

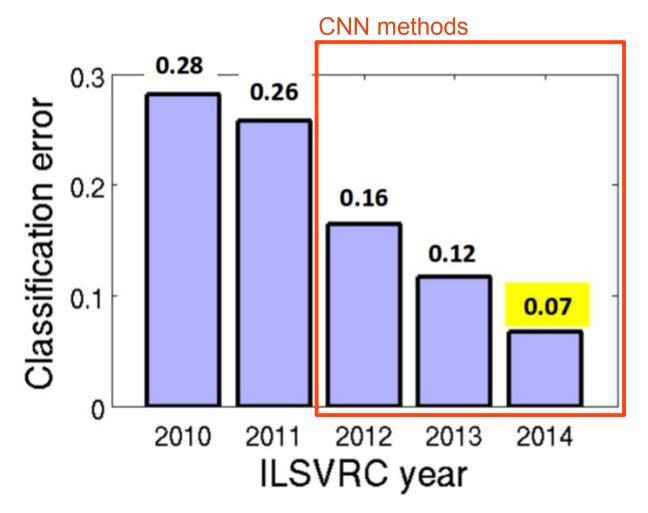
Object Detectors Emerge in Deep Scene CNNs

Bolei Zhou, Aditya Khosla, Agata Lapedriza, Aude Oliva, Antonio Torralba

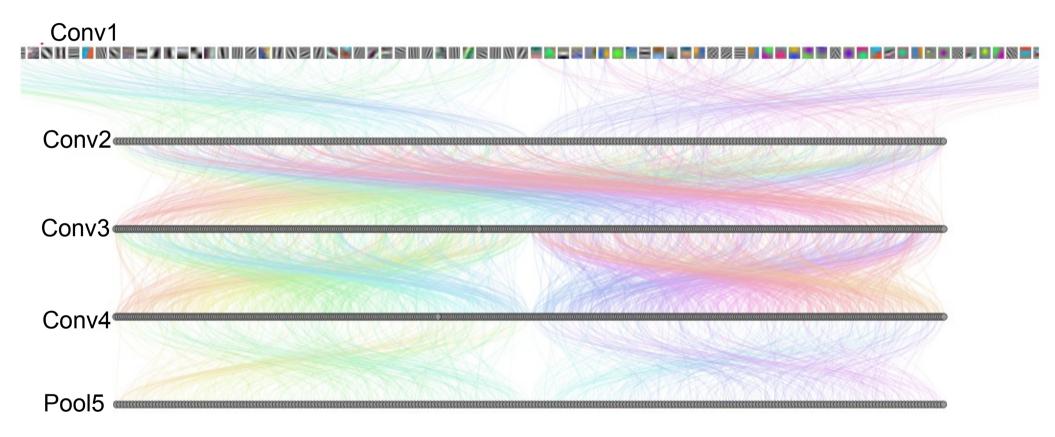
Massachusetts Institute of Technology

CNN for Object Recognition

Large-scale image classification result on ImageNet



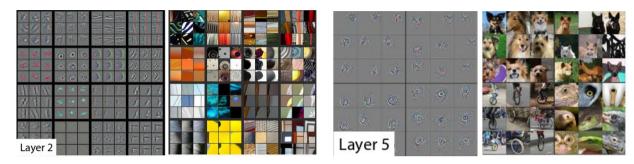
How Objects are Represented in CNN?



DrawCNN: visualizing the units' connections

How Objects are Represented in CNN?

Deconvolution

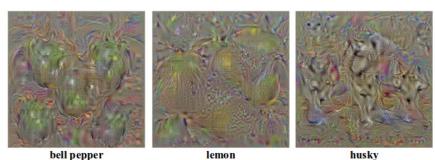


Zeiler, M. et al. Visualizing and Understanding Convolutional Networks, ECCV 2014.

Strong activation image

Girshick, R., Donahue, J., Darrell, T., Malik, J.: Rich feature hierarchies for accu-rate object detection and semantic segmentation. CVPR 2014

Back-propagation

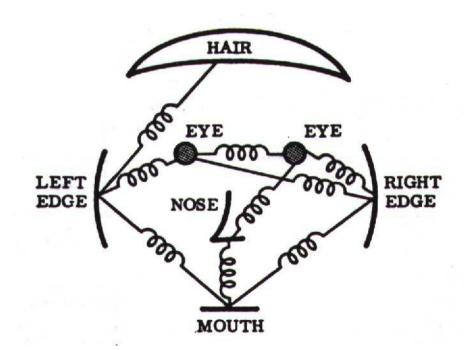


Simonyan, K. et al. Deep inside convolutional networks: Visualising image classification models and saliency maps. ICLR workshop, 2014

Object Representations in Computer Vision

Part-based models are used to represent objects and visual patterns.

- -Object as a set of parts
- -Relative locations between parts

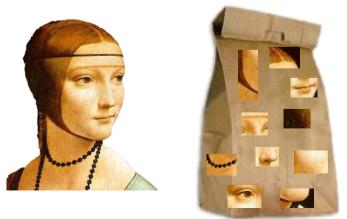


Object Representations in Computer Vision

Constellation model

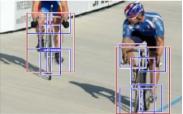
Weber, Welling & Perona (2000), Fergus, Perona & Zisserman (2003)

Bag-of-word model



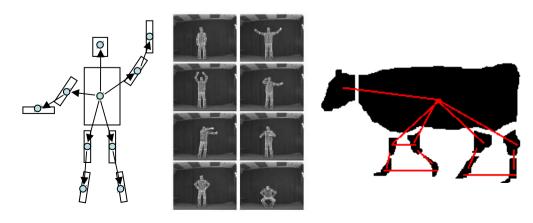
Lazebnik, Schmid & Ponce(2003), Fei-Fei Perona (2005)

Deformable Part model



P. Felzenszwalb, R. Girshick, D. McAllester, D. Ramanan (2010)

Class-specific graph model

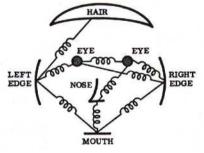


Kumar, Torr and Zisserman (2005), Felzenszwalb & Huttenlocher (2005)

Learning to Recognize Objects

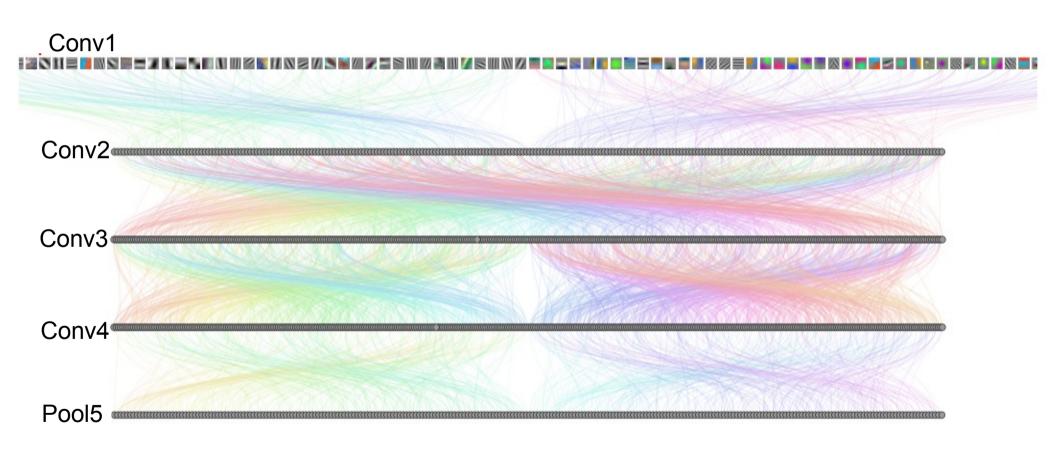
Possible internal representations:

- Object parts
- Textures
- Attributes



How Objects are Represented in CNN?

CNN uses distributed code to represent objects.



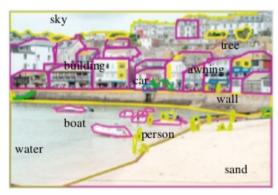
Scene Recognition

Given an image, predict which place we are in.

Learning to Recognize Scenes

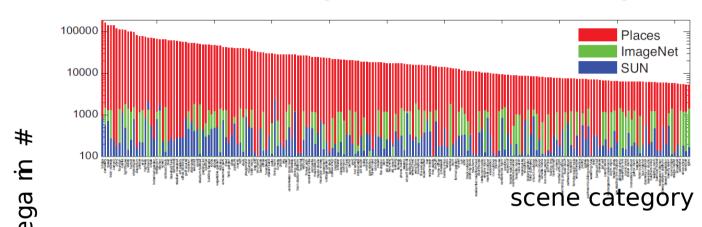
Possible internal representations:

- Objects (scene parts?)
- Scene attributes
- Object parts
- Textures



CNN for Scene Recognition

Places Database: 7 million images from 400 scene categories



Places-6NN: AlexNet CNN on 2.5 million images from 205 scene categories.

	Places 205	SUN 205
Places-CNN	50.0%	66.2%
ImageNet CNN feature+SVM	40.8%	49.6%

Scene Recognition Demo: 78% top-5 recognition accuracy in the wild

Predictions:

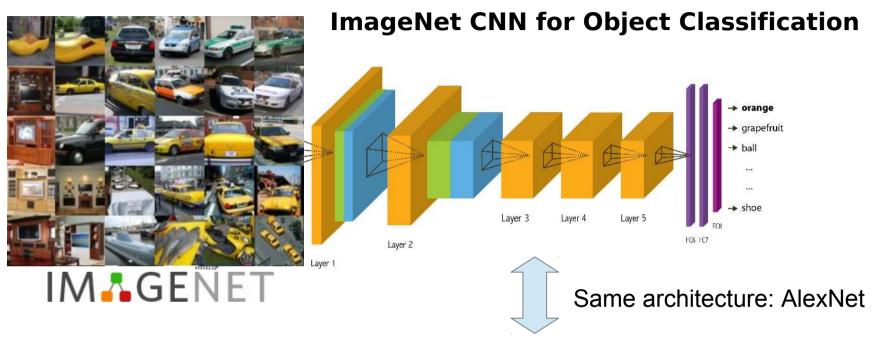
- type: indoor
- semantic categories:
 coffee_shop:0.47, restaurant:0.17,
 coffeterie:0.08, food_court:0.06

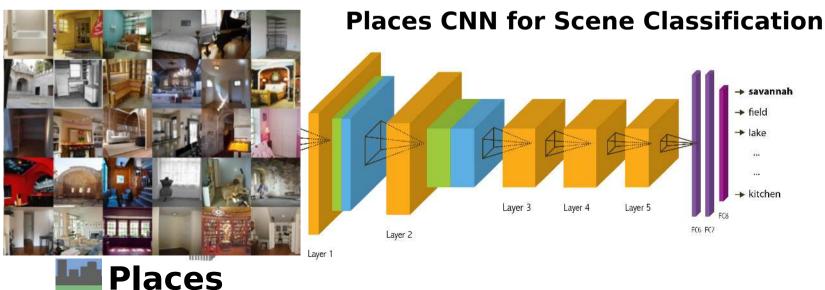
Predictions:

- type: indoor
- semantic categories: conference_center:0.51, auditorium:0.12, office:0.08,

http://places.csail.mit.edu

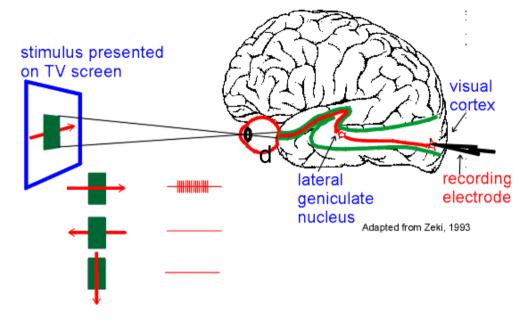
ImageNet CNN and Places CNN



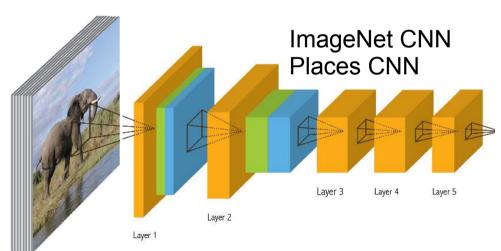


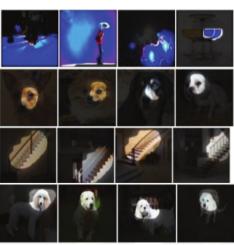
Data-Driven Approach to Study CNN

Neuroscientists study brain



200,000 image stimuli of objects and scene categories (ImageNet TestSet+SUN database)

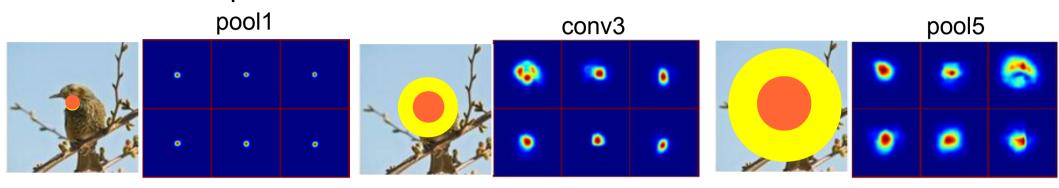




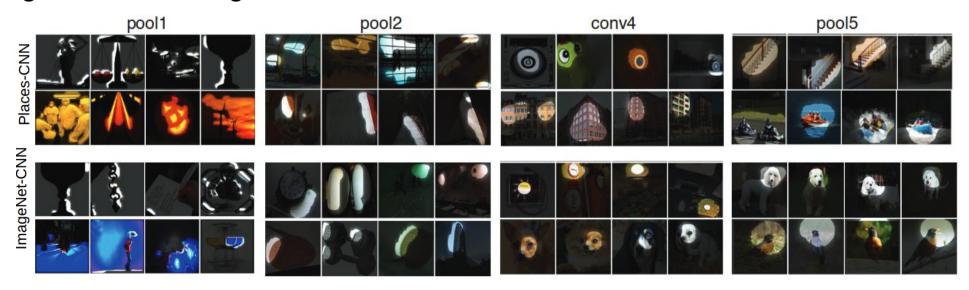
Estimating the Receptive Fields

Estimated receptive fields

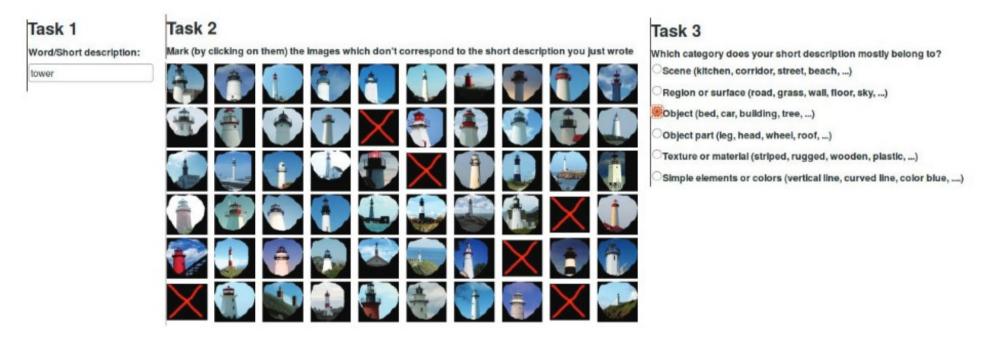
Actual size of RF is much smaller than the theoretic size



Segmentation using the RF of Units



Top ranked segmented images are cropped and sent to Amazon Turk for annotation.



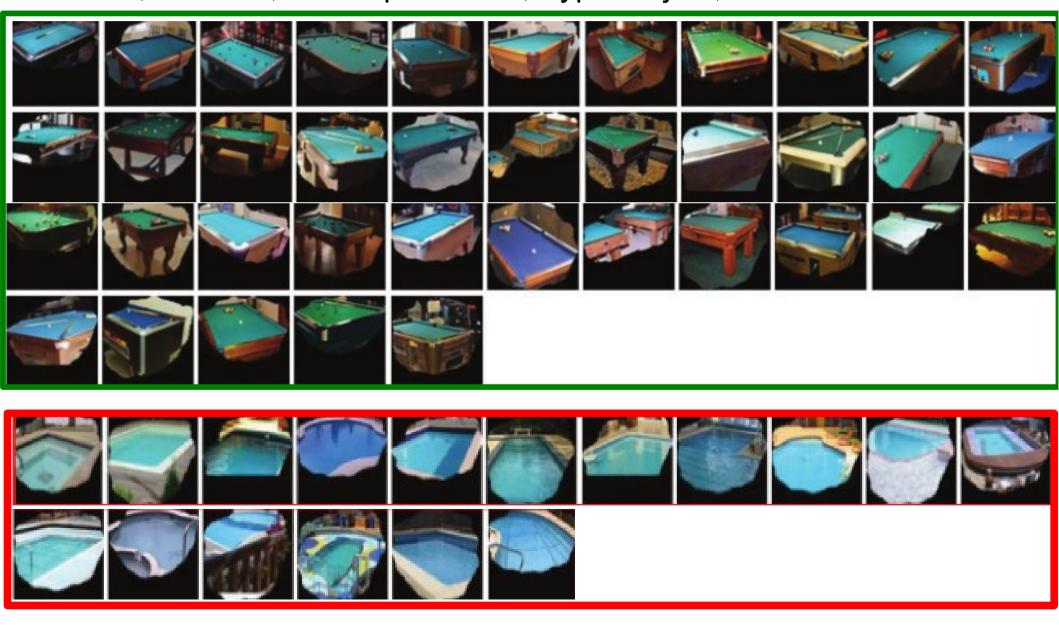
Pool5, unit 76; Label: ocean; Type: scene; Precision: 93%

Pool5, unit 13; Label: Lamps; Type: object; Precision: 84%



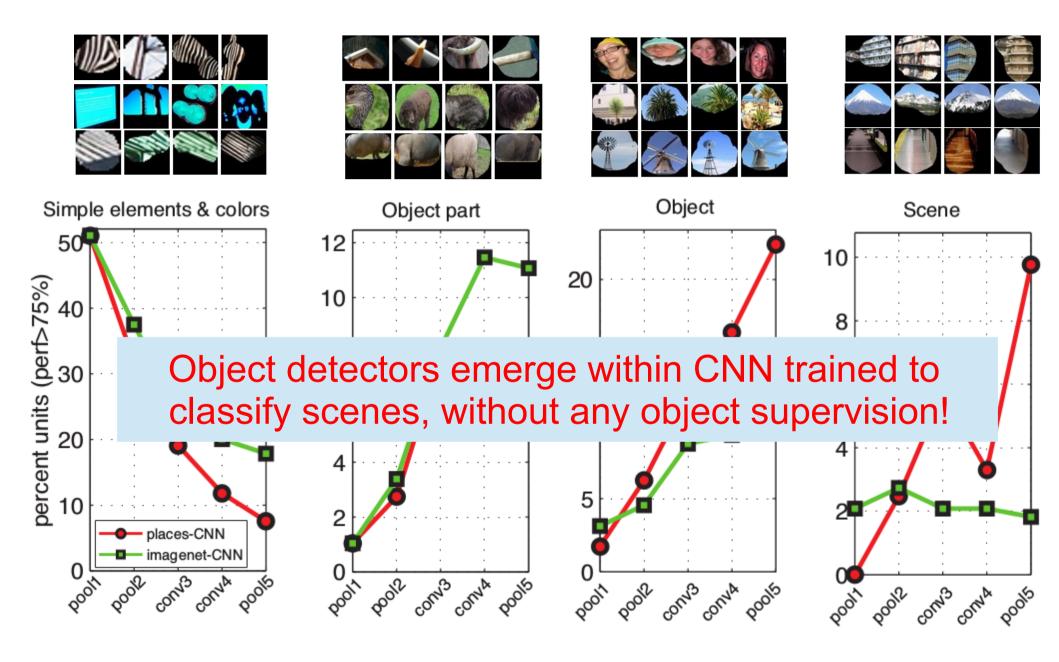
Pool5, unit 77; Label:legs; Type: object part; Precision: 96%

Pool5, unit 112; Label: pool table; Type: object; Precision: 70%



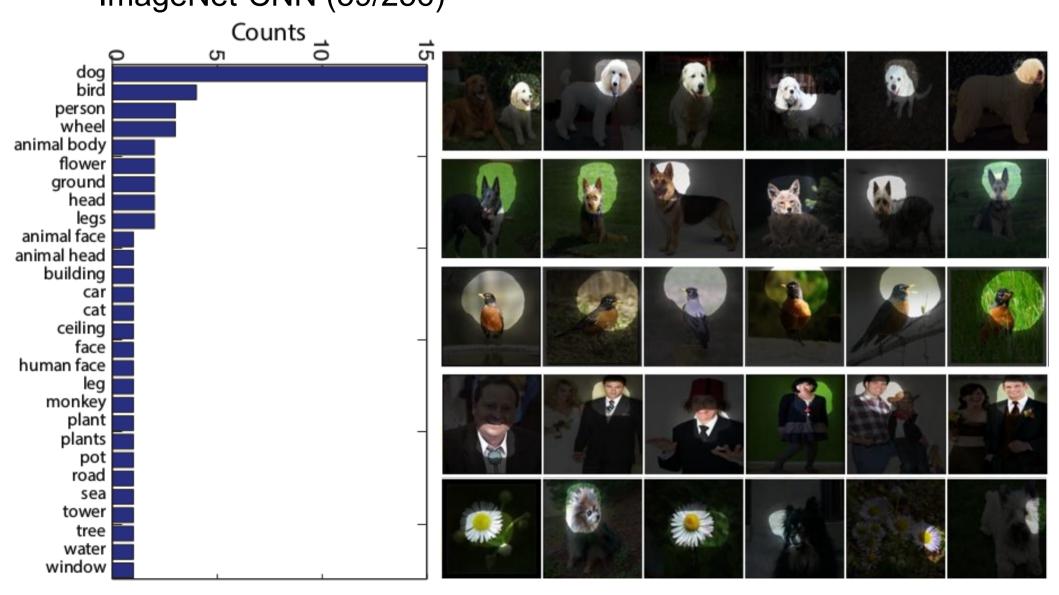
Pool5, unit 22; Label: dinner table; Type: scene; Precision: 60%

Distribution of Semantic Types at Each Layer



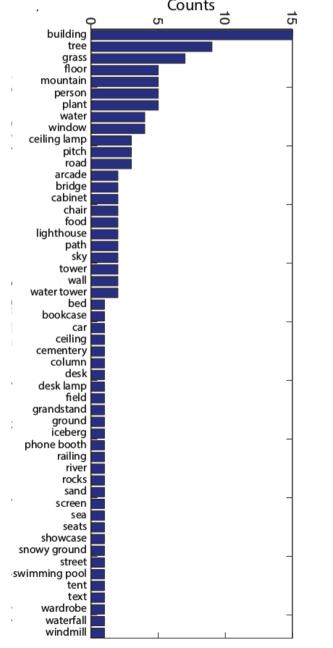
Histogram of Emerged Objects in Pool5

ImageNet-CNN (59/256)



Histogram of Emerged Objects in Pool5

Places-CNN (151/256)





Buildings

56) building

120) arcade

8) bridge

123) building

119) building

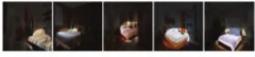
9) lighthouse

Furniture

18) billard table

155) bookcase

116) bed



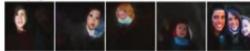
38) cabinet

85) chair

People

3) person

49) person



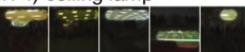
138) person

100) person

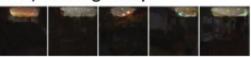
Lighting

55) ceiling lamp

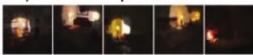
174) ceiling lamp



223) ceiling lamp



13) desk lamp



Nature

195) grass

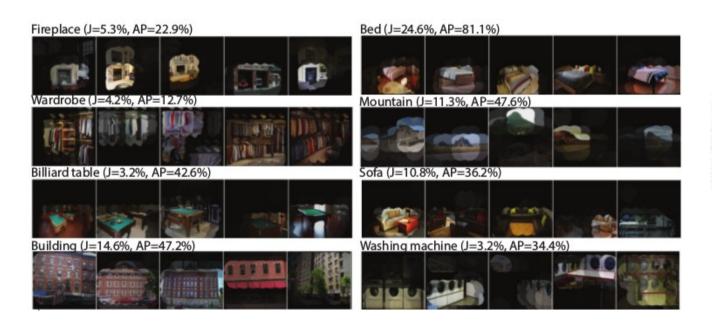
89) iceberg

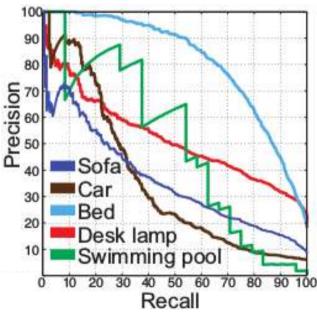
140) mountain

159) sand

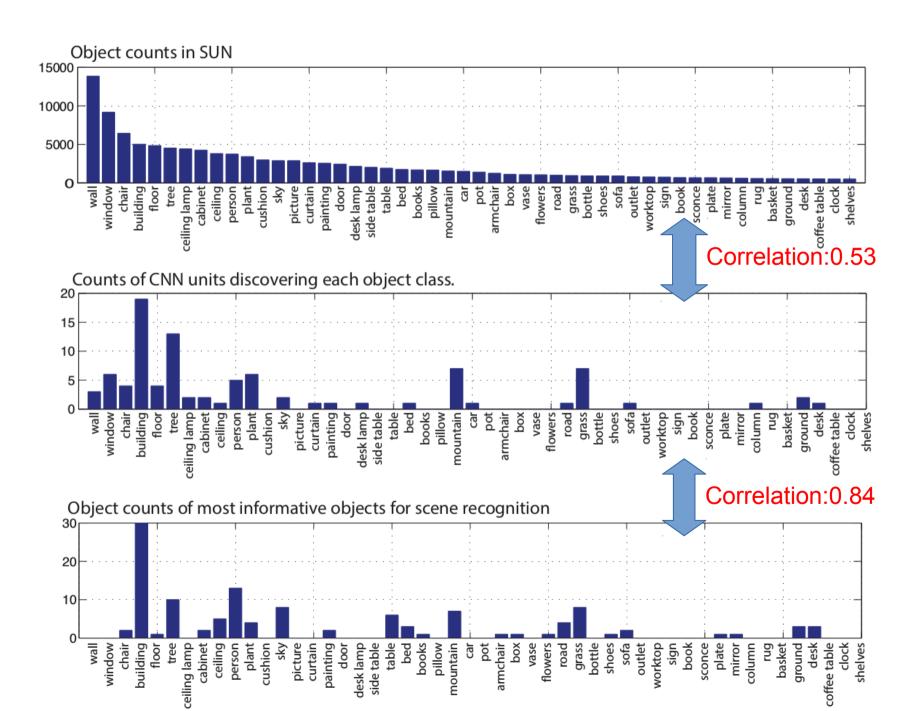
Evaluation on SUN Database

Evaluate the performance of the emerged object detectors





Evaluation on SUN Database



Conclusion

We show that object detectors emerge inside a CNN trained to classify scenes, without any object supervision.

Object detectors for free!

Places database, Places CNN, and unit annotations could be downloaded at

http://places.csail.mit.edu