
Object Disappearance for Object Discovery

Julian Mason and Bhaskara Marthi and Ronald Parr

Abstract— A useful capability for a mobile robot is the
ability to recognize the objects in its environment that move
and change (as distinct from background objects, which are
largely stationary). This ability can improve the accuracy and
reliability of localization and mapping, enhance the ability
of the robot to interact with its environment, and facilitate
applications such as inventory management and theft detection.
Rather than viewing this task as a difficult application of object
recognition methods from computer vision, this work is in line
with a recent trend in the community towards unsupervised
object discovery and tracking that exploits the fundamentally
temporal nature of the data acquired by a robot. Unlike
earlier approaches, which relied heavily upon computationally
intensive techniques from mapping and computer vision, our
approach combines visual features and RGB-D data in a simple
and effective way to segment objects from robot sensory data.
We then use a Dirichlet process to cluster and recognize objects.
The performance of our approach is demonstrated in several
test domains.

I. INTRODUCTION

Objects are a fundamental primitive in robotics. The ability

to recognize, track, and map objects and their locations

is a requirement for a wide variety of useful robotic ca-

pabilities. However, object detection and recognition are

difficult, open problems. Ideally, one might hope to provide

a robot with high-resolution 3D object models. However,

such models must be painstakingly built using a turntable

or other specialized sensing equipment. Even if this were

practical, the underlying assumption that the objects a robot

might encounter could be thoroughly cataloged in advance is

questionable at best. In a general environment, maintaining a

database of “all possible objects” is intractable: objects may

be introduced or removed at any time, objects may change

shape, and new objects have to be individually modeled.

We develop an approach to object perception based on

the principle of object discovery. The fundamental problem

in object discovery is to segment incoming sensor readings

into “object” and “non-object” segments. Observing that

general environments are fundamentally dynamic, we assume

that objects are things that move. By detecting that objects

have moved, we allow the environment to provide us with

a segmentation directly. Intuitively, if we can detect that

something has disappeared, whatever used to be there must

have been an object. We then send these segments to a

Julian Mason and Ronald Parr are with the Duke University Depart-
ment of Computer Science. 308 Research Drive, Durham NC 27708.
{mac, parr}@cs.duke.edu

Bhaskara Marthi is with Willow Garage. 68 Willow Road, Menlo Park
CA 94025. bhaskara@willowgarage.com

This work supported by Willow Garage and NSF CAREER award IIS-
0546709. Any opinions, findings, conclusions, or recommendations are those
of the authors only.

tracking system that performs data association through time,

and over object appearances at various locations. The data

association is done by inference in a probabilistic model

based on a Dirichlet process.

Our system, from segmentation to data association, is

entirely unsupervised, and runs on a standard mobile robotic

platform. We demonstrate it on three datasets of increasing

size and complexity, and empirically evaluate the results.

The contributions of this work are threefold: a sparse

feature map for efficient detection of object disappearance, an

accurate depth-based object segmentation system leveraging

the sparse feature map, and a visual-word-based probabilistic

model for object appearances in different locations that

allows accurate data association across time and space.

All of the code and data used in this work are publicly

available [1].

II. PRIOR WORK

The idea that the capacity of an object to move is inherent

to its status as an object is (at least) decades old; the classic

work of Gibson [2] termed this detachability. More recently,

Biswas et al. [3], Anguelov et al. [4] and Sanders et al. [5]

worked in this area. These early papers provide examples of

two common approaches to this problem: scene differencing

and live motion. Scene differencing approaches construct

several static maps of an environment, with a period of time

in between. Changes can be detected by comparing two or

more such maps; these changes can then be grouped into

objects. Biswas et al. work with two-dimensional occupancy

grids built using sonar, and perform EM to infer object

models. Anguelov et al. extend this to include object class

templates. Like our work, these approaches assume that the

world is static in the short term. Kang et al. [6] infer a

“background” from a collection of unordered images. In

contrast, live video approaches observe the world changing

moment-to-moment, and rely on these direct motion cues.

Sanders et al. use several (fixed) cameras, and analyze the

time-series of each image pixel to group pixels according

to how they change. By operating in pixel space, this

work limits itself to a fixed-camera system. Modayil and

Kuipers [7] use a 2D occupancy map to classify sensor

readings as “static” or “dynamic”; dynamic readings are then

clustered and tracked. Southey and Little [8] provide another

example of a live-video system, combining stereo vision with

optical flow techniques to segment manipulable objects in

video, and visual features to group these segments. Ayvaci

and Soatto [9] use motion in video to find occlusion cues

which are integrated to partition the image into depth layers.

Sivic et al. [10] do frame-to-frame tracking in video, and



aggregate groups of points that move together to segment

objects. The tracked frames become exemplars of the object’s

appearance, allowing object-level queries.

A state-of-the-art technique in scene differencing is that of

Herbst et al. [11], [12], which takes the difference between

three-dimensional maps built with an RGB-D sensor. By

working directly with a 3D representation, their system gen-

erates 3D models directly, and shows excellent performance.

However, their technique requires the precise alignment of

very high quality maps. Although this can be done auto-

matically, it limits their technique to environments where

extremely accurate dense map registration is possible; they

demonstrate their technique on tabletop-sized examples. The

computational cost is also proportional to the size of the

environment. In contrast, our sparse map allows us to scale

to large environments; we show examples of our method

associating segments across several appearances in a large

(1600 m2) environment. A direct quantitative comparison

with this work is impossible, as neither an implementation

of their technique nor their input data are publicly available.

Object discovery can also be thought of as a cosegmen-

tation problem (see, e.g., Rother et al. [13] and Vicente et

al. [14]). In cosegmentation, the information shared between

groups of images is leveraged to improve segmentation.

Importantly, cosegmentation algorithms take as input pictures

of objects, where the task is finding the object in the picture

rather than inferring if an object is present at all.

Sudderth et al. [15] present a Dirichlet process-based

generative model for a parts-based objects and backgrounds,

and demonstrate impressive performance on scenes of streets

and offices. However, their data are normalized so that

objects in the same class appear at roughly the same scale

in each image, and they require labeled training data.

Finally, Kang et al. [16] present a technique for object dis-

covery in image sets. They use repeated oversegmentations to

generate a large pool of segments; these are then clustered

according to color, visual features, and shape descriptors.

Like this work, they require that objects move to be correctly

discovered. Kang’s focus on unordered RGB image sets

makes the technique general, but the lack of depth data

or a localized sensor greatly complicates their algorithm.

Again, a direct quantitative comparison is impossible as

implementation is not publicly available, and the available

data are RGB-only.

III. BACKGROUND

Our data association algorithm is based on Dirichlet pro-

cesses (DPs) [17], and we provide a brief overview here. DPs

are probability distributions suited for clustering problems in

which the number of clusters is not known in advance. A DP

has two parameters: a base measure G0, and a concentration

parameter (or new cluster rate) α > 0. A sample from the

DP is itself a probability distribution over the same space as

the base measure.

The probabilistic model used in clustering problems is

actually an extension known as the Dirichlet process mix-

ture. Intuitively, each cluster will correspond to a particular

probability distribution from which the assigned elements

are drawn. For example, if the elements to be clustered

are from a finite set, each cluster may have a multinomial

distribution over this set. The base measure G0 is a prior

distribution over these cluster distributions. In the example,

the base measure may be a Dirichlet prior over the set of

multinomial distributions on the given set. Drawing from the

Dirichlet distribution then yields a specific countably infinite

mixture G of multinomial distributions. Each observed el-

ement is then generated by sampling a mixture component

from G, then sampling from that component’s multinomial

distribution. Two elements are in the same cluster if they

were generated by the same mixture component.

Given a set of observed elements to be clustered, the

unobserved quantities are the DP sample G, and the identity

of the cluster from which each element was drawn. Although

G has infinitely many mixture components, in practice we

only care about how the observed items are partitioned into

clusters. There exist several inference algorithms [18] based

on Markov-chain Monte Carlo (MCMC) that will generate

approximately i.i.d. sample clusterings from the posterior

distribution conditional on the observations. We may then

use these samples to answer any inferential questions about

the clustering, for example by picking the most likely one.

IV. PROBLEM

We wish to discover and track objects in a general envi-

ronment with a mobile robot. Robot localization is a well-

studied problem; in indoor environments with good sensors,

it is effectively solved by AMCL [19]. Furthermore, the

release of the Microsoft Kinect has made available high-

resolution RGB-D data. Taking these together, a modern

robot can reasonably produce localized RGB-D data. Our

particular robot is a Willow Garage PR2, but our technique

requires only a localized RGB-D sensor.

Our driving premise is that objects move (or are moved)

while the robot isn’t looking. We seek to detect when

movement has occurred; if features formerly present in the

world have disappeared, something in the space occupied by

the features was probably an object. Detecting that features

have disappeared is easier than detecting when space is

vacated or newly occupied, as these require storing 3D metric

information about the entire world just in case it becomes

relevant to object discovery. Octree-based techniques like

OctoMap [20] can be used for this, but these dense tech-

niques are extremely sensitive to small localization errors,

particularly at the resolutions necessary to detect objects.

Rather than use a dense technique, we focus on using feature

disappearance to cue object discovery, though our approach

could be easily extended to use feature appearances as well

(see Section X). To facilitate efficient discovery of features

which have disappeared, we use a sparse representation: a

map of timestamped visual features, posed in 3D space. See

Section V for details.

A genuinely sparse feature map cannot label every pixel

in a sensor reading as “object” or “non-object”. Here, we

can leverage the depth data provided by our sensor. Rather



(a) An image, with the features in M1 drawn on. (b) A later observation of the same place, with M4 drawn on.

Fig. 1: An example of detecting visual feature disappearance (Section V). Note that some feature clusters are not on objects;

however, they are on planes (or on connected components with too few points), and are therefore filtered out. Best viewed

in color.

than segmenting in RGB, we can use the points which have

disappeared to seed a segmentation analysis in the depth

image. The segmenter is detailed in Section VI.

Given these segments, we must now perform a tracking

step, to associate segments in both time (“I’m seeing this

object again”) and in space (“I’m now seeing this object

in a different location.”) We take the common (see, e.g.,

Sivic et al. [10] and Kang et al. [16]) approach of using

a bag of visual words. Because our segmenter uses full-

fledged features, not visual just visual words, we can learn

our words from only those features that appear on objects.

This opportunity to tune our tracker to the specific objects

in our scene is an important benefit of our approach. See

Section VII for details.

Finally, we use a DP model over these visual words to

perform tracking and data association. Our output is a set

of clustered RGB-D segments. These could be the input, for

example, to a 3-D reconstruction system. Data association is

detailed in Section VIII.

V. VISUAL FEATURES

To detect that something has disappeared (and is therefore

an object), one must know that there was something there in

the first place. Rather than build a dense 3D map like that

of Herbst et al. [11], [12], we build a sparse map of visual

features projected into 3D. Recall that our goal is to detect

object disappearances; given a new RGB-D frame pair, the

question we wish to answer is “Which feature points should

have been observed, but were not?” Such points are then

treated as candidate on-object points.

The use of an RGB-D camera makes the geometric part

of this question straightforward. Given the current sparse

feature map M1 and the robot’s current localization estimate,

we can project the points into RGB pixel coordinates. The

camera z-coordinate (out of the image plane) can then be

checked against the depth image to see if the point is

occluded in this frame. This analysis leaves us with a set

of points M2 that should have been observed in this frame.

Next, we must determine which points were actually

observed. We compute visual features in the current RGB

frame, and project them into 3D. We define a spatial thresh-

old s and a descriptor-distance threshold d. A new feature f
is deemed to match a map feature m if f is within both the s
and d thresholds. Applying these thresholds to each element

of M2 gives us a set M3 of features that should have been

observed, but were not. These features are added to the map.

See Figure 1 for an example.

A feature map can be stored and used efficiently if it

is not populated too heavily with useless features. This is

a concern for most methods of generating visual features

since they can produce a large number of features per image,

but many of these may suffer from instability due to image

noise, camera motion, and (in our case) accidental occlusion

due to localization error. Because we use negative feature

detections as a cue for positive object detections, we wish

to avoid false negatives, even at the risk of false positives.

We introduce two techniques to prune our features. First,

we enforce temporal stability. We require that a feature be

observed (seen for the first time, or matched) for k frames

in a row before it is added to the map. This helps to filter

those features that are highly sensitive to image noise. We

also enforce temporal consistency on the matching side: to

count as a candidate, a feature must fail to match (that is, be

in M3) k times in a row; this helps to account for transient

misses due to image noise.

Secondly, we introduce the concept of a feature cluster.

Because features will be seen from several different view-

points, the same point in 3D space may generate a variety of

different feature descriptors. To account for this, our feature

clusters store several descriptors. The cost for a new feature

f to match against a cluster c is then the minimum of the



(a) The RGB image. The projected feature clusters (used to seed the flood-
filling operation) are drawn on in red.

(b) The depth image, scaled so that 2 m fills the range (per our depth
cutoff; see Section IX).

(c) The planes-and-edges mask. White indicates areas that will be masked
out of the image. Flood fill occurs within the black areas.

(d) The segments (false color). Seed points are drawn here as well.

Fig. 2: The stages of the segmentation algorithm (Section VI). Best viewed in color.

descriptor distance between f and any of the descriptors in

c. To update feature clusters, we introduce a second spatial

threshold, the integration threshold i. If f is within i of

c, we add f ’s descriptor to c’s set. Importantly, we do not

perform a descriptor-distance check first: the goal of a feature

cluster is to capture the variability of descriptor values due to

viewpoint; requiring a close descriptor match would defeat

this. Applying the temporal stability criteria to the features

in M3 gives us M4, which we pass as input to the segmenter.

As described, feature clusters will grow without bound

if a location steadily changes appearance during repeated

observations. This could be addressed by setting a maximum

cluster size, and timing out cluster members that are too old,

or have not been directly matched recently enough. Cluster

growth did not pose a problem in our experiments.

Our feature clusters draw some inspiration from the HOC

descriptor [21], which also seeks to handle viewpoint effects

in visual features.

In our experiments, we use the ORB descriptor [22]. We

set the spatial threshold s = 5 cm, the descriptor distance

threshold d = 150, the temporal stability threshold k = 5,

and the integration threshold i = 2 cm, and use the same

parameters for every experiment.

VI. SEGMENTER

When a set of candidate object points is identified, these

points are handed off to the segmenter. The job of the

segmenter is to discover the RGB-D data in an earlier frame

that corresponds to the missing object in the current frame.

This is achieved by going backwards in time to all frames

that contained the missing feature. For each such frame, a

segment in the depth image is extracted.

The segmenter relies on a simple assumption: objects must

be supported. In particular, we assume that objects must

rest on planes. This assumption throws out certain types of

objects (hanging overhead lamps, for example), but includes



nearly everything else. For example, the objects found by

Herbst et al. [11], [12] are all on tabletops. Similarly,

all but 10 of the 175 images in the ADL dataset from

Kang et al. [16] are of objects on large planes. This plane

assumption has also been used in the semantic mapping

literature, often to ease object recognition in controlled close-

range environments. See, e.g., Rusu et al. [23] and Trevor et

al. [24].

As input, our segmenter takes an image and the temporally

stable set M4 (Section V, Figure 2a). Working with the

corresponding depth image (Figure 2b) planes are extracted

using RANSAC, as implemented in PCL [25]. A mask is

formed using the pixels found to be on planes. This mask will

be used to separate the planes from the objects by subtracting

away the planes. Next, pixels of large depth discontinuity

(depth edges) are found, and added to the mask. The resulting

mask is shown in Figure 2c. Finally, we project the points

in M4 into the masked depth image and flood-fill outward

(from black to white in Figure 2c). The resulting connected

regions correspond to segments and can be used to extract

depth or color data for the objects, as shown in Figure 2d.

Very large connected components (larger than 0.7 m on any

side in our experiments) are filtered out, as are those that

contain fewer than three feature clusters.

The output of this step is a set of segments, represented

in pixel coordinates. We rely upon our DP object model to

determine whether segments correspond to the same physical

object. Performance is discussed in Section IX.

VII. VISUAL WORDS

During tracking, rather than working directly with feature

descriptors in our object model, we use a bag of words

approach, in which descriptors are quantized into visual

words [10]. This provides faster performance, and greater

robustness and generalization across different viewpoints

than working with raw features. We use a vocabulary of

words of size W (in our experiments W = 250). These

words are generated after segmentation, meaning that they

are tuned to the specific segments in our data.

For each segment, we first recompute ORB features for

that segment alone (the previously computed ORB features

for the frame covered the entire image, and therefore may

not have many features lying on the segment). Next, given

the ORB descriptors for all features on all segments in our

dataset, we apply K-means clustering in descriptor space to

get a set of centroids d1, . . . , dW (also in descriptor space).

Each feature descriptor on each segment is then replaced

with the closest centroid. If dw is the closest centroid to

descriptor d, then it is simply represented as the integer

w in the inference algorithm, since the only operation that

will be performed on the visual words is equality checking.

The output of this stage consists of the segments from the

previous stage, and the visual words for each segment.

VIII. DATA ASSOCIATION

The perception pipeline described thus far produces, for

each frame for which a group of features has disappeared,

some number of segments, each consisting of a set of visual

words and associated position (in the sensor frame). The

remaining task is to determine which of these segments

correspond to the same object. Even if segments are produced

from two consecutive frames, they may not be identical due

to noise in the color and depth images. When the robot and

objects have moved in the scene, the segments corresponding

to the same object will certainly differ due to changes in the

size of the object in the image and pose relative to the robot.

Given a history of observed segments, we aim to produce

a clustering or, more generally, a probability distribution

over clusterings, where clusters correspond to objects. Thus,

a clustering of a set of segments consists of a set of

hypothesized object IDs and, for each segment, the ID of

the object to which it belongs.

Clustering and data association are well-studied problems.

A challenge in our setting is that the segments being clustered

are complex, with varying dimensionality. Further, it is

challenging to define a notion of distance between clusters,

due to occlusions (not all visual words are observed) and due

to the fact that the absolute coordinates of the feature points

will change when the object moves.

We use a model based on DPs to approach the problem.

The base measure for the DP is a Dirichlet distribution

over the set of visual words {1, . . . ,W}. Therefore, each

mixture component of the DP corresponds to a multinomial

distribution drawn from this base measure. An observed

segment is generated by choosing a component based on

the DP, then sampling independent visual words from the

component’s multinomial distribution.

The mixture components of this DP model correspond

to underlying objects in the world; each has an associated

multinomial distribution over visual words, corresponding to

the features on the object. The observed elements are individ-

ual visual words. Our goal is simply to cluster the observed

segments; we assume more detailed modeling of the objects

will be done at a later stage. Note that the setting is slightly

different from the standard Dirichlet process mixture, in that

the visual words appearing on a given segment are assumed

to come from the same object (i.e., we assume at this stage

that the segmentation is correct).

Our algorithm will output a set of samples, each of which

is a clustering that assigns an object ID to each observed

segment. To determine a single best clustering given the

samples, we could simply take the most likely clustering,

but the samples are very high dimensional, and any given

sample occurs only a handful of times. Using the most likely

clustering therefore ignores much of the information in the

samples. We instead separately assign each segment to the

object ID it was most often associated with in the samples.

This estimator will not work for arbitrary sampling schemes,

because it depends on the specific values of the object ID

and is not permutation invariant. But it works well for our

Gibbs sampler described below, in which it is unlikely for

the IDs of all the segments corresponding to an object to

change simultaneously to a new value.

We use a version of the collapsed sampler described by



Dataset S M L

Hand segments 270 394 419
Auto segments 270 396 423
True positives 270 392 357
False positives 0 4 66
False negatives 0 2 51

Precision 100% 98.9% 84.4%
Recall 100% 99.4% 87.5%

TABLE I: Segmenter performance (Section IX-A).

Neal [18], modified to deal with the fact that observations

are individual visual words, but clustering is done at the

level of segments. In more detail, the algorithm maintains

samples of the form (x1, . . . , xM ) where M is the number of

segments. Each xm is an object ID, which we represent as a

positive integer. Initial samples may be generated in any way;

we use an initial sample (1, 2, . . . ,M). At each iteration,

the algorithm flips the mth component, where m repeatedly

sweeps over (1, . . . ,M). Flipping the mth component is

equivalent to assigning segment m to some existing object,

or to a new object. The probability of assigning segment m
to object c is proportional to:

W−m,c

∫
F (sm, φ)dH−m,c(φ)

where W−m,c is the number of visual words on segments

other than m currently assigned to c, H−m,c is the posterior

distribution over multinomial distribution φ based on the

prior Dirichlet distribution G0 and observations of these

visual words, and F is the likelihood of the words in segment

sm given φ. The probability of assigning m to a new object

(not assigned to any other segments) is proportional to:

α

∫
F (sm, φ)dG0(φ)

where α is the parameter to the DP (we use α = 5.0 in

our experiments). The above quantities are computed for all

existing object IDs and the new object ID, then normalized.

We incorporate various optimizations to perform sampling

efficiently. The main idea is that the various quantities used

in sampling can be updated incrementally with the sample.

In particular, we maintain a reverse mapping from cluster ID

to segments belonging to it, as well as, for each cluster, the

current posterior Dirichlet distribution for that cluster given

all the segments currently assigned to it. This allows our

sampler to perform several thousand flips per second.

IX. PERFORMANCE

We validate the performance of our system on three

datasets of increasing size and complexity. As noted before,

we require only a localized RGB-D camera; in our mobile

datasets, this is a Microsoft Kinect mounted atop a Willow

Garage PR2, capturing RGB frames at 1280×960 and depth

frames at 640 × 480, both at 5 Hz. The depth images are

limited to a range of 2 m, to minimize range errors from

the Kinect. Frames during which the robot is moving too

quickly are filtered out to minimize visual feature errors due

to motion blur. However, they are included in the posted

data [1]. The datasets are called:

Dataset S M L K-means on L

Unique objects 2 4 7 . . .
Auto segments 270 396 423 . . .

Invalid segments 0 4 36 . . .
Precision 100% 100% 86.2% 68.9%

Recall 100% 100% 72.2% 59.9%

TABLE II: Tracker performance (Section IX-B), and com-

pared to a K-means baseline on the large dataset.

• Small: A fixed-camera example, as a sanity check. The

dataset consists of 101 frames of a static, empty scene,

followed by 135 frames in which two objects have been

added, and then 114 frames in which the objects have

been removed. Example images can be seen in Figure 3.

The hand-segmentation results in 270 segments, and two

unique objects.

• Medium: A dataset taken from a mobile robot navigat-

ing in an office environment. The robot observes a table

(with objects) and then looks away while the objects are

removed, and observes the table again. The robot then

travels roughly 18 m, and repeats this process with a

counter that contains the same objects. The same objects

were used in both places to test data association across

locations (with commensurate changes in lighting, etc.)

There are four unique objects, 394 segments found by

hand, and 484 total frames. Example images can be seen

in Figure 4.

• Large: A dataset that ranges over several rooms of a 40
m × 40 m office environment, for a total distance of

181.5 m. There are two passes over this environment. In

the first pass, the robot observes several objects in each

room. In the second pass, all the objects are removed.

There are a total of seven unique objects, 419 segments

found by hand, and 397 frames. The frame count is

lower than the medium dataset because the robot was

not allowed to linger as long in any location. Example

images can be seen in Figure 5.

All three datasets and their hand segmentations are pub-

licly available [1].

A. Segmenter Performance

To provide a baseline against which to compare our

segmenter, we hand-segmented each dataset. For every occur-

rence of an object in our data, we manually find the bounding

rectangle and assign a label according to the object name.

Our automatic segmentations are not, in general, rectangular

(or even convex). To compute the overlap between a hand

segmentation h and an automatic segmentation a, we first

find the bounding rectangle r of a. We then declare h and

a equal if Area(h ∩ r) ≥ 0.5 · Area(r) and Area(h ∩ r) ≥
0.5 ·Area(h). This 50-50 overlap criterion is common; Kang

et al. [16] use it (for non-rectangular segments), for example.

We can then compute precision and recall scores for each

dataset. Table I shows the results.

B. Data Association

Given the output from the segmentation, we ran the Gibbs

sampling algorithm described in Section VIII on each of the



(a) An image from before the objects appear. (b) An image when the objects are visible. (c) An image with the segmentations drawn on.

Fig. 3: Example images from the small dataset (Section IX). The abrupt change in lighting between (a) and (b) is from the

Kinect’s automatic gain. The scene after the objects are removed is equivalent to (a), so is not shown. Image (c) shows a

segmentation. False-color pixels denote the segmentation results; thick boxes denote the bounding rectangle of the segment.

Thin boxes denote the hand segmentation.

(a) An example observation of the
table, with objects.

(b) An example observation of the
table, without objects.

(c) An example observation of the
counter, with objects.

(d) An example observation of the
counter, without objects. (The objects
seen here are never seen to move, and
so are not detected by our system.)

Fig. 4: Examples from the medium dataset (Section IX). The four unique objects seen to move in this dataset are all visible

in (a).

(a) The first of the four places inves-
tigated.

(b) The second of the four places
investigated.

(c) The third of the four places inves-
tigated.

(d) The fourth of the four places
investigated.

Fig. 5: Examples from the large dataset (Section IX). All seven unique objects can be seen. Some objects appear in several

locations; others, only one. All four places were also seen without objects (not shown).

datasets. The sampler was run for 5000 scans over the set

of segments, where each scan involves flipping each of the

segment object IDs in turn.

Given the clustering output, we first label as “invalid”

those segments which do not intersect an actual object. This

is slightly different from the overlap criterion used for our

analysis of the segmenter; we want to be able to track partial

objects (for example, when an object is partway out of the

field of view) even when the segmenter fails. We then define:

• TP (true positives) is the number of pairs of (valid)

segments (i, j) such that i and j come from the same

object in reality, and are in the same cluster;

• FP (false positives) is the number of pairs such that i
and j do not come from the same object but are in the

same cluster;

• FN (false negatives) is the number of pairs such that

i and j come from the same object but are not in the

same cluster.



We then report, for each dataset, the precision TP/(TP +
FP ) and recall TP/TP+FN . For a baseline, we compared

our results on the large dataset against K-means clustering.

Treating each segment’s (normalized) vector of visual word

counts as a multinomial distribution, we clustered according

to total variation distance. Unlike our algorithms, K-means

was provided with the true cluster count (seven). Results are

shown in Table II.

Model parameters were tuned by searching over a range of

values jointly for α and θ (the parameter for the symmetric

Dirichlet base measure); the parameter values used in the

experiments were α = 9.0 and θ = 100.0. We also

performed a sensitivity analysis around the chosen parameter

values, allowing each parameter to vary by up to 40% in

either direction. Overall performance (summed precision and

recall) varied by at most 15% over this range.

We note two extreme cases for comparison, assuming n
objects that appear l times in each of k locations. First, an

algorithm that simply clustered all segments together would

have precision 1/n and recall 1, while an algorithm that

matched instances of an object within locations but not across

would have precision 1 and recall 1/k. For example, on the

large dataset, where each object appears in ≈ 3 locations,

baseline 1 would have precision 0.14 and recall 1.0, while

baseline 2 would have precision 1.0 and recall 0.33.

X. CONCLUSIONS AND FUTURE WORK

We have presented a simple and effective method for

detecting objects in RGB-D data streams of the type that

would be collected by a mobile robot. Unlike previous

approaches, our method does not rely upon highly accurate

3D maps and does not use computationally intensive image

processing techniques. Our method uses the disappearance

of visual features as a cue to construct segments, which are

then associated across space and time using a DP object

model that effectively clusters segments into objects. We

demonstrate the performance of this system across several

domains with varying numbers of objects.

Currently, we detect only object disappearances. However,

detecting appearances is a straightforward extension. Con-

sider the lifespan of disappearing feature cluster: at some

time t it is stably visible, and at some later time t′ it is

stably missing. To detect object appearance, we need only

detect those clusters which are stably visible at t′ and stably

invisible at t; that is, we need to run the identical analysis,

but backwards through time, not forwards.

While the bag of words model of objects appears to

be sufficient for object discovery, it does not exploit the

3D data contained in the segments. This data could be

used for even more accurate object detection by helping

to disambiguate similar objects. It could also be used to

build 3D models of objects, thus enabling the completely

unsupervised construction of an object model database.

REFERENCES

[1] “Accompanying data, software, and code.” http://ros.org/wiki/Papers/
IROS2012 Mason Marthi Parr.

[2] J. Gibson, The Ecological Approach to Visual Perception. Lawrence
Erlbaum, 1986.

[3] R. Biswas, B. Limketkai, S. Sanner, and S. Thrun, “Towards Object
Mapping in Non-Stationary Environments With Mobile Robots,” in
IEEE/RSJ International Conference on Intelligent Robots and Systems,
2002, pp. 1014–1019.

[4] D. Anguelov, R. Biswas, D. Koller, B. Limketkai, S. Sanner, and
S. Thrun, “Learning Hierarchical Object Maps of Non-Stationary
Environments With Mobile Robots,” in Proceedings of the Conference

on Uncertainty in Artificial Intelligence, 2002, pp. 10–17.
[5] B. C. S. Sanders, R. C. Nelson, and R. Sukthankar, “A Theory of

the Quasi-Static World,” in 16th International Conference on Pattern

Recognition, 2007, pp. 1–6.
[6] H. Kang, A. A. Efros, M. Hebert, and T. Kanade, “Image Composi-

tion for Object Pop-out,” IEEE Workshop on 3D Representation for

Recognition, 2009.
[7] J. Modayil and B. Kuipers, “Towards Bootstrap Learning for Object

Discovery,” AAAI Workshop on Anchoring Symbols to Sensor Data,
2004.

[8] T. Southey and J. J. Little, “Object Discovery through Motion,
Appearance and Shape,” AAAI Workshop on Cognitive Robotics, 2006.

[9] A. Ayvaci and S. Soatto, “Detachable Object Detection: Segmentation
and Depth Ordering from Short-Baseline Video,” in IEEE Transactions

on Pattern Analysis and Machine Intelligence, 2011.
[10] J. Sivic, F. Schaffalitzky, and A. Zisserman, “Object Level Grouping

for Video Shots,” International Journal of Computer Vision, pp. 189–
210, Jan. 2006.

[11] E. Herbst, P. Henry, X. Ren, and D. Fox, “Toward Object Discovery
and Modeling via 3-D Scene Comparison,” in IEEE International

Conference on Robotics and Automation, May 2011, pp. 2623–2629.
[12] E. Herbst, X. Ren, and D. Fox, “RGB-D Object Discovery via Multi-

Scene Analysis,” in IEEE/RSJ International Conference on Intelligent

Robots and Systems, Sept. 2011, pp. 1–7.
[13] C. Rother, T. Minka, A. Blake, and V. Kolmogorov, “Cosegmentation

of Image Pairs by Histogram Matching — Incorporating a Global
Constraint into MRFs,” in IEEE Conference on Computer Vision and

Pattern Recognition, 2006, pp. 993–1000.
[14] S. Vicente, V. Kolmogorov, and C. Rother, “Cosegmentation Revisited:

Models and Optimization,” in European Conference on Computer

Vision, Sept. 2010.
[15] E. B. Sudderth, A. Torralba, W. T. Freeman, and A. S. Willsky,

“Describing Visual Scenes using Transformed Objects and Parts,”
International Journal of Computer Vision, 2007.

[16] H. Kang, M. Hebert, and T. Kanade, “Discovering Object Instances
from Scenes of Daily Living,” in International Conference on Com-

puter Vision, Nov. 2011.
[17] T. S. Ferguson, “A Bayesian Analysis of Some Nonparametric Prob-

lems,” Annals of Statistics, 1973.
[18] R. M. Neal, “Markov Chain Sampling Methods for dirichlet Process

Mixture Models,” Journal of Computational and Graphical Statistics,
pp. 249–265, 2000.

[19] D. Fox, “Adapting the Sample Size in Particle Filters Through KLD-
Sampling,” The International Journal of Robotics Research, pp. 985–
1003, Dec. 2003.

[20] K. M. Wurm, A. Hornung, M. Bennewitz, C. Stachniss, and W. Bur-
gard, “OctoMap: A probabilistic, flexible, and compact 3D map
representation for robotic systems,” in Proc. of the ICRA 2010 Work-

shop on Best Practice in 3D Perception and Modeling for Mobile

Manipulation, May 2010.
[21] K. Pirker, M. Rüther, and H. Bischof, “Histogram of Oriented Cameras

— a New Descriptor for Visual Slam in Dynamic Environments,” in
Proceedings of British Machine Vision Conference, 2010.

[22] E. Rublee, V. Rabaud, K. Konolige, and G. Bradski, “ORB: an
Efficient Alternative to SIFT or SURF,” International Conference on

Computer Vision, pp. 1–8, Nov. 2011.
[23] R. B. Rusu, N. Blodow, Z. C. Marton, and M. Beetz, “Close-range

Scene Segmentation and Reconstruction of 3d Point Cloud Maps for
Mobile Manipulation in Domestic Environments,” IEEE/RSJ Interna-

tional Conference on Intelligent Robots and Systems, Oct. 2009.
[24] A. J. B. Trevor, J. G. R. III, C. Nieto-Granda, and H. I. Christensen,

“Tables, Counters, and Shelves: Semantic Mapping of Surfaces in 3D,”
IROS Workshop on Semantic Mapping, pp. 1–6, Sept. 2010.

[25] R. B. Rusu and S. Cousins, “3D is here: Point Cloud Library (PCL),”
in IEEE International Conference on Robotics and Automation, Shang-
hai, China, May 9-13 2011.

http://ros.org/wiki/Papers/IROS2012_Mason_Marthi_Parr
http://ros.org/wiki/Papers/IROS2012_Mason_Marthi_Parr

	Introduction
	Prior Work
	Background
	Problem
	Visual Features
	Segmenter
	Visual Words
	Data Association
	Performance
	Segmenter Performance
	Data Association

	Conclusions and Future Work
	References

