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Object Discovery in 3D scenes via Shape Analysis

Andrej Karpathy, Stephen Miller and Li Fei-Fei

Abstract— We present a method for discovering object mod-
els from 3D meshes of indoor environments. Our algorithm first
decomposes the scene into a set of candidate mesh segments
and then ranks each segment according to its ”objectness” –
a quality that distinguishes objects from clutter. To do so, we
propose five intrinsic shape measures: compactness, symmetry,
smoothness, and local and global convexity. We additionally
propose a recurrence measure, codifying the intuition that
frequently occurring geometries are more likely to correspond
to complete objects. We evaluate our method in both supervised
and unsupervised regimes on a dataset of 58 indoor scenes col-
lected using an Open Source implementation of Kinect Fusion
[1]. We show that our approach can reliably and efficiently
distinguish objects from clutter, with Average Precision score
of .92. We make our dataset available to the public.

I. INTRODUCTION

With the advent of cheap RGB-D sensors such as the

Microsoft Kinect, 3D data is quickly becoming ubiquitous.

This ease of collection has been complemented by rapid

advances in point cloud processing, registration, and surface

reconstruction. With tools such as Kinect Fusion [1], Kintin-

uous [2], and Open Source alternatives in the Point Cloud

Library [3], it is now possible to collect detailed 3D meshes

of entire scenes in real-time.

We are motivated by the need for algorithms that can

efficiently reason about objects found in meshes of indoor

environments. In particular, the focus of this work is on iden-

tifying portions of a scene that could correspond to objects

– subsets of the mesh which, for the purposes of semantic

understanding or robotic manipulation, function as a single

unit. One might think such a task would require a complete

understanding of the scene. However, we observe that certain

geometric properties are useful in discovering objects, even

when no semantic label is attached. For example, a mug on

a table can be identified as a candidate for being an object

without an explicit mug detector, based solely on the fact

that it is a roughly convex, symmetrical shape sticking out

from a surface. More generally, cleanly segmented objects

tend to be qualitatively distinct from noise. This quality is

often called objectness.

A system that is capable of automatically identifying a

set of ranked object hypotheses in 3D meshes has several

applications. First, being able to intelligently suggest object

bounding boxes could be used to reduce the time-consuming

object labeling process in 3D scenes. Additionally, a robot

with a mounted sensor could navigate its environment and

autonomously acquire a database of objects from its sur-

roundings without being explicitly presented every object
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Fig. 1. Results of our object discovery algorithm. Input is a 3D mesh
(top left). Our algorithm produces a ranked set of object hypotheses. We
highlight the top 5 objects discovered in this scene (top right).

one by one in a controlled fashion. Lastly, a large collection

of unlabeled objects could be used in a semi-supervised

setting to further improve performance of supervised 3D

object detection algorithms.

Our paper is structured as follows. We begin by reviewing

prior work in this area in Section II. In Section III we

describe a new dataset of 3D indoor scenes collected using

Kinect Fusion. In Section IV we introduce an efficient

method for extracting a ranked set of object hypotheses

from a scene mesh. Finally, in Section V we investigate

the performance of the method and highlight some of its

limitations.

II. RELATED WORK

A rich literature of object discovery algorithms exists for

2D images. A large portion of these methods focuses on

identifying visually similar regions across several images,

thereby identifying object classes [4], [5], [6], [7], [8],

[9], [10], [11], [12], [13]. Some approaches [14], [15] also

enforce geometric consistency in matches across images to

identify specific object instances. An extensive study of the

state-of-the-art techniques can be found in [16]. Finally, some

methods attempt to identify object-like regions in images

[17]. However, these approaches do not directly apply to our

data domain as they often make use of image-specific priors

in internet images. For example, objects often occurr in the

middle of the image and often stand out visually from their

immediate surroundings.



Fig. 2. Example scenes from our dataset.

Depth sensors have enabled approaches that reason about

3D shape of objects in a scene. [18], [19], [20] present

algorithms for discovering visual categories in laser scans. A

region-based approach is described in [21] that scores regions

in a single RGB-D image according to a number of different

shape and appearance cues. Recurrence has been used to

discover objects in laser scans using RANSAC alignment

[22]. Algorithms that identify objects based on changes in a

scene across time have also been proposed [23], [24].

Our work is different from prior contributions in several

respects. First, while prior work predominantly focuses on

single-view laser or RGB-D camera views, our input is

a 3D mesh that is constructed from hundreds of overlap-

ping viewpoints. Moreover, our focus is on realistic indoor

environments that include variations in the type of scene,

lighting conditions and the amount of clutter present. While

object recurrence has been shown to be a reliable cue, we

observe that many objects are relatively rare, and multiple,

identical instances are unlikely to be observed. And although

motion can greatly aid in the segmentation task, many

objects are unlikely to be moved on a day-to-day level.

Therefore, in addition to a scene recurrence measure that

leverages the intuitions of prior work, we propose a set of

novel shape measures that evaluate a candidate segment’s

shape to determine its objectness. Lastly, since our focus

is on potentially large collections of scenes, our method is

explicitly designed to be computationally efficient. Notably,

this requires that we process scenes online one by one and in

no particular order. While the core of the algorithm is fully

unsupervised, we show how incorporating some supervision

in form of object labels can further improve performance.

III. DATASET GATHERING

Our dataset consists of 58 scenes recorded in the depart-

ment offices, kitchens and printer rooms. We avoided manip-

ulating the scenes prior to recording , to faithfully capture the

complexities of the real world. As can be seen from Figure

2, our scenes can contain a significant amount of clutter

and variation. Additionally, we collected the dataset during 6

different recording sessions to include variations with respect

to lighting conditions (bright, dim, lights, natural light). In

total, there are 36 office desks, 7 bookshelves, 4 printer room

counters, 3 kitchens counters and 8 miscellaneous living

space scenes. A significant portion of the objects in these

scenes only occur once (roll of toilet paper, a chess set, a

banana, an orange, a bag of coffee, etc.), while some objects

occur frequently (keyboards, mice, telephones, staplers, etc.).

The raw data for every scene consists of RGB-D video

that ranges between 100 to 800 frames. During this time,

an ASUS Xtion PRO LIVE RGB-D sensor is slowly moved

around a part of a scene that contains structure. We use the

open source implementation of Kinect Fusion in the Point

Cloud Library [3] to process the videos into 3D colored

meshes with outward-facing normals. The final result are

3D colored meshes with approximately 400,000 polygons

and 200,000 vertices on average. These are available for

download on the project website. 1

IV. OBJECT DISCOVERY

We now describe in detail the steps of our discovery

algorithm, as depicted in Figure 3. Inspired by previous

work [21], [19], [22], our first step is to segment every

scene into a set of mesh segments. Then, we consider every

1data and code are available at http://cs.stanford.edu/∼karpathy/discovery



segment individually as an object hypothesis and evaluate its

objectness according to a set of shape measures. Finally, the

measures for each segment are combined to give a score for

its overall objectness.

A. Scene Segmentation

The goal of the segmentation step is to identify plausible

object candidates in a scene. To partition a scene mesh into

segments, we treat the mesh as a graph and use a graph-

based segmentation algorithm proposed by Felzenszwalb and

Huttenlocher [25]. We experimented with several alternatives

including normalized cuts and graph cuts, but settled on this

option because it produced good results at a low computa-

tional cost.

Edge weights. The segmentation algorithm requires an

edge weight to be specified between every pair of neighbor-

ing points on the mesh. A natural choice is to consider the dot

product between two normals ni, n j, but inspired by some

prior work on segmentation in 3D scenes [26], we found

that significantly more pleasing results can be obtained using

a local curvature-aware metric. Intuitively, locally concave

regions in the scene are more likely to correspond to object

boundaries, while locally convex regions are likely to belong

to an object and should not become segment boundaries.

More precisely, we define point p j to be relatively convex

to point pi if (p j − pi) · n j > 0, where n j is the normal at

point p j. This predicate evaluates to true if the normal at

p j points away from pi, which indicates that the surface is

curving outwards. We compute the final edge weight (which

can be interpreted as dissimilarity) as follows:

wi j =

{

(1−ni ·n j)
2 if (p j − pi) ·n j > 0

1−ni ·n j otherwise
(1)

Where the squared term serves to penalize convex edges

less than concave edges. Note that a perfectly planar patch

will produce edges with weight 0.

We experimented with incorporating color into the sim-

ilarity metric between points, but found that our attempts

consistently lowered the overall performance of the system.

We speculate that this could be due to significant lighting

variations present in our dataset. More generally, we do not

make use of color information throughout the algorithm, but

still display colored meshes in figures for ease of interpreta-

tion.

Segment post-processing. Following the original imple-

mentation of the graph segmentation algorithm, we place

a hard threshold on the minimum number of points msize

that are allowed to constitute a valid segment and greedily

merge any smaller segments to neighboring segments. We

use msize = 500, which with our data density corresponds to

a shape about half the size of a computer mouse.

Hard thresholding For added efficiency, we reject any

segments that are more than 1m in size, or less than 2cm

thin. In addition, denoting in decreasing order the eigenvalues

of the scatter matrix as λ0,λ1,λ2 we also reject segments

that are, in relative terms, too thin (
λ1
λ0

< 0.05), or too flat

(
λ2
λ0

< 0.001). These thresholds settings are conservative and

are not high enough to filter thin objects such as monitors.

Non-maximum suppression Inevitably, some segments

will be obtained multiple times across different settings of the

segmentation algorithm’s granularity parameter. We detect

such cases by computing intersection-over-union of vertices

belonging to all segments. If two segments are found to be

too similar (we use threshold of 0.7), we greedily retain the

more object-like segment, computed as the average of the

segment’s shape measures. We explain these measures next.

Fig. 4. Example of one of the segmentations of a scene. At this threshold,
some objects are correctly identified while others, such as the headphones
and monitor, are over-segmented.

B. Objectness measures

Every segment identified during the segmentation step is

evaluated using six objectness measures: five shape measures

that are evaluated on every segment individually and a shape

reccurrence measure. The recurrence measure is inspired by

prior work [23], [22] that has identified repeated presence

of a piece of geometry across space or time as evidence for

objectness. We now explain all measures in more detail.

Compactness rewards segments that contain structure in

compact volume. Intuitively, this captures the bias of most

objects to being approximately spherical. We quantify this

notion by computing the ratio of the total surface area of the

segment’s mesh to the surface area of its smallest bounding

sphere.

Symmetry. Objects often exhibit symmetries and their

role in visual perception has been explored in psychology

[27]. Since the computational complexity of our method is a

design consideration, we only consider evaluating reflective

symmetry along the three principal axes of each segment.

More specifically, we reflect the segment along a principal

axis and measure the overlap between the original segment

and its reflection. That is, denoting Λ = λx +λy +λz to be

the sum of eigenvalues of the scatter matrix, and rx,ry,rz to

be the extent of the segment along each of its principal axes,

we calculate the symmetry of a cloud C as:

Symmetry(C) = ∑
d∈{x,y,z}

λd

Λ
[(O(C,C−d ,rd)+O(C−d ,C,rd)]

where C−d denotes reflection of cloud C along direction d.

The one-sided overlap O between two clouds is calculated

by summing up the difference in the position and direction of

the normal from a point in one cloud to its nearest neighbor

in the other:



Fig. 3. A visualization of our algorithm: every 3D input mesh is over-segmented into a large collection of segments. Each segment is ranked using our
objectness measures and the final ranking is computed. The last image highlights the top 5 objects found in the example scene.

O(C1,C2,r)= ∑
i=1..|C1|

1

r
||pC1

i − p
C2

N(C2,pi)
||+β (1−n

C1
i ·nC2

N(C2,pi)
)

where pC
i denotes the i’th point in cloud C, similarly nC

i

is the normal at point pi and N(C, p) evaluates to the index

of the closest point to p in cloud C. Note that r is used to

normalize the distances based on the segment’s absolute size.

Finally, β is a tunable parameter that trades off the relative

importance of the two contributions (we use β = 0.2).

Smoothness stipulates that every point on the mesh should

have mass spread out uniformly around it. Intuitively, the

presence of thin regions will cause a segment to score low,

while neatly connected surfaces will score high. To compute

the value of this measure at a single point p, we first project

points in a local neighborhood around p to the tangent plane

defined by its normal. Next, we quantize the angle of the

projected points in the local 2D coordinate system into b

bins and compute the entropy of the distribution. Here, high

entropy indicates high smoothness. We repeat this procedure

at each point and average the result across all points in the

segment. In practice, we use b = 8 and local neighborhoods

with radius 1cm.

Local Convexity. Surfaces of objects are often made up

of locally convex regions. We determine the convexity of

each polygon edge as given by the predicate in Equation 1

and score each segment by the percentage of its edges which

are convex. Global convexity. Visual perception studies have

shown that the human visual system uses a global convexity

prior when inferring 3D shape [28], [29]. Taking inspiration

from these results, we also consider measuring the degree

to which an object’s convex hull is an approximation to the

object’s shape. To evaluate this measure, we compute the

convex hull and record the average distance from a point on

the object to the closest point on the convex hull.

Recurrence. Segments that are commonly found in other

scenes are more likely to be an object rather than a seg-

mentation artifact. Thus, for every segment we measure the

average distance to the top k most similar segments in other

scenes. In our experiments, we use k = 10.

There are several approaches one could use to quantify

the distance between two segments. Prior work [22] has

proposed computing local features on every object and using

RANSAC followed by Iterative Closest Point algorithm to

compute a rigid alignment. However, we found this strategy

to be computationally too expensive. In Computer Vision,

a standard approach is to compute visual bag of words

representations from FPFH features [30] or spin images and

match them using chi-squared kernels, but we found that

while this approach gave reasonable results, it was also

computationally too expensive.

To keep the computational costs low, we found it is

sufficient to retrieve segments of comparable sizes that have

similar shape measures. Concretely, to retrieve the most

similar segments to a given query segment, we consider all

segments within 25% of extent along principal directions in

size and measure the euclidean distance between their nor-

malized shape measures. Each measure is normalized to be

zero mean and unit variance during the retrieval. As a result,

our recurrence measure does not enforce exact alignment but

merely identifies segments that have commonly occurring

statistical properties, as defined by our shape measures.

Examples of nearest neighbor retrievals with this measure

can be seen in figure 6.

Fig. 6. We show a query segment (left) and its 10 closest matches among
all segments (right). These segments are retrieved from the entire set of
1836 segments across 58 scenes. Note that the third down are all cups, 5th
row are all mice, and 8th row are mostly staplers.



Fig. 5. In every example scene above we highlight the top few object hypotheses, using the linear SVM as the predictor.

C. Data-driven combination

We consider several options for combining the proposed

measures into one objectness score: Simple averaging, Naive

Bayes, Linear Support Vector Machine, RBF Kernel Support

Vector Machine, and Nearest Neighbor.

To obtain ground truth training labels, we manually an-

notated all extracted segments as being an object or not.

The labeling protocol we used is as follows. A segment

is annotated as an object when it is an exact and full

segmentation of a semantically interpretable part of the

scene. If the segment contains surrounding clutter in addition

to the object, it is marked false. If a segment is only an object

part that does not normally occur in the world in isolation,

it is also marked false (for example, the top part of a stapler,

the keypad on a telephone, the cover page of a book, etc.).

V. RESULTS

We evaluated our method on the dataset described in

Section III. Over-segmentation of all 58 scenes leads to a

total of 1836 segments, of which we identified 303 as objects

using the labeling protocol described in Section IV-C.

We treat the task of identifying objects as a binary

classification problem. To construct the data matrix we

concatenate all measures into a 1836x6 matrix and normalize

each column to be zero mean and unit variance. Next, we

randomly assign half of the data to training set and half

to the testing set. We perform 5-fold cross-validation on all

classifier parameters using grid search. The entire process

is repeated 20 times for different random splits of the data

and the average result is reported. Quantitative analysis of

the performance is shown in Figure 7. Example results for

object hypotheses can be seen visually in Figure 5.

Limitations. The system is capable of reliably distin-

guishing objects once they are identified as potential object

candidates, but there are a few common failure cases that

cause the system to incorrectly miss an object candidate

during the over-segmentation stage:

• 3D mesh reconstruction: A few failure cases are tied

directly to the mesh reconstruction step. Due to the

limited resolution of Kinect Fusion’s volumetric rep-

resentation, small neighboring objects may be fused

together, causing the algorithm to undersegment these

regions. Moreover, RGB-D sensors do not handle trans-

parent objects well, but transparent objects (bottles,

plastic cups, glass tables) are relatively frequent in

regular scenes. This can lead to noisy segments with

large discontinuities in the reconstruction that cause

our algorithm to over-segment these regions. Lastly,

the resolution of the Marching Cubes reconstruction is

limited by GPU memory. Low-resolution reconstruction

can cause thin objects such as paper notebooks or thin

keyboards to fuse into their supporting plane and not

get discovered.

• Non-maximum suppression: An object part that occupies

a large fraction of the entire object can be judged by

the algorithm to be much more object-like, which can

cause the algorithm to incorrectly reject the entire object

as a candidate. For instance, the two ear pieces of a

pair of headphones tend to appear more objectlike in

isolation than when connected by a thin plastic band.



Fig. 7. Precision vs. Recall curves for objectness measures and their combinations. Color-coded bar plots show Average Precisions.

Similarly, the cylindrical portion of a mug often appears

more objectlike than it would with the handle attached.

• Segmentation algorithm: Our segmentation algorithm is

a compromise between speed and accuracy. Due to its

limitations, it is particularly prone to over-segmenting

extended objects that contain intricate structure. An

example of such an object is a plant with many leaves. In

addition, the segmentation algorithm will never consider

joining two pieces that are not physically connected.

For example, a transparent bottle with some liquid can

easily become two disconnected segments: the body and

the floating cap. As a result, the algorithm will never

consider joining these segments into one candidate

object.

To estimate the extent of the problem quantitatively, we

manually analyzed the recall of the system by counting the

number of objects in each scene that should reasonably be

identified as objects. We count on the order of 400 objects

present in our dataset. Since we have 303 positive labels, we

estimate the recall of the system to be roughly 75%. Figure

8 illustrates examples of failure cases visually.

Quantitative analysis. As can be seen on Figure 7, the

individual measures perform relatively poorly alone, but

their combinations achieve impressive levels of performance.

Moreover, it is interesting to note that even an unsupervised

combination of our measures by means of simple averag-

ing performs competitively: the top performer (RBF kernel

SVM) achieves 0.92 Average Precision, while averaging

achieves 0.86.

We further seek to understand the contribution of indi-

vidual measures by repeating the entire experiment with

and without them. We use the RBF kernel SVM for these

experiments as it has been shown to work best in our data.

First, removing recurrence decreases performance of the

system from 0.92 to 0.90 AP. Removing Symmetry, Local

Fig. 8. Examples of limitations. 1: Only main part of the headphones will
be identified as a candidate object. 2: Cups are fused and get segmented
together as a single object candidate. 3: The armrest of the chair will be
incorrectly identified as a strong object. 4: Due to transparency, the top will
appear to be floating and gets disconnected from the bottle. 5: The plant
is too intricate and contains too much variation to be selected as a single
object. 6: The interior of the cup will be selected as a separate segment
because the curvature changes too quickly around its rim.

and Global Convexity similarly decrease performance by

2-3 points, but Compactness and Smoothness decrease the

performance more significantly to 0.85 and 0.82 respectively.

This hints that Compactness and Smoothness may be two of

our strongest measures. However, using Compactness and

Smoothness alone only achieves 0.81 AP, which indicates

that the other measures still contribute meaningful informa-

tion to the final result.

Computational complexity.

As motivated during the introduction, an important consid-

eration for the design of our algorithm is its computational

complexity.



Fig. 9. Confusion matrix for the RBF Kernel SVM.

Asymptotic analysis. Denoting N to be the number of

scenes and S to be the average number of segments per

scene (in this work N = 58 and S = 31), the complexity

of the method is O(N) for mesh reconstruction, O(SN) to

evaluate the shape measures on all segments individually, and

O((SN)2) to evaluate the recurrence measure. Even though a

naive implementation of the recurrence measure is quadratic

in the total number of segments, it is empirically the most

efficient measure to compute on dataset of our size. Efficient

k-nearest-neighbor algorithms such as FLANN [31] can be

used to further speed up the retrieval process.

Kinect Fusion. We computed the 3D meshes using the

Open Source Kinect Fusion implementation [3] on an 8 core

2.2GHz laptop with the GTX 570m GPU. The process of

converting the RGB-D video into 3D mesh took 2 minutes

per scene on average.

Measure computation. We further report computational

time for an average scene with 200,000 vertices and 400,000

polygons on a 2.8GHz workstation, using a single-threaded

implementation in C++:

Step Time(s)

Over-segmentation 1.5
Compactness 0.1
Symmetry 3.8
Global Convexity 13.3
Local Convexity 1.3
Smoothness 2.5
Recurrence 0.1

Total 25

The entire 58 scene dataset can therefore be processed in

about 25 minutes. As can be seen in the table above, the

global convexity measure is by far the slowest step as it

requires computing the convex hull.

VI. CONCLUSION

We presented an approach for object discovery in a collec-

tion of 3D meshes. Our algorithm is computationally efficient

(running at about 25 seconds per scene on an average

computer) and can process scenes independently and online.

The core of the method relies on a set of proposed objectness

measures that evaluate how likely a single mesh segment

is to be an object. We demonstrated that these measures



can be averaged to reliably identify objects in scenes and

showed that a supervised combination can further increase

performance up to 0.92 Average Precision. We released a

dataset of 58 challenging environments to the public.

We estimated the overall recall of the system to be around

75% and qualitatively analyzed sources of error. The most

common sources of error can be traced to limitations in data

acquisition when dealing with transparent materials and the

resolution of the resulting 3D mesh. While the simplicity of

the segmentation algorithm allowed us to process scenes at

very fast rates (segmenting an entire scene 10 times using

different thresholds in 1.5 seconds), a more sophisticated

formulation is necessary to ensure that complicated objects

(such as the plant example in Figure 8) are segmented as a

single candidate object.

Future work includes increasing the recall of the system

by improving the segmentation stage of the algorithm and

by reasoning about segments in the context of the scene in

which they were found.
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