified by the previous classifier, ht-1(x) and, conversely, less weight to training examples that

were correctly classified. AdaBoost then takes a weighted sum of these classifiers as the final

classifier H(x):

(10)

)|]/[],/[),,((

)|]/[],/[),,((

,

log])/[],/[),,((

log])/[],/[),,(()

objectnonMyMxyxfP

objectMyMxyxfP

k

k yx

kk

k

kMyMxyxf

MyMxyxfL

−=

−= ∑∑ λ(

kL

Ih

= ∑

=

)()(
1

xhsignxH
T

t

ttα

(11)

Both the standard AdaBoost algorithm and the AdaBoost with Confidence Weighted

Predictions algorithm determine each αt as a function of the accuracy of ht(x) on the training

data, but differ in how they do this. In n AdaBoost with Confidence Weighted, αt can be

determined by a binary search that minimizes a function of the margin.
 6

 Both algorithms

guarantee that the final classifier satisfies a bound on the classification error on the training set.

With such a bound the classification error can be driven toward zero after a few iterations, and

thereafter the margin between the two classes can be increased.

In practice, for each ht(x), we estimate the distributions Pk(fk(x,y), [x / M], [y / M] | object) and

Pk(fk(x,y), [x / M], [y / M] | non-object) by Training Method (I), but instead of incrementing each

histogram bin by 1, we increment by the weight assigned to the training example. We scale and

round the training image weights to integers for this purpose.

6 See Shapire and Singer (1999) for a complete description of the algorithm.

Page 26

A disadvantage of Adaboost is the increased computational cost of applying all instances of

the classifier in the sum of Equation (11). However, in our case, this sum of classifiers does not

actually increase the complexity of our overall classifier, Equation (10). Since our classifier is

linear, the linear sum in Equation (11) actually reduces to the complexity of the base classifier.

We can see this by directly substituting Equation (10) in Equation (11), giving:

)|)(),(),,((

)|)(),(),,((

,

1 ,
,

,

,log))(),(),,((

log))(),(),,(()(

objectnonyjxiyxfP

objectyjxiyxfP

kkt

T

t k yx

kktt

ktk

ktkyjxiyxfL

yjxiyxfLIH

−

=

=

−= ∑∑∑ λα

And by changing the order of the summations,

(12) ∑

∑∑

=

=

−=

T

t

kkttkk

k yx

kk

MyMxyxfLMyMxyxfL

MyMxyxfLIH

1

,

,

/[],/[),,((])/[],/[),,((

log])/[],/[),,(()(

α

λ

])

Adaboost assigns appropriate weights for individual training images. Intuitively, it is not

optimal to give all the training images equal weight, particularly among the non-object class.

Some of the non-object examples are more important than others for determining the decision

boundary. This re-weighting of the training examples is analogous to the way support vector

machines identify the training examples that directly affect the placement of the decision

boundary (Cortes and Vapnik, 1995).

One of the issues in using AdaBoost is when to stop the iteration. It is not well understood if

AdaBoost is susceptible to overfitting as the number of iterations increase. Our approach was to

monitor the performance of the classifier using a cross-validation image set and to stop the

algorithm when performance seemed to stop improving.

Page 27

4 Implementation and Efficient Processing for Detection

Our strategy for implementing a fast detector was to re-use multi-resolution information

wherever possible and to use a coarse-to-fine search strategy together with various other

heuristics to prune out unpromising object candidates.

4.1 Exhaustive Search

 Each classifier is specialized for a specific orientation, size, alignment, and intensity of the

object within an image window. Detecting an object at any position in an image requires

exhaustively scanning the classifier in position, size, and intensity, as illustrated in Figure 2.

In searching across scale, the detector searches in 4 scales per octave, that is, in scale

increments of 2
1/4

 in both x and y dimensions. We chose an integer root of 2 so we could reuse

information at each octave in this search through scale.

Given an input image, it is ideal to perform intensity correction for each candidate. However,

doing so would require the classifiers to re-compute all subsequent operations separately for each

candidate. We can reduce computation cost by sharing computation among the candidates. Our

normalization, therefore, pre-computes the operator values for 5 discrete levels of intensity

correction, α (see Section 3.1.2). For each candidate, the classifier then evaluates the sum of the

log likelihood for each half of the candidate at each of these five different intensity corrections,

and for each half, selects the α value giving the largest sum of log likelihood.

The detector repeats this exhaustive search for each view-based classifier and combines their

results. If there are multiple detections at the same or adjacent locations and/or scales, the

detector chooses the strongest detection.

4.2 Coarse-to-Fine Evaluation Strategy

 Let us consider the computation process within one resized image in the search across scale

illustrated in Figure 2. We organize this process so that as much computation as possible is

shared among overlapping candidate windows. First, rather than computing the wavelet

transform separately for each image window, the detector computes it once for the entire image.

Page 28

Since the wavelet transform is not shift invariant, we computes an overcomplete transform for

each level of the wavelet transform by expanding the (even, even) phase from the previous level.

We also computes local operator output for each value of intensity correction, α, at every

candidate location. The detector classifies each candidate by accessing the appropriate local

operator values and retrieving and summing their log likelihoods according to Equation (8).

In practice, however, the detector rarely needs to evaluate the entire log likelihood ratio.

Since the left side of Equation (8) is a summation, the classifier can examine its value after any

partial evaluation and rule out the presence of the object if the value is not high enough. We

apply this strategy after each local operator is applied. We set these thresholds conservatively in

order to avoid discarding actual object candidates while quickly removing many of the non-

object candidates. The detector orders the local operators, evaluating first the coarse resolution

ones (those involving coefficients from the top level of the wavelet transform). That is, in the

first stages of evaluation, the detector evaluates the image over a coarse grid in which candidate

windows are spaced 8 pixels apart. The remaining stages reduce resolution by a factor of 4.

Through this strategy we found that we could reduce our computational requirements by 1 to 2

orders of magnitude with little loss in accuracy.

The candidate windows whose likelihood ratio exceeds the final threshold are initially marked

as detections. Each real object in the image tends to produce a cluster of detections. Figure 9

shows the raw output from Equation (8) (before thresholding) over 4 scales. The value shown at

each pixel corresponds to the log likelihood sum associated with the window centered at that

position. The responses to one face form a cluster of detections across position and scale. We

now merge these detections using the following strategy. We determine the detection that has the

highest response in the entire image and it classifies it as “object.” The detector then discards all

detections within a radius of the object and within one half to twice the object size. The detector

then continues to search among the remaining detections, finds the one with the next-highest

response, and continues this process until all the candidates have either been classified as

“object” or discarded.

Page 29

4.3 Re-using Wavelet Transform in Search Across Scale

In searching for the object across scale, the detector iteratively searches resized versions of

the input image where the image is reduced in size by a factor of 2
1/4

 in each dimension. This

scaling process continues until the scaled image is smaller than the window set as an input for

the classifier. Recomputing the entire wavelet transform is not necessary for obtaining the

wavelet transform for each successive scale. This is illustrated in Figure 10. All 3 levels of the

wavelet transform must to be computed for each of the first 4 scales, which comprise the first

octave of the search across scale. After these first 4 scales, our detector re-uses portions of the

wavelet transform computed at previous scales. In particular, we obtain the wavelet transform at

scale i from the wavelet transform at scale i-4 by shifting it by one level; that is, level 1 becomes

level 2, and level 2 becomes level 3. Therefore, only level 1 has to be recomputed at scale i.

4.4 Color Heuristics

The detector we have described is designed for gray-scale images. When color images are

available, color pre-processing is sometimes useful for pruning out unpromising candidates.

This pre-processor uses 8x8x8 probability tables (8 levels of quantization for each color band) to

represent the color distribution of skin-color and non-skin color in RGB space and combines

them into a likelihood ratio test for evaluating each candidate location. This pre-processing

improves performance speed by a factor of 2 to 4, and discarded a few candidates that would

have otherwise been false detections. However, a disadvantage of using color is that the detector

removes many actual faces if the images are poorly color balanced.

4.5 Performance Time

Using the full set of heuristics described above, one classifier can evaluate a 240x256 image

over a full range of scalings in 5 seconds, on average, using a Pentium II at 450MHz.

5 Face Detection

In this section we describe specific design choices that comprise our face detector and discuss

its accuracy on several sets of test images. Our face detector is available on-line at

Page 30

http://www.vasc.ri.cmu.edu/cgi-bin/demos/findface.cgi and it allows internet users to submit

their own images and see the detection results.

5.1 Local Operators, Training images, and Training

The face detector uses the 17 local operators described in Section 2.4.1.

We gathered a large number of face images for training from a number of sources: FERET
7
,

NIST mug shot database
8
, Harvard’s face database

9
, and CMU’s face collection

10
. We also used

many images we collected from the World Wide Web. Overall, we gathered about 2,000 images

of frontal faces and 2,000 images of profile faces. We normalized the two sides of the face in the

training images to compensate for situations in which the face was illuminated unevenly.

We trained the face classifiers using Training Method II (the AdaBoost method) described in

Section 3.4.

5.2 Results in Face Detection

Table 8 compares the performance of our face detector with that reported by Rowley (1999)

for the task of both frontal and profile face detection using of images selected from proprietary

images Kodak provided to Carnegie Mellon University. The test set consists of 17 images with

46 faces, of which 36 are in profile view (between 3/4 view and full profile view). These images

contain some of the typical problems of amateur photographs including poor lighting, contrast,

or focus.

7 Provided by Jonathon Phillips.

8 See http://www.nist.gov/srd/nistsd18.htm.

9 Provided by Woodward Yang.

10 Collected by Henry Rowley, Shumeet Baluja, Henry Schneiderman, and Takeo Kanade.

Page 31

http://www.vasc.ri.cmu.edu/cgi-bin/demos/findface.cgi

Table 8: Face Detection results on Kodak Test Set

(Rowley, 1999) Schneiderman and Kanade (using AdaBoost)

Detection False

Detections
γ Detection

(all faces)

Detection

(profiles only)

False

Detections

58.7% 1347 0.5 80.4% 86.1% 105

41.3% 617 1.0 70.0% 69.4% 7

32.6% 136 1.5 63.0% 61.1% 1

Each row of Table 8 shows the result by a different setting of γ, which determines λ for each

classifier as follows:

γλ

γλ

profileprofileprofile

frontfrontfront

ed

ed

+=

+=

where the d’s and e’s were tuned by hand.

To further evaluate accuracy on faces with out-of-plane rotation we collected a larger test set

consisting of 208 images with 441 faces that vary in pose from full frontal to side view. This test

set is available on-line at http://www.ri.cmu.edu/projects/project_419.html. Of these images,

approximately 347 are profiles (between 3/4 view and full profile view). We gathered these

images from a variety of sites on the World Wide Web, mainly news sites such as Yahoo! and

the New York Times. Most of these images were unconstrained in terms of content, background

scenery, and lighting, but were taken by professional photographers and are generally of better

quality than the Kodak images in terms of composition, contrast, and focus. Table 9 shows the

performance at different values of γ controlling the sensitivity of the detectors. The table also

compares the performance of the detectors trained with AdaBoost and without AdaBoost. Figure

11 shows some typical results on this image set when our detector was trained with AdaBoost

and used γ = 1.0.

Page 32

Table 9: Face Detection Results on Schneiderman & Kanade Test Set

With AdaBoost Without AdaBoost

γ Detections

(all faces)

Detection

(profiles)

False

Detections

Detection

(all faces)

False

Detections

0.0 92.7% 92.8% 700 82% 137

1.5 85.5% 86.4% 91 74% 27

2.5 75.2% 78.6% 12 60% 3

The distinguishing characteristic of our face detector is that it works for both frontal and out-

of-plane rotational views. To date, several researchers (Rowley, et al., 1998) (Sung and Poggio,

1998) (Osuna, et al., 1998) (Roth, et al., 1999) (Viola and Jones, 2001) have had success

developing algorithms that work for frontal views of faces, but none, to our knowledge, have had

success with profile (side) views except Rowley (1999) which we compare our algorithm to in

Table 8.

Profile-view faces are more difficult to detect than frontal views for several reasons. The

salient features on the face (eyes, nose, and mouth) are not as prominent when viewed from the

side as they are when viewed frontally. Also, for frontal views, these features are interior to the

object, whereas on a profile, many of the features form the silhouette with respect to the

background. Since the background can be almost any visual pattern, a profile detector must

accommodate much more variation in the appearance of these features than a frontal detector

needs to accommodate for interior features.

Table 10 compares the accuracy of our detectors with those of other researchers on the

MIT/CMU test set of frontal face images combining test images from Sung and Poggio (1998)

and Rowley, et al. (1998).

Page 33

Table 10: Frontal Face Detection on Sung & Poggio and Rowley & Baluja &

Kanade Combined Test Set
11

 Detection

Rate

False

Detections

Schneiderman and Kanade
*
 (eigenvector) 94.4%

(95.8%)

65

(Roth, et. al., 1999)* (94.8%) 78

Schneiderman and Kanade (wavelet)* 90.2%

(91.8%)

110

(Rowley, et. al., 1998) 86.0% 31

(Viola and Jones, 2001) 93.7% 167

In these experiments, we noticed some differences in performance between the detector

described in this paper and an improved version of the detector we described in Schneiderman

and Kanade (1998). Both detectors use similar probabilistic structures, but the detector in

Schneiderman and Kanade (1998) uses local operators based on localized eigenimages rather

than wavelet coefficients. The wavelet-based detector described in this paper performs much

better for profile-view faces. However, the localized eigenimage-based detector in

Schneiderman and Kanade (1998) seems to be slightly more accurate on frontal faces.

6 Car Detection

We also trained a detector for finding passenger cars in an image.

6.1 Local Operators, Training Images, and Training

We used 13 of the 17 operators described in Section 2.4.1by excluded the four operators that

involved the level 1 LL subband. We excluded these operators because they represent average

intensities over large areas. Since cars come in all colors and intensities, we expected these

coefficients not to be informative.

11 At least 10 additional human faces are not labeled in the ground truth for this test set. We report our results in two

ways. The figures not in parentheses indicate results on just the 483 labeled faces. Any additional detected faces

were counted neither as detections nor false detections. To be consistent with Roth, et al. (1999), we also indicate,

in parentheses, the ratio between the total number of faces found by computer (labeled and unlabeled) divided by the

number labeled by hand (483).
* Indicates the detection results on 125 images with ground truth of 483 labeled faces. The original MIT/CMU test

set included 5 additional images of line-drawn faces.

Page 34

We collected car images with our own camera and from the World Wide Web, mostly from

car sales and car enthusiast sites. The latter sites provided many photographs of older cars. We

gathered between 250 and 500 images per viewpoint with a total of over 2,000 images.

The car detector used Training Method (I) described in Section 3.3.

6.2 Results in Car Detection

To test the accuracy of the car detector, we collected, separately from the training set, a set of

104 images that contain 213 cars, spanning a wide variety of models, sizes, orientations,

background scenery, lighting conditions and some partial occlusions. We gathered these images

using several cameras and from sites on the World Wide Web. This image set is publicly

available at http://vasc.ri.cmu.edu/idb/html/car/index.html. Table 11 displays our performance.

Table 11: Car Detection Results

γ Detections Misses False

Detections

1.05 177 (83%) 36 (17%) 7

1.0 183 (86%) 30 (14%) 10

0.9 197 (92%) 16 (8%) 71

The sensitivity of the detectors is controlled by γ which linearly scales the detection thresholds.

Figure 12 shows some typical results on this image set, evaluated at γ = 1.0.

7 Analysis of Positional Response of Classifier

Since the classifier uses parts across the full extent of the object, it is worth analyzing which

some parts or areas tended to be most influential. For example, are the eyes, nose, and mouth

regions really the most important areas to detect faces? To study the behavior of the classifier,

we computed the amount of contribution at each pixel (x, y) to the total log likelihood, Equation

(8). In other words, C(x,y) is the partial sum of the total log likelihood due to the parts centered

at (x, y).

Page 35

http://vasc.ri.cmu.edu/idb/html/car/index.html

(13) ∑

∑

−

==

k

objectnonMyMxyxfP

objectMyMxyxfP

k

kk

k

k

MyMxyxfLyxC

)|]/[],/)[,((

)|]/[],/[),,((
log

])/[],/[),,((),(

Figure 13 shows C(x, y) as a color overlay on a continuum from red to green, with green

indicating positive values and red indicating negative values.

It is interesting to notice that no particular region in a face seemed to be consistently more

influential than the others, and the regions of particular positive influence were not sharply

localized but tend to be spread out. Occluded areas usually contributed a negative influence.

Also, characteristics that were uncommon in the training set, such as the mottled beard on the

man in the lower right corner of Figure 13b, gave negative response.

We performed a similar analysis for car detection. Figure 14 shows the influence of the parts

as a function of position on the car. The areas of positive and negative response seem to vary

somewhat from example to example, but the window posts, the grille, tires, and silhouette often

gave positive response, and the background and reflections of the surrounding scenery on the

shiny surfaces often gave negative responses.

8 Conclusion

We have described an algorithm for object detection using a set of viewpoint specific

classifiers each of which is trainable using a large set of sample images. Each classifier forms a

log likelihood ratio as the product of the log likelihoods of a large set of parts. Each part

represents various local properties in space, frequency, and orientation.

This algorithm is generic and easily adaptable to new objects with little re-programming. We

demonstrated its use for detecting faces and passenger cars. The same algorithm was also trained

to detect doorknobs for indoor robot navigation (Figure 15).

Our goal is to develop a system that detects and recognizes of many kinds of objects in

photographs and video including everyday office objects, text captions in video, and various

Page 36

structures in biomedical imagery.

9 Appendix: Wavelet Transform

A wavelet transform is computed by passing an image through a cascade of filter bank stages.

Figure 16 shows one such stage. This stage filters the image in the vertical direction using the

filter pair given by c(y) and d(y). c(y) and d(y) are finite extent filters where c(y) is low-pass and

d(y) is high-pass. These filter outputs are down-sampled by a factor of 2 in the vertical direction.

The resulting outputs are filtered in the horizontal direction by an identical pairs of filters

oriented horizontally, c(x) and d(x), and then down-sampled by a factor of 2 horizontally. The

result is a decomposition of the image into 4 subbands denoted by LL, LH, HL, HH. Each of

these represents information from a different orientation. LH represents vertical information

(low-pass filtering in horizontal direction, high-pass filtering in vertical direction), HL represents

horizontal information (low-pass filtering in vertical direction, high-pass filtering in horizontal

direction), HH represents diagonal information (high-pass filtering in both directions), and LL

(low-pass filtering in both directions) represents the original image at a lower resolution. Figure

17 shows the common representation for these subbands in an image form. These four subbands

could be thought of as one frequency band or one level in a wavelet transform. To expand the

decomposition in frequency, we can iterate on the LL band; that is, we decompose the LL band

as we decomposed the original image by passing it through another stage identical to the first. If

the filter pair is chosen properly, the original image can be reconstructed from its transform with

no loss of information. Such filter banks are called perfect reconstruction filter banks. Several

books describe their design (Strang and Nguyen, 1997) (Vetterli and Kovacevic, 1995).

References

Amit, Y. 2000. A Neural Network Architecture for Visual Selection. Neural Computation.

12:1059-1089.

Arun, K. S., Huang, T. S., Blostein, S. D. 1987. Least-Squares fitting of two 3-D point sets.

IEEE Transactions on Pattern Recognition and Machine Intelligence. (9):698-700.

Page 37

Burl, M. C. and Perona, P. 1996. Recognition of Planar Object Classes. IEEE Conference

on Computer Vision And Pattern Recognition, 1996. pp. 223 - 230.

Burl, M. C., Weber, M. and Perona, P. 1998. A Probabilistic Approach to Object Recognition

using Local Photometry and Global Geometry. In Proc. of the 5
th

 European Conf. On

Computer Vision, 1998.

Chow, C. K. and Liu, C. N. 1966. Approximating Discrete Probability Distributions with

Dependence Trees. IEEE Transactions on Information Theory. IT-14(3).

Cortes, C. and Vapnik, V. 1995. Support-Vector Networks. Machine Learning. 20:273-297.

Cosman, P. C., Gray, R. M., Vetterli, M. 1996. Vector Quantization of Image Subbands: A

Survey. IEEE Transactions on Image Processing. 5(2): 202-225.

Domingos, P., Pazzani, M. 1997. On the Optimality of the Simple Bayesian Classifier under

Zero-One Loss. Machine Learning. 29:103-130.

Field, D. J. 1999. Wavelets, vision and the statistics of natural scenes. Philosophical

Transactions of the Royal Society: Mathematical, Physical and Engineering Sciences.

357(1760):2527-2542

Freund, Y., Shapire, R. E. 1997. A Decision-Theoretic Generalization of On-Line Learning

and an Application to Boosting. Journal of Computer and System Sciences. 55(1):119-139.

Geman, D. and Flueret, F. 2001. Coarse-to-fine Face Detection. International Journal of

Computer Vision. 41:85-107.

Gori, M., Scarselli, F. 1998. Are Mulilayer Perceptrons Adequate for Pattern Recognition

and Verification. IEEE Transactions on Pattern Analysis and Machine Intelligence.

20(11):1121-1132.

Kung, Y. 1993. Digital Neural Networks. Prentice-Hall.

Page 38

Lades, M., Vorbruggen, J. C., Buhmann, J., Lange, J., Malsburg, C. v. d., Wurtz, R. P.,

Konen, W. 1993. Distortion Invariant Object Recognition in the Dynamic Link Architecture.

IEEE Transactions on Computers. 42(3):300 - 311.

Lewis II, P. M. 1959. Approximating Probability Distributions to Reduce Storage

Requirements. Information and Control. 2:214-225.

Osuna, E., Freund, R., and Girosi, F. 1997. Training Support Vector Machines: an

Application to Face Detection. IEEE Conference on Computer Vision And Pattern

Recognition, 1997. pp. 130 - 136.

Romdhani, S., Torr, P., Scholkopf, B., Blake, A. 2001. Computationally Efficient Face

Detection. International Conference on Computer Vision, 2001. pp 695-700.

Roth, D., Yang, M-H., Ahuja, N. 1999. A SNoW-Based Face Detector. NPPS-12.

Rowley, H.A., Baluja, S. and Kanade, T. 1998. Neural Network-Based Face Detection.

IEEE Transactions on Pattern Analysis and Machine Intelligence, 20(1):23-38.

Rowley, H. 1999. Neural Network-Based Face Detection. Ph.D thesis. CMU-CS-99-117.

Schiele, B. and Crowley, J. L. 1996. Probabilistic Object Recognition Using

Multidimensional Receptive Field Histograms. International Conference on Pattern

Recognition, 1996.

Schiele, B. and Crowley, J. L. 2000. Recognition without Correspondence using

Multidimensional Receptive Field Histograms. International Journal of Computer Vision.

36(1):31-50.

Schneiderman, H. and Kanade, T. 1998. “Probabilistic Modeling of Local Appearance and

Spatial Relationships for Object Recognition.” IEEE Conference on Computer Vision And

Pattern Recognition, 1998.

Page 39

Page 40

Shapire, R. E. and Singer, Y. 1999. Improving Boosting Algorithms Using Confidence-rated

Predictions. Machine Learning 37(3):297-336.

Strang, G. and Nguyen, T. 1997. Wavelets and Filter Banks. Wellesley - Cambridge Press.

Wellesley, MA.

Sung, K-K., Poggio, T. 1998. Example-Based Learning for View-Based Human Face

Detection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 20(1):39-51.

Swain, M. J. and Ballard, D. H. Color Indexing. 1991. International Journal of Computer

Vision. 7(1):11-32.

Vetterli, M., and Kovacevic, J. 1995. Wavelets and Subband Coding. Prentice-Hall.

Viola, P. and Jones, M. 2001. Rapid Object Detection using a Boosted Cascade of Simple

Features. IEEE Conference on Computer Vision And Pattern Recognition, 2001.

Wiskott, L., Fellous, J-M , Kruger, N., Malsburg, C. v. d. 1997. Face Recognition by Elastic

Bunch Graph Matching. IEEE Transactions on Pattern Analysis and Machine Intelligence.

19(7):775-779.

(a) For faces, classifiers are trained on 2 viewpoints

(b) For cars, classifiers are trained on 8 viewpoints

Figure 1. Multiple classifiers are built to deal with

appearance changes due to pose.

(a) Search in position

.

.

.

(b) Search in scale

Figure 2: Detection by scanning classifier across image in both

(a) position and (b) scale

Face

Classifier #1
a

r

b

i

t

r

a

t

i

o

n

Face

Classifier #2

Face

Classifier #3

Figure 3: Combining the results from multiple view-based detectors

Figure 4: Pair-wise mutual information between a chosen coefficient

location and all other locations in the wavelet transform for frontal faces

Chosen coefficient Chosen coefficientChosen coefficient

f1(0, 0) = #5710

f1(0, 1) = #3214

fN(n, m) = #723

P1(#5710, 0, 0 | obj) = 0.53

P1(#5710, 0, 0 | non-obj) = 0.56

P1(#3214, 0, 1 | obj) = 0.57

P1(#3214, 0, 1 | non-obj) = 0.48

PN(#723, n, m | obj) = 0.83

PN(#723, n, m | non-obj) = 0.19

0.53 * 0.57 * . . . * 0.83

> λ
0.56 * 0.48 * . . . * 0.19

Figure 5: Classification Algorithm Overview. N local operators evaluate the image

window at nxm locations. Class-conditional probabilities are retrieved for each

output and combined in a likelihood ratio test.

Input Wavelet Sampling

Region Transform Regions

f1(x=4,y=5)= 009811

Figure 6: We may define many operators, each of which samples a certain

arrangement of wavelet coefficients. In this figure, operator “1” samples a block of

coefficients from within one subband and operator “2” combines spatially

registered blocks form two subbands.

y
x

f2(x=7,y=7)= 008842

Intra-subband Inter-orientation Inter-frequency Inter-frequency/

Inter-orientation

Figure 7: Different Local Operator Types

Figure 8: Images reconstructed by inverse wavelet transform. All

wavelet coeffients in LH and HL bands were quantized to three

levels per coefficient

Figure 9: Four consecutive scales and the corresponding output before

thresholding from the detector

Figure 10: Re-using the wavelet transform at successive scalings

Input Image

Scale size of image by factor f:

f = 21/4, i = 0. .3

Overcomplete Wavelet transform

Find object at one scale

Scale = i
Shift wavelet transform down by

one level and compute top level

Find object at one scale

Scale = i +k*4 Repeat until

shifted wavelet

transform is

smaller

than window size

Combine Results

Object Locations

Figure 11: Face Detection Results

Figure 12: Car Detection Results

Figure 13a: Positional response of the classifier. Green areas are “face-like” and red areas

are not “face-like.”

Figure 13b: Positional decomposition of classifier response to particular

profile faces. Green areas are “face-like” and red areas are not “face-like.”

Figure 14: Positional decomposition of classifier response to particular

cars. Green areas are “car-like” and red areas are not “car-like.”

Figure 15: Doorknob Detection Results

Horizontal Filtering

c[y]

d[y]

I[x,y]

2

2

c[x]

d[x]

2

2 LH

LL

c[x]

d[x]

2

2 HH

HL

Vertical Filtering

Figure 16. One stage in a filter-bank wavelet decomposition

LL

HH

LH

HL

LL

HH

LH

HL

LH

HL HH

Figure 17. Representation of a one-level and two level

wavelet transform

	Introduction
	Challenges in Object Detection
	Object Detection using Classifiers
	Parts-Based Representation for Classifier
	Properties of Classifier
	Overview of Classifier
	Related Work

	Derivation of Functional Form of Classifier
	Ideal Form of Classifier
	Generalizations to the Functional Form of Ideal Classifier
	Wavelet Transform of Image Window
	Three Approximations to the Generalized Ideal Form of the Classifier
	Statistical Independence of Parts
	Design of Local Operators
	Quantization of Local Operator Output
	Reduced Resolution in Part Position

	Collecting Statistics
	Pre-Processing Images of the Object
	Size Normalization and Spatial Alignment
	Intensity Normalization
	Creating Synthetic Variants of Training Images

	Non-Object Images
	Training Method (I) - Probabilistic Approximation
	Training Method (II) - Minimization of Classification Error using AdaBoost

	Implementation and Efficient Processing for Detection
	Exhaustive Search
	Coarse-to-Fine Evaluation Strategy
	Re-using Wavelet Transform in Search Across Scale
	Color Heuristics
	Performance Time

	Face Detection
	Local Operators, Training images, and Training
	Results in Face Detection

	Car Detection
	Local Operators, Training Images, and Training
	Results in Car Detection

	Analysis of Positional Response of Classifier
	Conclusion
	Appendix: Wavelet Transform
	IJCV_Figures.pdf
	Figure 5: Classification Algorithm Overview. N local operators evaluate the image window at nxm locations. Class-conditional
	Figure 6: We may define many operators, each of which samples a certain arrangement of wavelet coefficients. In this figure,

