
IEEE Conference on Computer Vision and Pattern Recognition, San Juan, Puerto Rico, June 1997

Object Detection with Vector Quantized Binary Features
John Krumm

Intelligent Systems & Robotics Center
Sandia National Laboratories

Albuquerque, NM 87185
jckrumm@sandia.gov

Abstract

This paper presents a new algorithm for detecting objects
in images, one of the fundamental tasks of computer vision.
The algorithm extends the representational efficiency of
eigenimage methods to binary features, which are less sen-
sitive to illumination changes than gray-level values nor-
mally used with eigenimages. Binary features (square
subtemplates) are automatically chosen on each training
image. Using features rather than whole templates makes
the algorithm more robust to background clutter and par-
tial occlusions. Instead of representing the features with
real-valued eigenvector principle components, we use bi-
nary vector quantization to avoid floating point computa-
tions. The object is detected in the image using a simple
geometric hash table and Hough transform. On a test of
1000 images, the algorithm works on 99.3%. We present a
theoretical analysis of the algorithm in terms of the re-
ceiver operating characteristic, which consists of the prob-
abilities of detection and false alarm. We verify this analy-
sis with the results of our 1000-image test, and we use the
analysis as a principled way to select some of the algo-
rithm’s important operating parameters.
1. Overview and Context

Detecting objects in images and measuring their location
is a fundamental task of computer vision, with applications
in manufacturing, inspection, world modeling, and target
recognition. Often the scene is inherently cluttered, the
object may be partially occluded, and illumination may
change. In this case, the algorithm must look at features
internal to the objects’ silhouette, and look at them in such
a way that missing features and changing illumination are
tolerated.

Researchers have responded to this need in many ways,
including fairly recent, elegant object detection algorithms
based on principle components of training images of the
object[[6]][[10]]. In particular, Murase and Nayar[[6]]
extract templates from training images of the object in dif-
ferent orientations, compute eigenvector principle compo-
nents of these templates, and recover the object’s orienta-
tion in new images by projecting them onto the principle
components. They address the problem of illumination
changes by taking training images under different lighting

 This work was performed at Sandia National Laboratories
and supported by the U.S. Department of Energy under
contract DE-AC04-94AL85000.

conditions. The whole-object template idea was improved
by algorithms that look at only part[[7]] or parts[[4]][[8]]
of the training templates. This helped to reduce or elimi-
nate the effects of background clutter and partial occlu-
sions.

This paper presents and analyzes a new algorithm for
object detection based on binary subtemplates (features) of
the training images. Binary features are more robust to
illumination changes than the gray-level features of previ-
ous methods. We replace the eigenvector principle com-
ponents with binary vector quantization, a common method
for image compression. This avoids any floating point
processing after edge detection. An object is represented
with a separate, distinct model for each pose in the training
set, which avoids problems caused by self-occlusion and
the movement of specular highlights. A model consists of
vector quantized binary features and their relative spatial
offsets with respect to each other. An example of our de-
tection results in an image with background clutter and
partial occlusions is shown in Figure 1. On a test of 1000
cluttered images containing the test object, the algorithm
correctly detected the object in 99.3%. In order to deter-
mine the best values of the algorithm’s important parame-
ters, we derive and plot the receiver operating characteris-

Figure 1: Result of detection algorithm in presence of
background clutter and partial occlusions.

IEEE Conference on Computer Vision and Pattern Recognition, San Juan, Puerto Rico, June 1997

tic. This shows the tradeoff between the probabilities of
detection and false alarms.

2. Appearance Modeling with Binary Features
An object’s pose has six degrees of freedom in general,

and a general version of our algorithm would have a sepa-
rate model for each discretized pose in this six-dimensional
space. Such a high-dimensional model space implicitly
accounts for the normally confounding effects of parallax,
self-occlusion, and the movement of specular highlights.
Our detection problem is less general in that we have a
camera pointed down at objects resting on a plane which is
perpendicular to the camera’s optical axis. This eliminates
all but one continuous degree of freedom. For now, we
will describe the algorithm as having nm models for a single

object, with the models spread over the applicable degrees
of freedom. In general, each model Mi , i nm∈[, , , ,]1 2 3 K ,

models one pose of the object to be detected.
A model consists of a set of binary feature vectors

(square subtemplates) arranged with respect to each other
in image coordinates. Each model comes from a training
image of the object in a known pose. We get binary edge
images using dilated zero crossings of Laplacian of Gaus-
sian versions of the training images. The Gaussian filter has
σ = 2 , and we dilate with an n nd d x structuring element

of 1’s with nd = 3 . The idea to dilate the edges comes

from [[3]], and we do so to help ensure some overlap be-
tween training features and possibly corrupted actual fea-
tures. We designate the edge training images as ()e x yi , ,

where i nm∈[, , , ,]1 2 3 K indexes the model and

x nx∈ −[0, , , , ,]1 2 3 1K and y ny∈ −[0, , , , ,]1 2 3 1K give the

pixel coordinates on the nx x ny image. We eliminate the

background by making binary masks using backlighting.
A model Mi represents features that are square patches

of dilated edge points from e x yi (,). Using an idea from

[[9]], we pick patches that are easy to localize in that they
do not correlate well with their surroundings.

We introduce a windowing operator

{ }Ω f x y x y b(,); , ,0 0 that extracts a square region of size

()2 1b + x ()2 1b + pixels centered around (,)x y0 0 in

f x y(,) and scans the pixels in raster order into a column

vector. The windowed neighborhood around each pixel in
e x yi (,) is rated as a feature based on

{ { }[

{ }]}

r x y D e x y x y b

e x y x d y d b

i
d d d

d d d

H i

i x y

x

y

(,) (’, ’); , , ,

(’, ’); , , .

min=

+ +

− ≤ ≤
− ≤ ≤

Ω

Ω

(1)

()D r sH , is the Hamming distance between binary vectors

r and s . The Hamming distance simply counts the num-
ber of unequal elements in corresponding positions of its
two arguments. In words, r x yi (,) is computed by taking a

square of dimension ()2 1b + x ()2 1b + pixels centered on

(,)x y in e x yi (,) and computing its Hamming distance

with equal sized squares of pixels centered in the sur-
rounding d d x neighborhood of e x yi (,). The minimum

of these Hamming distances is the rating of the feature.
The feature will rate highly if it is dissimilar to its sur-
roundings. For our program, we chose b = 7 pixels to give
binary features of size 15x15. We chose d = 3 pixels.

The best feature is taken as the ()2 1b + x ()2 1b +
square surrounding the maximum value in r x yi (,) . Subse-

quent features are chosen as squares surrounding the next
highest value in r x yi (,) that does not overlap any previous

features. Nominally, we chose n f = 40 features based on

the analysis in Section 5. The features chosen for one
model of one of our objects of interest are shown in Figure
2.

The binary features are scanned into column vectors

called f ij with i nm∈[, , , ,]1 2 3 K indexing the models and

j n f∈[, , , ,]1 2 3 K indexing the features within the models.

The corresponding locations of the features in the training

images are ()′ = ′ ′x x yij ij ij, . Since the absolute location of

the object in the training image is unimportant, we take the
feature locations as offsets with respect to the first feature

in each model: ()x x x x x y yij ij i ij i ij i= ′ − ′ = ′ − ′ ′ − ′1 1 1, .

By picking an independent set of features from each
training image, we are not forced to depend on tracking
training features from pose to pose. This is difficult if fea-
tures appear and disappear due to specular highlights or
self-occlusions.

Figure 2: Binary features automatically selected for
modeling object

IEEE Conference on Computer Vision and Pattern Recognition, San Juan, Puerto Rico, June 1997

As we mentioned above, our problem is one of detecting
objects in stable poses resting on a plane with a camera
looking down from above (e.g. conveyor belt). We model
translation of the object parallel to the resting plane as pro-
portional translation in the image, which assumes away
effects of parallax and image distortion, i.e. the image of
the object is shift-invariant. The degree of freedom that we
model, then, is rotation around an axis perpendicular to the
resting plane. Each model Mi models the object at angle

θ i .

We can compute the number of models nm we need in

this situation by considering the feature size. The training
images of the object are separated by ∆θ in angle. This
angle should be small enough that a binary feature should
not change appearance over the range

[]θ θ θ θi i− +∆ ∆/ , / .2 2 Measured from the center of a

()2 1b + x ()2 1b + feature, the distance to the center of the

farthest pixel is 2b . This pixel will move along an arc of

length 2b∆θ between training images. We endeavor to
make this arc length much less than one pixel to ensure that
the feature will not change over the ∆θ range in angle. If

we set ()2 0 2b ∆θ = . pixels, then b = 7 gives ∆θ = 116. o .

We set ∆θ = 10. o , giving nm = 360 .

3. Encoding Binary Features
The recent work in subspace methods for object recog-

nition [[3], [4], 6-[8], [10]], as well as the standard princi-
ple component analysis of pattern recognition, can be
thought of as applications of data compression. A set of
high-dimensional training vectors are projected into a
lower-dimensional space to serve as efficient models of the
items in the training set. When new data is to be classified,
it is compressed in the same way as the training data and
then compared to the compressed version of the training
data. The advantage of this approach is not only efficiency,
but that the compression process groups similar features,
thereby tolerating the inevitable variations in features from
image to image. We verify this assertion at the end of this
section.

Looking to standard methods in image compression, we
found no close analogue of eigenvectors for binary data

like our training features f ij . Huttenlocher et al.[[3]] use

binary whole-object templates compressed with real-valued
eigenvectors to give real-valued compressed versions of the
binary templates. One of the goals of our work was to
avoid using any floating point processing on binary data.
Thus, instead of eigenvectors, we chose to use binary vec-
tor quantization, which preserves the binary nature of the
data in its compressed form.

Traditionally, the goal of vector quantization has been

image compression[[1]]. Each rectangular block in the
image to be compressed is represented by the index of the
most similar code block. In our case, we have a set of

n nm f training features f ij that we want to represent with a

much smaller set of nc code features Fa , a nc∈[, , , ,]1 2 3 K .

Each code feature is the same size as the training features,

i.e. ()2 1
2

b + .

We use the standard method for computing code fea-
tures, the Lloyd algorithm, described in [[1]]. This is the
same as the k-means algorithm from pattern recognition.
The algorithm iteratively recomputes new sets of code fea-
tures based on the centroids of nearest-neighbor clusters of
training features. To measure distance between features,
we use the Hamming distance, described above. In our
case, we found that 10 iterations were enough to produce a
good set of code features.

To compute the centroid of a set of binary vectors based
on the Hamming distance, we have corresponding elements
of each vector vote for “0” or “1”. For determining each
element of the centroid, the majority rules, with ties broken
randomly.

The result of the Lloyd algorithm is a mapping from any

training feature f ij to its corresponding code feature Fcij

whose index is cij . 30 code features for all 360 training

images of the object in Figure 2 are shown in Figure 3.
We can assess the quality of the mapping by computing

the probability that a feature will be miscoded. This helps
to select the number of codes, nc , that we will choose, as

described in Section 5. In order to approximate the prob-
ability of miscoding, we took 360 test images of the object
in Figure 2 at angles halfway between the nm = 360 train-

ing images. For each feature f ij , we extracted a test fea-

ture at the same relative location as the training feature in
the two adjacent test images. We coded these test features
and took the probability of miscoding as the fraction of
these features that were not mapped to the same code as
their respective training feature. We repeated the experi-
ment for different numbers of code features, nc , rerunning

the Lloyd algorithm each time we changed nc . The result

is plotted in Figure 4. Of course, this experiment does not
account for all anticipated variations of the features (e.g.

Figure 3: 30 code features from all training images of
object in Figure 2.

IEEE Conference on Computer Vision and Pattern Recognition, San Juan, Puerto Rico, June 1997

illumination effects), but it does give an approximate idea
of miscoding probabilities as well as the general behavior
of the detection algorithm with variations in nc .

As we expect, a small number of code features leads to a
small probability of miscoding. This is because the nearest
neighborhood of each code feature is large, so the chance
of straying to another neighborhood is small. This supports
our assertion at the beginning of this section that one ad-
vantage of subspace methods is that small appearance
variations are tolerated by the many-to-one mapping.
Based on this data, and the analysis in Section 5, we chose
nc = 30 codes, which gives a probability of miscoding of

pb = 0 464. .

Figure 4 shows that the probability of miscoding peaks
at about nc = 80 and then starts to drop. We did not ex-

pect this behavior, and we are still speculating on the cause.
It may be that for large numbers of code features, the code
features represent training features that really belong to-
gether in some sense, while for smaller numbers of code
features, there is a “forced marriage” between features that
are really not very similar. An interesting extension of this
work would be to explore the implications of large numbers
of code features.

4. Detecting an Object
An object model Mi consists of a set of feature codes

and locations for one pose of the object:

() () (){ }M x c x c x ci i i i i in inf f
= 1 1 2 2, , , , , , .K (2)

We search for these features in a preprocessed image in
order to detect the object.

The input image is processed the same way as the train-
ing images to give e x y(,) , an image of dilated Laplacian

of Gaussian zero-crossings. We then code the
()2 1b + x ()2 1b + neighborhood around each pixel with the

code features Fa computed from the Lloyd algorithm. The

corresponding image of code indices is

[]
(){ }[]{ }c x y D e x y x y b F

a n
H a

c

(,) arg min ’, ’ ; , , ,
, , ,

=
∈ 1 2K

Ω (3)

To detect an object, we search the image for all the
models Mi of the object. Since we assume that the ob-

ject’s appearance is space-invariant, we search over all
translations of all models Mi . We keep track of the search

with a three-dimensional Hough transform Hixy , whose

three indices correspond to the three search parameters:

[]
[]
[]

i n

n

n

m

x

y

∈

∈ −

∈ −

1 2 3

01 2 1

01 2 1

, , , ,

, , , ,

, , , ,

K

K

K

 indexes models

x indexes image column

y indexes image row

(4)

The bins of the Hough transform keep track of how many
features were found for each model Mi at each location in

the image.
The Hough transform is filled by consulting a simple

geometric hash table upon encountering each code index in

()c x y, . Each code index lends evidence to several differ-

ent model and translation possibilities. Upon encountering
a particular code index, the algorithm indexes into the hash
table to find models that contain that code. Each occur-
rence of an equivalent code in a model causes one bin of
the Hough transform to be incremented. The incremented
bins correspond to the model index i and the position of
the first feature on that model translated by the position of
the code index in ()c x y, . A standard geometric hash table

must be indexed by pairs of points (or more)[[5]]. Since
we have a distinct model for each pose of the object, we
can index on single points.

Each bin in the filled Hough transform contains a count
of the number of features found that support a given model
at a given location. We declare a detection of model Mi0

at location ()x y0 0, if H ki x y T0 0 0
≥ . The integer kT is a de-

tection threshold that specifies the number of features that
must be found for the object be considered detected. Our
nominal value is kT = 13, based on our analysis in Section

5.
We tested the program on 1000 images of the unoc-

cluded object in a cluttered background (images like Figure
1 but with no occlusion). Of these 1000, the object was
correctly detected on 99.3% with at least kT = 13 features

and with no other detections exceeding the number of fea-
tures correctly found. We also tested the algorithm on im-
ages with partial occlusion as in Figure 1. The algorithm
works in such cases, but we have not performed a statisti-
cally significant test.

After offline training, the program takes 5.5 minutes to
compute the pose of an object in a new image, running on a
50 MHz Sun Sparc 10. The bulk of the time is devoted to
encoding the image (≈ 2.5 minutes) and filling the Hough
transform (≈ 3.0 minutes).

0
0.1
0.2
0.3
0.4
0.5

1 10 100 1000

number of code features

p
ro

b
ab

ili
ty

 o
f

m
is

co
d

in
g

Figure 4: An experiment shows that the probability of
miscoding a feature rises and then falls with the num-
ber of code features chosen.

IEEE Conference on Computer Vision and Pattern Recognition, San Juan, Puerto Rico, June 1997

5. Receiver Operating Characteristics
The “receiver operating characteristic” is a way of

measuring the performance of a signal detection algo-
rithm[[11]]. The receiver operating characteristic graphi-
cally shows the tradeoff between the probability of a detec-
tion and the probability of a false alarm. The tradeoff in
our case is controlled by the detection threshold kT . If kT

is low, then the algorithm is more likely to find the object,
even if many of the features are not found. But, a low kT

will also increase the chance of a false alarm. Conversely,
a high kT will decrease the chance of a false alarm, but

also decrease the chance of a valid detection. The receiver
operating characteristic is useful for assessing and opti-
mizing the performance of the algorithm.

Traditionally, the receiver operating characteristic con-
siders the case of a single (possibly multidimensional)
measurement. For our case, it is more useful to modify the
receiver operating characteristic to show what we are most
interested in for a computer vision application. We will
base our probability calculations on the algorithm’s be-
havior on a search through the entire image rather than just
a single measurement. The two probabilities that we cal-
culate are:

()P detection = probability that algorithm will find correct

model in correct location given that unoccluded
object appears somewhere in image

()P fase alarm = probability that algorithm will find any

model anywhere in image given that object does not
appear anywhere in image

This analysis is similar in spirit to that of Grimson and
Huttenlocher[[2]], who analyze the Hough transform for
pose measurement. However, they analyze a situation
where each feature fills a swath of bins in the Hough trans-
form, while our formulation only fills several disconnected
bins. They warn that the probability of false positives can
be very high, but our theory and experiment show that it is
easy to bring the probability of a false positive arbitrarily
low with our algorithm.

5.1 Probability of False Alarm
We will begin by computing the probability of a false

alarm, since this is easier, and the same techniques will be
used in the next section. Our algorithm reports a detection
if it finds at least one model Mi somewhere in the image

supported by at least kT features. For lack of a reason to

believe otherwise, we will assume that the feature codes in
an image with no object are uniformly distributed. Given
this, the probability of observing a given feature index at a
given location in ()c x y, is nc

−1 , where nc is the number

of codes we choose to use. When the algorithm considers

the existence of a given model at a given location, it looks
for nf code indices in a certain geometrical arrangement in

()c x y, . The probability of finding any subset m Mi⊂ of

exactly l features at l different locations and not finding
specific features at the remaining n lf − locations in

()c x y, is given by a binomial distribution:

() ()b l n n
n

l
n nf c

f

c

l

c

n lf

; , − − − −
=







 −1 11 (5)

The probability of falsely reporting a detection of a
given model at a single location is the sum of the prob-
abilities of finding between kT and nf features:

()p b l n nf f c
l k

n

T

f

= −

=
∑ ; , 1 . (6)

It is clear from this equation that a lower value of the de-
tection threshold kT increases the chance of a false detec-

tion.
The probability of a false alarm, as we have defined it, is

the probability that a model with at least kT features will

be found somewhere in the image. We calculate this prob-
ability as follows:

()
()

()
()

()

P

P k

P k

b n n n p

p

T

T

m x y f

f

n n nm x y

false alarm

finding features somewhere in image

not finding features anywhere in image

= ≥

= − ≥

= −

= − −

1

1 0

1 1

; ,

(7)

where we calculate the probability of not finding ≥ kT

features anywhere in image as a binomial probability with
zero successes out of n n nm x y tries with a probability of

success on any given trial of p f . As we expect, the prob-

ability of a false alarm rises with the size of the image
(n nx y) and the number of models searched for (nm).

5.2 Probability of Detection
A successful detection occurs when the algorithm finds

at least kT features on the object at the correct pose and no

greater number of features from a single model anywhere
else. Since we assume that the problem is translation in-
variant, the object’s position in the image makes no differ-
ence, and we start with the following probability of a suc-
cessful detection:

() () ()P P M M P Mi i
i

n

i

m

detection finding model =
=
∑

1

. (8)

By the event “Mi ” we mean that the object is at the orien-

tation represented by Mi . We will assume that instances

of the model in the images are uniformly distributed, so

IEEE Conference on Computer Vision and Pattern Recognition, San Juan, Puerto Rico, June 1997

that ()P M ni m= −1 .

We further specify the probability of a detection as

()

[]
() ()

n P

m M S m k

and

m M

S m S m

M

m

i T

j

i

−

⊂ ≥

⊂ ∈

≥

























∑1

finding such that

at correct location not finding

any , j 1,2,3, , n such

that at any other location

in image

m
i=1

n m ~

~
K

. (9)

()S m is the number of elements in the set m . The event

specified in this equation is that of finding at least kT fea-

tures out of the set of features that indicates the model and
not finding a larger set of features from the models any-
where else. We split this term into mutually exclusive
events based on the number of features found on the correct
model, noting also that the two statements connected by
“and” are independent events:

()(){
[]

()

n P m M S m k M

P

m M j n

S m k

m i i
k k

n

i

n

j m

T

fm−

==
⊂ =

−

⊂ ∈

≥












































∑∑1

1

1

1 2 3

finding such that

finding any

such that at any other

location in image

~ , , , , ,
~

K (10)

The correct way to compute the first term in the product
above is to consider all possible subsets m Mi⊂ . Since

there are so many possibilities, this is prohibitively expen-
sive in computer time. Instead, we assume that each fea-
ture has the same probability of being miscoded, pb , as

computed at the end of Section 3. Then the probability of
finding exactly k features and miscoding n km − features

for all possible sets m such that ()S m k= is

() () ()b k n p
n

k
p pf b

f

b

k

b

n kf; ,1 1− =






 − −

. (11)

For the second term in the product in Equation 12, we
assume again that the feature codes in the background of
the image are uniformly distributed. The probability of
finding any specific combination (~m M j⊂) of k or

greater features at a single location is

()p b l n nm f c
l k

n f

= −

=
∑ ; , 1 . (12)

Omitting the correct pose, there are n n nm x y −1 opportuni-

ties to find k or greater features from any model. The
second term in the product in Equation 12 becomes

()

()
()[]

()

1

1 1

1 1 0 1

1

1

1

1

− ≥

= − −

= − − −

= −

=

−

−

∑

P k

b i n n n p

b n n n p

p

m x y m
i

n n n

m x y m

m

n n n

m x y

m x y

finding features somewhere in image

; ,

; ,

.

(13)

Noting that we have assumed away any dependence on
the particular model Mi , the probability of detection is

() () ()P b k n p b l n nf b f c
l k

n f
nmnx n y

k kT

n f

detection = − −























−

=

−

=
∑∑ ; , ; , .1 1 1

1

(14)

5.3 Receiver Operating Characteristic Curves
Receiver operating characteristic curves are generally pa-
rameterized by a detection threshold. In our case, the de-
tection threshold is kT , which gives the number of features

that must be found to consider the object present. A good
receiver operating characteristic curve will look like the
symbol Γ, with the vertical segment coincident with the
vertical axis, and the corner being at point (0,1). Such a
curve means that the false alarm rate stays low even for
high probabilities of detection. Our goal is to adjust pa-
rameters in an attempt to reach an ideal curve shape and
then take kT to be the value at the upper left corner of the

curve. Figure 6 shows receiver operating characteristic

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

probability of false alarm

p
ro

b
ab

ili
ty

 o
f

d
et

ec
ti

o
n 10 features
20 features
30 features
40 features

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

probability of false alarm

p
ro

b
ab

ili
ty

 o
f

d
et

ec
ti

o
n

3 codes
10 codes
20 codes
30 codes
1000 codes

Figure 5: Theoretical receiver operating characteristic as a function of detection threshold. For varying numbers of
features, the number of codes was kept constant at 30. For varying number of codes, the number of features was
kept constant at 40. 40 features with 30 codes are adequate. The bends in the curves occur at a detection threshold
of 13 features.

IEEE Conference on Computer Vision and Pattern Recognition, San Juan, Puerto Rico, June 1997

curves based on the equations above. The left plot of Fig-
ure 6 shows the effect of varying the number of features
with the number of codes kept constant at nc = 30 . It

shows that 40 features give a good curve. The sharp bend
occurs at kT = 13 .

The right plot of Figure 6 shows the effect of varying the
number of codes with the number of features kept constant
at n f = 40 . It shows that 30 codes give a good curve, with

the sharp bend in the curve occurring at kT = 13 . This is

how we chose the number of features, number of codes,
and detection threshold.

In our test of 1000 images, we kept track of the number
of features found for the top 10 detections for each image.
Using this data, we plotted an empirical receiver operating
characteristic curve, as show in Figure 7. We also plotted
the theoretical receiver operating characteristic curve
(n f = 40 and nc = 30). As shown, the false alarm rate is

very well predicted by Equation 9. Equation 16 tends to
overestimate the probability of detection slightly, which
could be due to a higher probability of miscoding than what
our experiment in Section 3 showed.

Nearly every computer vision algorithm comes with pa-
rameters that must be adjusted by the user - so-called
“magic numbers”. We list the magic numbers used by our
program in Table 1. The ideal computer vision algorithm
has no magic numbers, which means it does not have to be
adjusted for different situations. The next best alternative
is to provide a principled method to choose the parameters.
As shown in Table 1, we were able to do this for about half
the adjustable parameters, with the receiver operating char-
acteristic accounting for three of the most important.

6. Summary
This paper presents a new algorithm for detecting ob-

jects in images. It uses models based on training images of
the object, with each model representing one pose. Since
each pose is modeled uniquely, this helps reduce the con-
founding effects of specular highlights, and eliminates the
need to track features during training. Objects are modeled
in terms of square binary edge patches that are automati-
cally selected from the training images based on their dis-
similarity with their surroundings. Internal features means
the algorithm is robust in the face of background clutter.
The features are compressed using binary vector quantiza-
tion, which gives an efficient representation of the models.
The detection algorithm fills a 3D Hough transform. We
derive the probabilities of detection and false alarm (re-
ceiver operating characteristics) and use this analysis to
determine some of the important operating parameters of
the program.

References
[1] Gray, Robert M., “Vector Quantization”, IEEE ASSP Magazine,

April 1984, pp. 4-29.
[2] Grimson, W. Eric L. and Huttenlocher, Daniel P. “On the Sensitiv-
ity of the Hough Transform for Object Recognition”, IEEE Transactions
on Pattern Analysis and Machine Intelligence, 12(3), March 1990, pp.
255-274.
[3] Huttenlocher, Daniel .P., Lilien, Ryan H., and Olson, Clark F. ,
“Object Recognition Using Subspace Methods”, Proceedings of the
Fourth European Conference on Computer Vision, 1996, pp. 536-45.
[4] Krumm, John C., “Eigenfeatures for Planar Pose Measurement of
Partially Occluded Objects”, Proceedings of the IEEE Computer Vision
and Pattern Recognition Conference, June 1996, pp. 55-60.
[5] Lamdan, Yehezkel and Wolfson, Haim J., “Geometric Hashing: A
General and Efficient Model-Based Recognition Scheme”, Proceedings
of the Second International Conference on Computer Vision, December
1988, pp. 238-249.
[6] Murase, Hiroshi and Nayar, Shree K., “Visual Learning and Recog-
nition of 3D Objects from Appearance”, International Journal of Com-
puter Vision, 14(1), 1995, pp. 5-24.
[7] Murase, Hiroshi and Nayar, Shree K., “Image Spotting of 3D Ob-
jects using Parametric Eigenspace Representation”, 9th Scandinavian
Conference on Image Analysis, June 1995, 325-332.
[8] Ohba, Kohtaro and Ikeuchi, Katsushi, Recognition of the Multi
Specularity Objects using the Eigen-Window, Carnegie Mellon Univer-
sity School of Computer Science Technical Report CMU-CS-96-105,
February 1996.
[9] Shi, Jianbo and Tomasi, Carlo, “Good Features to Track”, Pro-
ceedings of the IEEE Computer Vision and Pattern Recognition Confer-
ence, June 1994, pp. 593-600.
[10] Turk, Matthew and Pentland, Alex, Eigenfaces for Recognition”,
Journal of Cognitive Neuroscience, 3(1), 1991, 71-86.
[11] Van Trees, Harry L., Detection, Estimation, and Modulation The-
ory, Part I, Detection, Estimation, and Linear Modulation Theory, John
Wiley & Sons, New York, 1968.

parameter value how set

image size ()n nx y, (512,480) preset

smoothing σ 2 pixels by eye

dilation nd 3 pixels experience

feature size b 7 pixels experience
feature correlation

distance d
3 pixels experience

number of models

nm

360 subpixel feature
change (Section 2)

probability of miscod-
ing pb

0.464 (for
nc = 30)

miscoding experiment
(Figure 4)

number of features nf 40 receiver operating
characteristic

number of codes nc 30 receiver operating
characteristic

detection threshold kT 13 features receiver operating
characteristic

Table 1: Settings of parameters (magic numbers)

