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Extraction d’objets par une dynamique stochastique
continue de naissance et mort

Résumé : Nous définissons une dynamique de naissance et mort s’appliquant & des configurations
de disques dans le plan. Nous prouvons la convergence du processus continu et proposons une
discrétisation du probléme convergeant vers le cas continu. Cette approche est développée
pour résoudre des problémes d’analyse d’image liés & ’extraction d’objets. L’algorithme qui

s’en déduit est appliqué aux problémes de I’extraction de houppiers et a la détection d’oiseaux

a partir d'images aériennes. Les performances de ’approche développée sont montrées sur

des images réelles.

Mots-clés : Extraction d’objets, modélisation stochastique, dynamique de naissance/mort
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1 Introduction

We propose a new stochastic algorithm to solve object extraction problems from images. The
algorithm is based on an evolution of macro-objects in continuum. We consider here a model
of possibly partially overlapping discs. Each disc in the final configuration is associated with
a given object in the image, for example a tree or a bird. We define a stochastic evolution
of a set of objects converging to the set of objects of interest in the image.

The evolution under consideration is a birth-and-death equilibrium dynamics on the
configuration space of discs (or the configuration space of points) with a given stationary
Gibbs measure (see [, 2]). We define birth and death rates meeting the so-called detailed
balance conditions. In our scheme the intensity of birth is a constant, whereas intensities
of death depend on the energy function and the current configuration. This choice of rates
has been made to optimize the convergence speed. Indeed, the volume of the space for birth
is much bigger than the number of discs in the configuration. Each disc can be killed with
a certain intensity depending on its neighborhood and the energy function. It is therefore
faster to update the death map than the birth map.

We then embed the defined stationary dynamics into a simulated annealing procedure
where the temperature of the system tends to zero in time. We thus obtain a non-stationary
stochastic process, such that all weak limit measures have a support on configurations giv-
ing the global minimum of the energy function under a minimal number of discs in the
configuration. The final step is the discretization of this non-stationary dynamics. The
discretization is a non-homogeneous (in time and in space) Markov chain with transition
probabilities depending on a temperature, the energy function and a discretization step. We
prove that:

1) the discretization process converges to the continuous time process under fixed tempera-
ture as the step of discretization tends to zero;

2) if we apply the discretization process to any initial measure with a continuous density
w.r.t. the Lebesgue-Poisson measure, then in the limit when the discretization step tends
to 0, time tends to infinity and the temperature tends to 0, we get a measure concentrated
on the global minima of the energy function with a minimal number of discs.

These results confirm that the proposed algorithm based on the discretization scheme
together with the cooling procedure can be applied to problems of searching configurations
giving global minima of the energy function.

We apply this framework to object detection from images. In some previous works, we
have shown that marked point processes, defined by a Gibbs measure against the Poisson
process, are adapted to such problems by modeling simple geometric objects defined by
the marks associated to each point. Moreover, interactions between points allow to model
some a priori information on the object configuration. This approach have been applied to
detect different features such as road networks [3, 4], buildings [5] or trees [6]. In these refer-
ences, the optimization of the defined marked point process is performed using a RJIMCMC
scheme [7]. In the RIMCMC scheme, each iteration consists in perturbating one or a couple
of objects. Besides the rejection rate induces a huge computation time. In the proposed
approach, each step concerns the whole configuration and there is no rejection. We thus
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4 Descombes € Minlos € Zhizhina

obtained better performances in term of computational time, which allow to deal with real
images of several millions of pixels. We build an energy function which embeds some a priori
knowledge on the object configuration such as partial non overlapping between objects and
a data term which allows the objects to fit the image under study. The optimization is then
performed by using the proposed birth and death dynamics. Some results are shown on real
data for the problems of tree and bird detection.

2 Description of the model

2.1 Configuration space

We consider finite systems of discs {dg,,...,ds, } of the same radius r with a hard core
distance € between any two elements, lying in a bounded domain V C R?. Let

7:{:02} GFd(V)v Z; GVCR25

be a configuration of the centers of discs and where I'¢(V') denotes the configuration space of
the discs center in V. Since the domain V' is bounded the number of discs in any configuration

is uniformly bounded
4V

< N = ,
ol =

where |V] is the volume of V. The set I'4(V') can be decomposed into strata:

N
La(V) = [JTa(Vin),
n=0

where each stratum I'4(V,n) is the set of configurations containing n discs, and I'q(V,0) =
{0}. Since we consider unordered sets of discs, the set I'q(V,n) for any n > 0 can be
represented as a factor set

Fd(‘/vn) =V / Sns

where
Vi={(x1,...,2n) €V": |z; —xj| >€ i,5=1,...,n, i #j},

and S, is the permutation group in the set (z1,...,2,). We define a mapping
I, : V) — Tu(V,n), I,(x1,...,2,) €Tq(V,n) (1)

Each function F(7), v € T'4(V) on the space I'q(V') can be represented as a function in the
Fock space:
Fo, Fl(.’L'l), FQ(.’L‘l,.’L'Q),...,FN(.’L'l,...,,’EN), (2)

where Fy = F(0), F,(z1,...,2,) = F(IL,(z1,...,2y,)) is a symmetrical function on V'. A
function F' on the space I'q(V') is said to be a smooth (continuous) function if each function
in @) is a smooth (continuous) function on V.

INRIA



Birth and death dynamics 5

Let us consider a measure in the space I'y(V, n):

I, (4)

)\n(A) = n , AC Fd(V, n), )\0(@) =1. (3)

n!

Here |II;!(A)| is the 2n-dimensional Lebesgue volume of the domain II;'(A) C V' (a
complete preimage of A under mapping II,,). The measure A on the space I'4(V'), such that
the restriction of A on each stratum I'y(V,n) is given by A,, is called the Lebesgue-Poisson
measure.

2.2 Energy function

We define on the space I';(V) a real-valued smooth and bounded from below function H(v)
which is called the energy function. We set H()) = 0. Then the corresponding Fock
representation for H has the form

H = (0, Hi(21), Ha(z1,22),...,Hy(21,...,2N)). (4)
The Gibbs distribution H}a/ on the space I'q(V') generated by the energy H(v) is defined by
\%
the density py (y) = d;—f(v) with respect to the Lebesgue-Poisson measure A:

zh’l

pv(y) = Zov exp{—BH(7)}, (5)

with positive parameters § >0, z >0 and a normalizing factor Zg y:

N n
Zgy = / Zlexp{~BH()}dA(Y) =1+ % /e*ﬁH"(””1 """ *)day ... dy.
Ta(V) =t Vi

We formulate now some assumptions on the energy function Hy (). Denote by

H = min H(y),
yela(V)

where I'y(V) is the closure of I'4(V'), and let

Ty = {yela(V): H(y)=H}

be a set of all points from I'y(V') giving the global minimum H of the function H(v). The
set Ty, can be written as

N
Ty = U Tv n,
n=0

where Ty, is a set of configurations from Ty which are also configurations from I'q(V,n),
i.e. contain exactly n discs.
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In practice, this energy contains a first term representing a priori knowledge on the discs
configuration and which is defined by interactions between neighboring discs, and a second
term, obtained from data, which is defined for each object and which can be negative.

3 Convergence of measures

We assume that

1) the set Ty is finite and situated in I'y(V),

2) for any configuration ¥ € Ty, any preimage (Zi,...,%,) € II,1(§) of ¥ is a non-
degenerated critical point of the function H,,, i.e.:

oH,
7 (Z1,...,Tn) = 0,

foranyi=1,...,n, & = (y},y?) € V, m = 1,2, and the matrix

_ 0*H, _ _

at point (Z1,...,Z,) is strictly positive-definite (this matrix is the same for all preimages of
the configuration 7). We denote

B(y) = det A(¥). (6)

Theorem 1. Let ng € [0,...,N] be the minimal index for which the set Ty, is not
empty. Then the Gibbs distributions pg converge weakly as 3 — oo to a distribution i on

Ty(V) of the form

oo = O Cydyifng >0, and pee = d(gy if no=0. (7)

’VETV,TLO

Here 05 is the unit measure concentrated on the configuration 7y, and the coefficients C5 hold

the equality
Y oy =1

YETV,ng

Proof. Let F(vy) be a smooth function on I'y(V'). Then

INRIA



Birth and death dynamics 7

Z[;,%/ FO + Z ;_ Fn(xlv"'7$n) e—ﬁHn(zl,...,mn) dﬂfl d.CCQ

Let us consider each integral in ()

I,(F,) = / Fo(x1,...,2,) e (@1 mn) g das

v
separately. If the set Ty, is empty, then the integral I, (F),) meets the estimate
|1 (Fh)| < €_Bh"|Vd"|, 9)

where
hy, = min Hy(z1,...,2,) > H.

If Ty, is not empty, then the following asymptotics holds, see for example [§]

L(F,) = e[ N~ FHRE)B? + g2 128 8) | (10)

YETv,n
where S(F, 3) is bounded as § — oo, and

1

2m)"/? )

R(y) =

Y

where B(%) is defined in (@). Then bound @) and asymptotics (Il imply that for ng > 0
and 8 — oo we get

N n —BH
z e e
IF) = B+ Y 50(0) = Top | X PORG) + o). ay
n=1 'S/GTV,nU
Analogously,
e‘ﬁg _
Zgyv = I(1) = Gol? 72 R(7) + o(1) |- (12)
'YETV,nO
Finally from (), () and [2Z) we get [@) with
k()

cH) = —Z%Tvmo )

The case ng = 0 can be studied in the same way. Since the space of smooth functions
is dense in the space of bounded functions B(T'4(V')), we prove the weak convergence of
measures (i3 — fioo On the space B(I'q(V)). O

RR n° 6135



8 Descombes € Minlos € Zhizhina

4 A continuous-time equilibrium dynamics

We consider an operator in the space C(T'4(V')) of continuous bounded functions on I'y(V)
of the form:

(Ls H) = 3 PPN (f(\a) — f(7)) + 2 / (F(yUy) - F() dy,  (13)
e V()

where
V(’Y) = V\D(V)ﬂ D(’V) = (Umevgz(e)) nv,
where B, (e) is the disk with center at point « € V and radius €, and

E(z,y\v) = H(y)— H(v\z).

The operator defined in equation ([I3) is the generator of a birth-and-death process in the
domain V' C R? with birth intensity b(7y, ) in the unordered configuration + at = and death
intensity d(y\z,x) from the configuration v at position x respectively given by :

b(v,z) de = zdx, dy\z,z) = oBE@\z)
Under this choice of the birth and death intensities, the detailed balance condition holds:

b(’%x) _ pV(IY) _ —BE(z,v\z)
= = ze ,
dy\z,z)  pv(y\z)
and consequently, see for example [9], the corresponding birth-and-death process associated

with the stochastic semigroup Tj5(t) = e!L5 is time reversible, and its equilibrium distribu-
tion is the Gibbs stationary measure ,ug with density (&l).

Theorem 2. 1) The operator Lg is a bounded operator in the space of bounded functions
B(T'4(V)) and in Ly(Tq(V'), ug), moreover Lg is a self-adjoint operator in Lo(Tq(V'), ug).
2) The family of operators Tz(t) = e'£s, t > 0 forms a self-adjoint Markov semigroup in
La(Ta(V), 15), ive.

eFs1 =1, and e5F >0 for any non-negative F € Lo(Ta(V), ug). (14)

3) The semigroup Ts(t) is a contraction semigroup in B(T'4(V)).
4) The semigroup Ta(t) meets the condition of improving positivity, i.e. for any non-negative
function F > 0 we get Tz(t)F >0

For the proof, see Appendix A.

Corollary. The improving positivity property implies that there exists a unique fixed
vector of the operators Tj(t) = e'Ls in Ly(Ty(V), ug) (which is equal to 1), see [10].

The convergence to the stationary measure p is guaranteed by the general result given
by C. Preston in [IT]. We consider a family B(\) of measures v on the space I';(V) with

INRIA
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a bounded density p, () with respect to Lebesgue-Poisson measure A. This, in particular,
implies that a density p, () of the measure v € B()A) w.r.t. a Gibbs measure ug (for any j):

dv
dpp

po(y) = ()
is also bounded, and consequently, p, (v) € L2(Tq(V), ug). Then we can define the evolution
vy = T(t)v of the measure v € B(\) as follows:

(e, ) = (T(8)pws ) g -

Notice that property 2) of Theorem 2 implies that T;3(t)p, is again a density w.r.t. a Gibbs
measure, i.e.
Tﬁ(t)pu >0, <Tﬂ(t)pv>#5 = <pv>#;3

=1.
Theorem 3. Let v € B(\). Then for any F € La(Ta(V), ug) we get

(Ts(), F) = (v, F) = (Ts(O)pus Fluy = (F)ps- (15)
The proof of theorem 3 follows from the general theorems by C. Preston [I1].

5 Approximation process

In this section, we define a discrete time approximation of the proposed continuous birth
and death process.

We consider Markov chains T s(n),n = 0,1, 2, ... on the same space I'4(V'). The process
T3.5(n) can be described as follows: a configuration v is transformed to a configuration
v = 71 U~, where v; C v, and 72 is a configuration of centers of discs such that
~v1 N2 = () and is distributed w.r.t. the Poisson law with intensity z.

This transformation embed a birth part given by ~2 and a death part given by v\v;.

The transition probability for the death of a particle at x (i.e. a disc with the center at
x) from the configuration ~ is given by:

BE(z,y\z) § S5 .
e _ Ay
1 + eBE@N\2) § —  14a,d’ if Y= 7\1',

Pz, = (]_6)
> if v—7 (xsurvives).

with a, = a,(y) = e*P@7\*)_ Moreover, all the particles are killed independently, and both
configurations ; and -y, are independent.

The transitions associated with the birth of a new particle in a small domain Ay C V(v)
have the following probability distribution:

zAys, if y— Uy,

Qy,s = (17)
1—2zAyé, if v—+ (nobirthin Ay).

RR n° 6135
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Finally, the transition operator Pg s for the process
Tﬂ,é(”) = P 5,5

has the following form:

1 az0
(Pssf)(v) = Z H1+a5 H 1+a.0 49
71CHy zEM T zer\n ‘
o i 26)k
25 (n) / (k:l) fmUy U Uye) dys .. dyg,
k=0 |, ’
e (71)

where Z5(y) = E5(V(v), 2, 0) is the normalizing factor for the conditional Lebesgue-Poisson
measure under a given configuration of discs ;. We prove below that the approximation
process T 5(t) = Tps ([%]) converges to the continuous time process T(t) uniformly on
bounded intervals [0, ] as the discretization step ¢ tends to 0.

Let us denote L = B(I'4(V)) a Banach space of bounded functions on I'yy with a norm

|F|l = sup [F()|
vETa(V)
Theorem 4. For each F € L
1T5,s()F — Tat)Flle = sup|(Tss()F)(v) — (Ts®)F)(v)] — 0, (19)
¥

as 0 — 0 for all t >0 uniformly on bounded intervals of time.
See Appendix B for the proof.
Corollary. The result of theorem 4 implies that for any F,G € B(T'4(V)) we get

(G, T s5(t)F)py — (G, Tp(t)F)u, as 0 —0. (20)

We denote by Sg,s(n) an adjoint to T3 5(n) semigroup acting on measures, such that for
any v € B(\):
(Sp.s(n)v, F) = (pu, Tg.5(n) F) -
We now formulate the main result about convergence.
Main theorem. Let F' € B(T'4(V)) and an initial measure v € B(X). Then under

relation
5 ePl < const (21)

with b = Sup.ep, vy SUP,e, E(z,7\z) we have

(F)sssthyy = Fue (22)

B—o0, t—oo, §—0

INRIA
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where measure pioo is defined in Theorem 1, and (F)g, (£}, = (Sgs([E))v, F).
Proof. We can write as follows

(F)ssitspe = Fhum = 00 Tos(GDF s — (o Ta(OF ), +

T T Opvs Flus = (Fhps + (Fhpg = (Flue

Then, using the results of theorem 1 and the limit relations (@), ([3) and @) we get ).
In addition, relation (1) follows from the approximation technique (see appendix B, equa-

tions E3) and (B)).

Remark. Relation ([22)) determines the limit over three quantities: § — oo, t — 00,0 —
0. In the approximation technique we used the relation (1) between § and S:

6 = ¢(B) e P’ with ¢(8) =0(1) as f — oc.

Unfortunately we could not find the relation between ¢ and 8. If we have the relation
t = 1(0) in an explicit form, then @2) can be rewritten as a limit when ¢ — co under two

relations 3(t) = ¢ ~1(t) and 6(t) = ¢(B(t))e PMP.

6 Application to object detection from numerical images

6.1 Model

Let consider a numerical image on the lattice I C Z?2, defined as follows:

Y:I — ACN
s = Y (23)

Each y; refers to the grey level at pixel s, on the lattice I = {1,--- |/ NL}x{1,--- ,NC}, NL
(resp. NC) being the number of lines (resp. columns) of the analyzed image. We consider
configurations of centers of discs v = {z;} € Tq(V), where V = [1/2, NL+1/2] x [1/2, NC'+
1/2]. Each disk in the final configuration represents an object in the image. The hard core
distance € is naturally taken to be equal to the data resolution: ¢ = 1 pixel. To define the
energy H, we first consider some prior knowledge. We want to minimize the overlap between
objects. However, to obtain a more flexible model w.r.t. the data and the kind of objects,
we do not forbid but only penalize overlapping objects. We define a pairwise interaction as
follows:

V{z;,z;} € v x v, Ho(x;, x;) = max (O,lW) (24)

where ||.|| is the Euclidean norm and r is the radius of the underlying disc.

A first order term is then added for each object to fit the disc configuration onto the data.
We consider that there is an object, modeled by a disc centered at pixel s, in the image,

RR n° 6135
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if the grey level values of the pixels inside the projection of the disc onto the lattice are
statistically different from those of the pixels in the neighborhood of the disc. To quantify
this difference we compute the Bhattacharya distance between the associated distributions.
Denote D1 (s), the projection of the disc with radius r centered at s onto the lattice, and
Ds(s) the surrounding crown:

Di(s)={teT:|[t—s||<r}and Da(s)={te1:||t—s| <r+1}\Di(s). (25)
We consider the mean and the variance of the data of these two subsets:

> ien (s) Yt 2tep (s) Yt

pi(s) = =" and (s) = <

ZtED1(s) 1 ZtEDQ(S) 1

Zt Dlsyt2 Zt Da(s ytz
oi(s) = UL 02 and o3(s) = 20T g2 ()

ZtGDl(S) Zt€D2(s)

Assuming Gaussian distributions, the Bhattacharya distance between the distributions in
D;(s) and in Ds(s) is then given by:

1 2 1 201(8)o2(s)
B(s) = - — 2 2(s) — = log —5——2—"5". 2
(5) = 3 (2(5) = os))* /1 (9) + 03(s) = 1o =720 (27)
From this distance between the two distributions, a first order energy term is built:
1-22) it Bi)<T
Vo, €7, Hi(w;) = (28)

exp-B=L 1) if B(@) =T

where 7 is the closest point to x; on the lattice, and T is a threshold parameter. Finally,
under the hard core constraint, the global energy is written as follows:

H(/y):aZHl(mi)-f— Z H2($i,$j) (29)
;€5 {zs, x5 ey Xy,i#]

where « is a weighting parameter between the data term and the prior.

6.2 Algorithm
The algorithm simulating the process is defined as follows:

e Computation of the first order term: For each site s € I compute Hy(s) from
the data

e Computation of the birth map: To speed up the process, we consider a non
homogeneous birth rate to favor birth where the first order term is low (i.e. where the
data tend to define an object):

maxyer Hi(t) — Hi(s)
maxzer Hy(t) — minger Hy(t)

Vsel,b(s)=1+9 (30)

INRIA
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The normalized birth rate is then given by:

Vs eI, B(s) = ) (31)
> ier b(s)
This non homogeneous birth rate refers to a non homogeneous reference Poisson mea-
sure. It has no impact on the convergence to the global minima of the energy function
but do have an impact on the speed of convergence in practice by favoring birth in
relevant locations.

e Main program: initialize the inverse temperature parameter 8 = (p and the dis-
cretization step § = &g and alternate birth and death steps

— Birth step: for each s € S, if ; = 0 (no point in s) add a point in s (x5 = 1)
with probability 6B(s) (note that the hard core constraint with e = 1 pixel is
satisfied).

— Death step: consider the configuration of points x = {s € I : z; = 1} and sort
it from the highest to the lowest value of H;(s). For each point taken in this
order, compute the death rate as follows:

0. (5) dag(s)

T 1+ dag(s)’ (52)

where:
az(s) = exp—f3 (H(z/{z}) — H(z)). (33)
and kill s (x5 = 0) with probability d(s).
— Convergence test: if the process has not converged, decrease the temperature
and the discretization step by a given factor and go back to the birth step. The

convergence is obtained when all the objects added during the birth step, and
only these ones, have been killed during the death step.

6.3 Results

The first application we address concerns tree crown extraction from aerial images. We
consider 50cm resolution images of poplars. Some examples of the obtained results are
given on figures[Mland Bl The results are satisfactory. One can remark a few false alarms on
figure[ll on the border on the plantation, due to shadows and a few misdetection on figure 21
on small trees for which the chosen radius (3 pixels) is too big.

The second application concerns the counting of flamingo population. An extract of the
obtained result is given on figure B for the initial image and on figure @ for the detected birds.
Almost all the birds have been correctly detected. The full image contains 6128 x 3920 pixels
and has been analyzed in ten minutes on a bi-processor 2GHz PC. This represents a main
advantage with respect to more standard optimization techniques based on a RJIMCMC
sampler [6, T2]. Indeed, the speed of convergence and the computational efficiency of the
proposed algorithm allow us to deal with with huge sets of data in a reasonable time.

RR n° 6135
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7 Conclusion

In this report, we have proposed a new approach for detecting objects in an image. This
approach is based on a birth and death process. We have proven the convergence of the
continuous process. We then have described a discretization scheme and proven its con-
vergence to the continuous process. From this general framework, we have proposed a disc
model which permits the detection of objects in a given image. Two applications, concerning
tree and bird detection, have shown the relevence of the proposed approach. The two main
advantages of this technique are its generality and its computational efficiency.

Next steps will concern the generalization of the model to a broader class of objects.
Taking into account other kinds of objects such as ellipses or rectangles is straightforward.
However, it will be interesting to embed some randomness in the definition of objects.
Dealing with random radius or more generally random marks associated with the points in
the configuration will increase the application domain of this promising approach. To tackle
this new generation of models, we are currently working of new dynamics for addressing
geometric changes in the configuration such as object dilation, translation, rotation or object
splitting and merging.
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Birth and death dynamics

Figure 1: Result on a poplar plantation (top: initial image (©) IFN, bottom: detected trees)
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Figure 2: Result on a poplar plantation (top: initial image (©) IFN, bottom: detected trees)
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Birth and death dynamics
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Figure 3: Bird population (C) Station Biologique Tour du
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Detected birds from the image shown on figure

Figure 4
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Appendix A. Proof of theorem 2.

1) The boundness of Lg is obvious, and then we can define the semigroup Ts(t) as the
exponent of the operator Lg using the usual espansion for the exponent. Self-adjointness
follows from the detailed balance condition and the boundness of the operator Lg.

2) Since Ll = 0 we get e!L51 = 1. The second condition in ([[d) follows from the analogous
property of the operators Pg and the convergence of the approximation process associated
with transition operator Ps (see appendix B).

3) Using relations

Ts(t) = e# = lim (E—|— ELﬁ) (34)
n

n—oo
and

(E + %LB) fo) = (1 - % (Z PPN 4 ZV(V))) fo) +

xreEY

%Zeﬁﬂm\r)f(y\z) + %z / f(yuy) dy (35)
z€Y V(v)

we obtain that, for any ¢ > 0 and for large enough n, all coefficients in the decomposition
BH) are positive, and moreover,

(B4 500) 100 < |(B+ £20) 171)| < suplron)

Thus,
sup‘(EvL %Lﬁ) f('y)‘ < sup|f(y)l, (36)
v

gl
and applying inequality (B8l n times we still keep the same bound:

sup
¥

t n
(E + _LB) f(y)‘ < sup|f(y)| for all large enough n € N.
n ¥

Consequently, T5(t) is a contraction semigroup in B(I'4(V)), i.e.

sgpl(Tﬁ(t) NI < Sgplf(v)l-
4) Using (BH) we have:
(E + %Lﬁ)f = Bof + %B+f + %B-f,

where

(Bof)(y) = (1—% (ZeﬁE<m\m>+zv<v>>>m> > (1-£r) 10,

xEY
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(B_HE) = S PEEND f(\2), (B () = 2 / fyUz)de,

rEY V(v
and

R — BEEN) 4 o1() | < oo,
max (Ze + 2V (y) 00

ey

For any given t > 0, if n is large enough, then 1 — &

holds: n ny n_
(64 )= % mamen (D)7 () s (57)

> 0. The following decomposition

o;=0,+,—
where ny is the number of 7 +” or correspondingly ” —” in the sequence (o1, ...,0,), and
the sum is taken over all sequences (o1,...,0,) with o; = 0,+,—. Each term in @) is

non-negative if f is a non-negative function and if n is large enough.
Let us consider two cases. If f(()) > 0, then we show that for any v # () the sum

" k
S BB Bo (1) F0) = 0PN > afo) @)

where |y| = k and a constant ¢; > 0 does not depend on n. The sum in (BE) is taken over all
sequences (01, ...,0,) free from pluses with n_ = k. Indeed, we have for all large enough n

n—k k
t t
@ > (1-£r)  BEa.0 k(L) 10
with the corresponding matrix element of the operator B*

B*(,0) = k! PHO),

Since for any fixed t, R, k

n—k k k

t t t
17—R oF (- — — e as n— oo,

n n k!

we have for large enough n

n—=k
(-5%) @
n

Consequently, for any v with |y| = k

(P0G > 5t SO f0) = a f) (39)
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and in the limit B4) as n — oo relations BZ) - (BY) imply that

(L2 f) (v) > crf(0) > o.

Assume now that f(f) = 0 and f(y) > 0 on a set @ C I'g(V, k) of a positive measure
AQ) > 0. We consider in the sum B7) the following term

where the sum is taken over all sequences (o1, ..., 0,) free from minuses with n,. = k. Then
as above we have for all large enough n

(S ) @) > (1—@)“ ch (f)k /(Bi)((l),v)f(v)d)\ >
Q

n n

Taking the limit ([B4) as n — oo we have

tLg i —tR k
(B f) @) > 5o e [(BHOMNF(dN > 0.

2
Q
Thus using results of the previous case we get that for any
(50 ) () > 0.

Theorem 2 is proved completely.

Appendix B. Convergence of the approximation processes.
Proof of theorem 4.

To prove the convergence of the corresponding semigroup
+
Tss(t) = P — Ty(t), §—0

uniformly on bounded intervals of time ¢t we use here the following approximation theorem:

Theorem [I3]. For n = 1,2,... let T,, be a linear contraction on a Banach space L,
and let §,, be positive numbers. We set:

L, = — (T, — E).

1
8n
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Assume that lim, o 5, = 0.

Let {T(t)} be a strongly continuous contraction semigroup on the Banach space L with

generator L, and let C be a core for L. Then the following propositions are equivalent:
a) for each f € L

IT.&)f — T)flle — 0, as 6, —0
for all t > 0 uniformly on bounded intervals;
b) for each f € C
|Lnf — Lflle — 0, as &, —0.

We denote by Lg s the generator of the process T3 5 defined by transition probabilities
[®) (homogeneous in time):

(Losf)(7) = é((Pﬁ,éf) () — f() = (40)
1 1
E(;_l(’h) Z / % fnUyrU...Uyg) dyr ... dyr — f()
B0 yim)

i(%l(v) Hﬁ f() - f(v)) +

1 _ 1
TN | G D SULGDE
yeEy rey
Loy s ]‘[71 /f(u~)d~+
5, =5 7 n 1+ay5n YY) ay
ver V()

28,)%
CrCICIEY ((]i,) — 0

! 1+ a,6
Sy K| 5| +k>2 yeY yon

/ f((y\i)Uylu...Uyk) dyldyk

Ve (V\9)

We take here as a core C = B(I'4(V)) a whole set of bounded functions on I'y. Let us
consider the following theorem, proved in appendix C:
Theorem 5. Let us denote

Asf = Lgsf — Laf.
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Then
sup |[Asf(y)] — 0 as 6—0 (41)
g

for each f(v) € BT'y).

Finally, relation ) immediately implies convergence (@) of the semigroups in the
uniform norm of the space L by the above approximation theorem. Theorem 4 is proved.

Appendix C. Proof of theorem 5.

Some preliminary expansions.

Remark. We have for any = € v

E(z,7\z) < b, (42)
so that
a, = BE(@\T) < eBb (43)
and let
a = a(f) = sup sup a, < oo.

~yelg (V) €y

Lemma 1. The normalizing factor Z5 ' () from (I8) can be written as
E5'() =1 = 20V(y)| + O(:*%) as §—0. (44)

Proof. Since

=s0) =1+ 3 (Z:z>!m / dyi...dym = 1 + 20V + > (Zri)!mvm

Vin () m=2

m=1
with Vp, < |[V(y)|™ < |V|™, m > 2, we can write
Z5(y) = 1 + 26V(y)| + O(z%6°). (45)
Thus, (@) implies ). O

Using the Taylor expansions
2 , 1

and
2

e’ = 1+x+%e§, ¢ €(0,2), (47)
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we have for small enough §:

1 — o In(4asd) _ —asd+5 a2
1+ayd ’
-5 m+§_1 52 :22
[ = = e (48)
ven 1+ a.d

Then using (), E8) and relation 52 > eey @3 = O(a?8%) we have for all small enough 4
— 1
= I1 — <1—5Zam—z5|V(v)> = (49)
(1= 201V()| + 0 () e
(1 - (52% - 52|V(7)|) = 0 (0*(a®+27)).

= 1+ agd =

-0y aIJrSQ% > a2

We assume here that
(50)

da = 0 a(f) < const,

which is of course true for any fixed 5 and small enough §. Let us write now the expression

for Asf(vy) using (@) and (I3):

(BsH) = $(BNO) — F() ~ (51)
> aun) GO\ = S0 = = [ (FaUw) = S dy =
rey V()

%(Ealm s o) - f(v)) +

+ 3 a() f() + 2 V)l Fy) +

xrey
1 1 1
5 2w E ) [ 70 f0\e) = P aanfO\e) +
xTEY YyEY zey
1 =1
57 )2 H1+ay /fVUy y Z/fvuy Y+
V() V(v)
1 L
72 50\ Z . 1+a5
&y k:|yl+k>2 zEY yEY
/ FO\YUy U...Uyk) dyr ... dyg
Vi (V\7)
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Estimation of the coefficients in (BII).
Let us estimate the terms with f(v), f(v\z), f(yUy) in &) separately.
Using #3) and boundedness of f() we have:
( H H% - fr >>
<Zam ) + 2V |> F(| = 0(8(a® +2%), 6 — 0. (52)
xTEY
Analogously, we can estimate the coefficients before f(y\z) and f(yUy):
Y (500 [[r - 1) 0\ =
1+ayé
z€y yey
> ax (1= 20[V(N\a)| +0(:26%) e R et F0 A 1) f(\a)
xTEY
aly| (8(aly| +2|V]) + 6% (Azly| + As2?|V[?)) Ky = O(da(z + a)). (53)
And
1
=5t - <
z / < s () H1+a 3 1>f(va)dy <
Q0] v
VI (8alyl + 2|V]) + 6*(Aaly| + As2®|VI?)) Ky = O(02(z + a)). (54)

Let us estimate now the last term in (BIJ). Using that

1
=1 <1 <1
5 (7) — ) H1+ay(5 = 4

yey
and sup,, |f(v)| < K; we have
1
=-1(
6
52 () ~Z 1l H1+ay5
<y k:|y]|+k>2 €Y yEY

/ f(v\ﬁUylu...Uyk)dyl...dyk <
Vi ("\7)
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% (@) > GVIO®

k! -
ACy k>0:|5]+k>2

Z i J k
m=0,..., [v]
kE>0:m4k>2

K
~ " (ez‘v'6(1 +8)7 =1~ 516 - z|V|6) = O(5 + 62 +02%). (55)
Here we used that

(140)P1 = A+ — Ol 4+ O(%)  for small § > 0.

Finally, from &), &), &), BA), BF) it follows that for any f(y) € B(T'y(V))
sup|Asf(v)] — 0 as §—0,
2!

and consequently,
Lssf — Lgfllarawvy — 0 as 0 —0.

Theorem 5 is completely proved.
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